/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_VOLUMES_H__ #define __BTRFS_VOLUMES_H__ #include "kerncompat.h" #include #include "kernel-lib/sizes.h" #include "kernel-shared/ctree.h" #include "kernel-shared/uapi/btrfs.h" #include "kernel-shared/uapi/btrfs_tree.h" #include "common/extent-cache.h" struct btrfs_trans_handle; struct extent_buffer; #define BTRFS_STRIPE_LEN SZ_64K #define BTRFS_STRIPE_LEN_SHIFT (16) struct btrfs_device { struct list_head dev_list; struct btrfs_root *dev_root; struct btrfs_fs_devices *fs_devices; struct btrfs_fs_info *fs_info; u64 total_ios; int fd; int writeable; char *name; /* these are read off the super block, only in the progs */ char *label; u64 total_devs; u64 super_bytes_used; u64 generation; struct btrfs_zoned_device_info *zone_info; /* the internal btrfs device id */ u64 devid; /* size of the device */ u64 total_bytes; /* bytes used */ u64 bytes_used; /* optimal io alignment for this device */ u32 io_align; /* optimal io width for this device */ u32 io_width; /* minimal io size for this device */ u32 sector_size; /* type and info about this device */ u64 type; /* physical drive uuid (or lvm uuid) */ u8 uuid[BTRFS_UUID_SIZE]; }; enum btrfs_chunk_allocation_policy { BTRFS_CHUNK_ALLOC_REGULAR, BTRFS_CHUNK_ALLOC_ZONED, }; struct btrfs_fs_devices { u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ u8 metadata_uuid[BTRFS_FSID_SIZE]; /* FS specific uuid */ /* the device with this id has the most recent copy of the super */ u64 latest_devid; u64 latest_generation; u64 lowest_devid; u64 num_devices; u64 missing_devices; u64 total_rw_bytes; u64 total_devices; int latest_bdev; int lowest_bdev; struct list_head devices; struct list_head fs_list; struct btrfs_fs_devices *seed; enum btrfs_chunk_allocation_policy chunk_alloc_policy; bool changing_fsid; bool active_metadata_uuid; /* Super block data may be temporarily inconsistent (e.g. a different fsid). */ bool inconsistent_super; }; struct btrfs_bio_stripe { struct btrfs_device *dev; u64 physical; }; struct btrfs_multi_bio { u64 type; int error; int num_stripes; struct btrfs_bio_stripe stripes[]; }; struct map_lookup { struct cache_extent ce; u64 type; int io_align; int io_width; int stripe_len; int sector_size; int num_stripes; int sub_stripes; struct btrfs_bio_stripe stripes[]; }; struct btrfs_raid_attr { int sub_stripes; /* sub_stripes info for map */ int dev_stripes; /* stripes per dev */ int devs_max; /* max devs to use */ int devs_min; /* min devs needed */ int tolerated_failures; /* max tolerated fail devs */ int devs_increment; /* ndevs has to be a multiple of this */ int ncopies; /* how many copies to data has */ int nparity; /* number of stripes worth of bytes to store * parity information */ int mindev_error; /* error code if min devs requisite is unmet */ const char lower_name[8]; /* name of the profile in lower case*/ const char upper_name[8]; /* name of the profile in upper case*/ u64 bg_flag; /* block group flag of the raid */ }; extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; int btrfs_bg_type_to_nparity(u64 flags); #define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \ (sizeof(struct btrfs_bio_stripe) * (n))) #define btrfs_map_lookup_size(n) (sizeof(struct map_lookup) + \ (sizeof(struct btrfs_bio_stripe) * (n))) /* * Restriper's general type filter */ #define BTRFS_BALANCE_DATA (1ULL << 0) #define BTRFS_BALANCE_SYSTEM (1ULL << 1) #define BTRFS_BALANCE_METADATA (1ULL << 2) #define BTRFS_BALANCE_TYPE_MASK (BTRFS_BALANCE_DATA | \ BTRFS_BALANCE_SYSTEM | \ BTRFS_BALANCE_METADATA) #define BTRFS_BALANCE_FORCE (1ULL << 3) #define BTRFS_BALANCE_RESUME (1ULL << 4) /* * Balance filters */ #define BTRFS_BALANCE_ARGS_PROFILES (1ULL << 0) #define BTRFS_BALANCE_ARGS_USAGE (1ULL << 1) #define BTRFS_BALANCE_ARGS_DEVID (1ULL << 2) #define BTRFS_BALANCE_ARGS_DRANGE (1ULL << 3) #define BTRFS_BALANCE_ARGS_VRANGE (1ULL << 4) #define BTRFS_BALANCE_ARGS_LIMIT (1ULL << 5) #define BTRFS_BALANCE_ARGS_LIMIT_RANGE (1ULL << 6) #define BTRFS_BALANCE_ARGS_STRIPES_RANGE (1ULL << 7) #define BTRFS_BALANCE_ARGS_USAGE_RANGE (1ULL << 10) /* * Profile changing flags. When SOFT is set we won't relocate chunk if * it already has the target profile (even though it may be * half-filled). */ #define BTRFS_BALANCE_ARGS_CONVERT (1ULL << 8) #define BTRFS_BALANCE_ARGS_SOFT (1ULL << 9) #define BTRFS_RAID5_P_STRIPE ((u64)-2) #define BTRFS_RAID6_Q_STRIPE ((u64)-1) /* * Check if the given range cross stripes. * To ensure kernel scrub won't causing bug on with METADATA in mixed * block group * * Return 1 if the range crosses STRIPE boundary * Return 0 if the range doesn't cross STRIPE boundary or it * doesn't belong to any block group (no boundary to cross) */ static inline int check_crossing_stripes(struct btrfs_fs_info *fs_info, u64 start, u64 len) { struct btrfs_block_group *bg_cache; u64 bg_offset; bg_cache = btrfs_lookup_block_group(fs_info, start); /* * Does not belong to block group, no boundary to cross * although it's a bigger problem, but here we don't care. */ if (!bg_cache) return 0; bg_offset = start - bg_cache->start; return (bg_offset / BTRFS_STRIPE_LEN != (bg_offset + len - 1) / BTRFS_STRIPE_LEN); } static inline u64 calc_stripe_length(u64 type, u64 length, int num_stripes) { u64 stripe_size; if (type & BTRFS_BLOCK_GROUP_RAID0) { stripe_size = length; stripe_size /= num_stripes; } else if (type & BTRFS_BLOCK_GROUP_RAID10) { stripe_size = length * 2; stripe_size /= num_stripes; } else if (type & BTRFS_BLOCK_GROUP_RAID56_MASK) { stripe_size = length; stripe_size /= (num_stripes - btrfs_bg_type_to_nparity(type)); } else { stripe_size = length; } return stripe_size; } int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, u64 logical, u64 *length, u64 *type, struct btrfs_multi_bio **multi_ret, int mirror_num, u64 **raid_map); int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, u64 logical, u64 *length, struct btrfs_multi_bio **multi_ret, int mirror_num, u64 **raid_map_ret); int btrfs_next_bg(struct btrfs_fs_info *map_tree, u64 *logical, u64 *size, u64 type); static inline int btrfs_next_bg_metadata(struct btrfs_fs_info *fs_info, u64 *logical, u64 *size) { return btrfs_next_bg(fs_info, logical, size, BTRFS_BLOCK_GROUP_METADATA); } static inline int btrfs_next_bg_system(struct btrfs_fs_info *fs_info, u64 *logical, u64 *size) { return btrfs_next_bg(fs_info, logical, size, BTRFS_BLOCK_GROUP_SYSTEM); } int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 **logical, int *naddrs, int *stripe_len); int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 *start, u64 *num_bytes, u64 type); int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 *start, u64 num_bytes); int btrfs_open_devices(struct btrfs_fs_info *fs_info, struct btrfs_fs_devices *fs_devices, int flags); int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); void btrfs_close_all_devices(void); int btrfs_insert_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 chunk_offset, u64 num_bytes, u64 start); int btrfs_add_device(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_device *device); int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device); int btrfs_scan_one_device(int fd, const char *path, struct btrfs_fs_devices **fs_devices_ret, u64 *total_devs, u64 super_offset, unsigned sbflags); int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); struct list_head *btrfs_scanned_uuids(void); int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, struct btrfs_chunk *chunk, int item_size); int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); struct btrfs_device * btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices, u64 devid, int instance); struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, u8 *uuid, u8 *fsid); int write_raid56_with_parity(struct btrfs_fs_info *info, struct extent_buffer *eb, struct btrfs_multi_bio *multi, u64 stripe_len, u64 *raid_map); u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info, struct extent_buffer *leaf, struct btrfs_chunk *chunk); int btrfs_fix_device_size(struct btrfs_fs_info *fs_info, struct btrfs_device *device); int btrfs_fix_super_size(struct btrfs_fs_info *fs_info); int btrfs_fix_device_and_super_size(struct btrfs_fs_info *fs_info); enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags); int btrfs_bg_type_to_factor(u64 flags); const char *btrfs_bg_type_to_raid_name(u64 flags); int btrfs_bg_type_to_tolerated_failures(u64 flags); int btrfs_bg_type_to_devs_min(u64 flags); int btrfs_bg_type_to_ncopies(u64 flags); int btrfs_bg_type_to_nparity(u64 flags); int btrfs_bg_type_to_sub_stripes(u64 flags); u64 btrfs_bg_flags_for_device_num(int number); bool btrfs_bg_type_is_stripey(u64 flags); #endif