/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifdef STATIC_BUILD #undef HAVE_LIBUDEV #endif #include "kerncompat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBUDEV #include #include #endif #include "kernel-lib/overflow.h" #include "kernel-lib/list.h" #include "kernel-shared/accessors.h" #include "kernel-shared/uapi/btrfs_tree.h" #include "kernel-shared/uapi/btrfs.h" #include "kernel-shared/ctree.h" #include "kernel-shared/volumes.h" #include "kernel-shared/disk-io.h" #include "kernel-shared/zoned.h" #include "common/path-utils.h" #include "common/device-scan.h" #include "common/messages.h" #include "common/utils.h" #include "common/defs.h" #include "common/open-utils.h" #include "common/units.h" static int btrfs_scan_done = 0; /* * This function checks if the given input parameter is * an uuid or a path * return <0 : some error in the given input * return BTRFS_ARG_UNKNOWN: unknown input * return BTRFS_ARG_UUID: given input is uuid * return BTRFS_ARG_MNTPOINT: given input is path * return BTRFS_ARG_REG: given input is regular file * return BTRFS_ARG_BLKDEV: given input is block device */ int check_arg_type(const char *input) { uuid_t uuid; char path[PATH_MAX]; if (!input) return -EINVAL; if (realpath(input, path)) { if (path_is_block_device(path) == 1) return BTRFS_ARG_BLKDEV; if (path_is_a_mount_point(path) == 1) return BTRFS_ARG_MNTPOINT; if (path_is_reg_file(path)) return BTRFS_ARG_REG; return BTRFS_ARG_UNKNOWN; } else { return -errno; } if (strlen(input) == (BTRFS_UUID_UNPARSED_SIZE - 1) && !uuid_parse(input, uuid)) return BTRFS_ARG_UUID; return BTRFS_ARG_UNKNOWN; } /* Check if the UUID (as string) appears among devices cached by blkid */ int test_uuid_unique(const char *uuid_str) { int unique = 1; blkid_dev_iterate iter = NULL; blkid_dev dev = NULL; blkid_cache cache = NULL; if (blkid_get_cache(&cache, NULL) < 0) { error("blkid cache open failed, cannot check uuid uniqueness"); return 1; } blkid_probe_all(cache); iter = blkid_dev_iterate_begin(cache); blkid_dev_set_search(iter, "UUID", uuid_str); while (blkid_dev_next(iter, &dev) == 0) { dev = blkid_verify(cache, dev); if (dev) { unique = 0; break; } } blkid_dev_iterate_end(iter); blkid_put_cache(cache); return unique; } int btrfs_add_to_fsid(struct btrfs_trans_handle *trans, struct btrfs_root *root, int fd, const char *path, u64 device_total_bytes, u32 io_width, u32 io_align, u32 sectorsize) { struct btrfs_super_block *disk_super; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_super_block *super = fs_info->super_copy; struct btrfs_device *device; struct btrfs_dev_item *dev_item; char *buf = NULL; const u64 old_size = btrfs_super_total_bytes(super); u64 new_size; u64 num_devs; int ret; device_total_bytes = (device_total_bytes / sectorsize) * sectorsize; device = calloc(1, sizeof(*device)); if (!device) { ret = -ENOMEM; goto out; } buf = calloc(1, sectorsize); if (!buf) { ret = -ENOMEM; goto out; } disk_super = (struct btrfs_super_block *)buf; dev_item = &disk_super->dev_item; uuid_generate(device->uuid); device->fs_info = fs_info; device->devid = 0; device->type = 0; device->io_width = io_width; device->io_align = io_align; device->sector_size = sectorsize; device->fd = fd; device->writeable = 1; device->total_bytes = device_total_bytes; device->bytes_used = 0; device->total_ios = 0; device->dev_root = fs_info->dev_root; device->name = strdup(path); if (!device->name) { ret = -ENOMEM; goto out; } if (check_add_overflow(old_size, device_total_bytes, &new_size)) { error( "adding device of %llu (%s) bytes would exceed max file system size", device->total_bytes, pretty_size(device->total_bytes)); ret = -EOVERFLOW; goto out; } INIT_LIST_HEAD(&device->dev_list); ret = btrfs_add_device(trans, fs_info, device); if (ret) goto out; btrfs_set_super_total_bytes(super, new_size); num_devs = btrfs_super_num_devices(super) + 1; btrfs_set_super_num_devices(super, num_devs); memcpy(disk_super, super, sizeof(*disk_super)); btrfs_set_super_bytenr(disk_super, BTRFS_SUPER_INFO_OFFSET); btrfs_set_stack_device_id(dev_item, device->devid); btrfs_set_stack_device_type(dev_item, device->type); btrfs_set_stack_device_io_align(dev_item, device->io_align); btrfs_set_stack_device_io_width(dev_item, device->io_width); btrfs_set_stack_device_sector_size(dev_item, device->sector_size); btrfs_set_stack_device_total_bytes(dev_item, device->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, device->bytes_used); memcpy(&dev_item->uuid, device->uuid, BTRFS_UUID_SIZE); ret = sbwrite(fd, buf, BTRFS_SUPER_INFO_OFFSET); /* Ensure super block was written to the device */ BUG_ON(ret != BTRFS_SUPER_INFO_SIZE); free(buf); list_add(&device->dev_list, &fs_info->fs_devices->devices); device->fs_devices = fs_info->fs_devices; return 0; out: free(device->zone_info); free(device); free(buf); return ret; } int btrfs_register_one_device(const char *fname) { struct btrfs_ioctl_vol_args args; int fd; int ret; fd = open("/dev/btrfs-control", O_RDWR); if (fd < 0) { warning( "failed to open /dev/btrfs-control, skipping device registration: %m"); return -errno; } memset(&args, 0, sizeof(args)); strncpy_null(args.name, fname); ret = ioctl(fd, BTRFS_IOC_SCAN_DEV, &args); if (ret < 0) { error("device scan failed on '%s': %m", fname); ret = -errno; } close(fd); return ret; } /* * Register all devices in the fs_uuid list created in the user * space. Ensure btrfs_scan_devices() is called before this func. */ int btrfs_register_all_devices(void) { int err = 0; int ret = 0; struct btrfs_fs_devices *fs_devices; struct btrfs_device *device; struct list_head *all_uuids; all_uuids = btrfs_scanned_uuids(); list_for_each_entry(fs_devices, all_uuids, fs_list) { list_for_each_entry(device, &fs_devices->devices, dev_list) { if (*device->name) err = btrfs_register_one_device(device->name); if (err) ret++; } } return ret; } int btrfs_device_already_in_root(struct btrfs_root *root, int fd, int super_offset) { struct btrfs_super_block disk_super; int ret = 0; ret = sbread(fd, &disk_super, super_offset); if (ret != BTRFS_SUPER_INFO_SIZE) goto out; ret = 0; /* * Accept devices from the same filesystem, allow partially created * structures. */ if (btrfs_super_magic(&disk_super) != BTRFS_MAGIC && btrfs_super_magic(&disk_super) != BTRFS_MAGIC_TEMPORARY) goto out; if (!memcmp(disk_super.fsid, root->fs_info->super_copy->fsid, BTRFS_FSID_SIZE)) ret = 1; out: return ret; } int is_seen_fsid(u8 *fsid, struct seen_fsid *seen_fsid_hash[]) { u8 hash = fsid[0]; int slot = hash % SEEN_FSID_HASH_SIZE; struct seen_fsid *seen = seen_fsid_hash[slot]; while (seen) { if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0) return 1; seen = seen->next; } return 0; } int add_seen_fsid(u8 *fsid, struct seen_fsid *seen_fsid_hash[], int fd, DIR *dirstream) { u8 hash = fsid[0]; int slot = hash % SEEN_FSID_HASH_SIZE; struct seen_fsid *seen = seen_fsid_hash[slot]; struct seen_fsid *alloc; if (!seen) goto insert; while (1) { if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0) return -EEXIST; if (!seen->next) break; seen = seen->next; } insert: alloc = malloc(sizeof(*alloc)); if (!alloc) return -ENOMEM; alloc->next = NULL; memcpy(alloc->fsid, fsid, BTRFS_FSID_SIZE); alloc->fd = fd; alloc->dirstream = dirstream; if (seen) seen->next = alloc; else seen_fsid_hash[slot] = alloc; return 0; } void free_seen_fsid(struct seen_fsid *seen_fsid_hash[]) { int slot; struct seen_fsid *seen; struct seen_fsid *next; for (slot = 0; slot < SEEN_FSID_HASH_SIZE; slot++) { seen = seen_fsid_hash[slot]; while (seen) { next = seen->next; close_file_or_dir(seen->fd, seen->dirstream); free(seen); seen = next; } seen_fsid_hash[slot] = NULL; } } #ifdef STATIC_BUILD static bool is_multipath_path_device(dev_t device) { FILE *file; char *line = NULL; size_t len = 0; ssize_t nread; bool ret = false; int ret2; char path[PATH_MAX]; ret2 = snprintf(path, sizeof(path), "/run/udev/data/b%u:%u", major(device), minor(device)); if (ret2 < 0) return false; file = fopen(path, "r"); if (file == NULL) return false; while ((nread = getline(&line, &len, file)) != -1) { if (strstr(line, "DM_MULTIPATH_DEVICE_PATH=1")) { ret = true; break; } } if (line) free(line); fclose(file); return ret; } #elif defined(HAVE_LIBUDEV) static bool is_multipath_path_device(dev_t device) { struct udev *udev = NULL; struct udev_device *dev = NULL; const char *val; bool ret = false; udev = udev_new(); if (!udev) goto out; dev = udev_device_new_from_devnum(udev, 'b', device); if (!dev) goto out; val = udev_device_get_property_value(dev, "DM_MULTIPATH_DEVICE_PATH"); if (val && atoi(val) > 0) ret = true; out: udev_device_unref(dev); udev_unref(udev); return ret; } #else static bool is_multipath_path_device(dev_t device) { return false; } #endif int btrfs_scan_devices(int verbose) { int fd = -1; int ret; u64 num_devices; struct btrfs_fs_devices *tmp_devices; blkid_dev_iterate iter = NULL; blkid_dev dev = NULL; blkid_cache cache = NULL; char path[PATH_MAX]; if (btrfs_scan_done) return 0; ret = blkid_get_cache(&cache, NULL); if (ret < 0) { errno = -ret; error("blkid cache get failed: %m"); return ret; } blkid_probe_all(cache); iter = blkid_dev_iterate_begin(cache); blkid_dev_set_search(iter, "TYPE", "btrfs"); while (blkid_dev_next(iter, &dev) == 0) { struct stat dev_stat; dev = blkid_verify(cache, dev); if (!dev) continue; /* if we are here its definitely a btrfs disk*/ strncpy_null(path, blkid_dev_devname(dev)); if (stat(path, &dev_stat) < 0) continue; if (is_multipath_path_device(dev_stat.st_rdev)) continue; fd = open(path, O_RDONLY); if (fd < 0) { error("cannot open %s: %m", path); continue; } ret = btrfs_scan_one_device(fd, path, &tmp_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT); if (ret) { errno = -ret; error("cannot scan %s: %m", path); close (fd); continue; } pr_verbose(verbose, "registered: %s\n", path); close(fd); } blkid_dev_iterate_end(iter); blkid_put_cache(cache); btrfs_scan_done = 1; return 0; } int btrfs_scan_argv_devices(int dev_optind, int dev_argc, char **dev_argv) { int ret; while (dev_optind < dev_argc) { int fd; u64 num_devices; struct btrfs_fs_devices *fs_devices; ret = check_arg_type(dev_argv[dev_optind]); if (ret != BTRFS_ARG_BLKDEV && ret != BTRFS_ARG_REG) { if (ret < 0) { errno = -ret; error("invalid argument %s: %m", dev_argv[dev_optind]); } else { error("not a block device or regular file: %s", dev_argv[dev_optind]); } } fd = open(dev_argv[dev_optind], O_RDONLY); if (fd < 0) { error("cannot open %s: %m", dev_argv[dev_optind]); return -errno; } ret = btrfs_scan_one_device(fd, dev_argv[dev_optind], &fs_devices, &num_devices, BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT); close(fd); if (ret < 0) { errno = -ret; error("device scan of %s failed: %m", dev_argv[dev_optind]); return ret; } dev_optind++; } return 0; }