/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "kernel-shared/ctree.h" #include "common/utils.h" #include "kernel-shared/volumes.h" #include "cmds/commands.h" #include "cmds/filesystem-usage.h" #include "kernel-lib/list_sort.h" #include "kernel-shared/disk-io.h" #include "common/help.h" #include "common/units.h" #include "common/fsfeatures.h" #include "common/path-utils.h" #include "common/device-scan.h" #include "common/open-utils.h" /* * for btrfs fi show, we maintain a hash of fsids we've already printed. * This way we don't print dups if a given FS is mounted more than once. */ static struct seen_fsid *seen_fsid_hash[SEEN_FSID_HASH_SIZE] = {NULL,}; static mode_t defrag_open_mode = O_RDONLY; static const char * const filesystem_cmd_group_usage[] = { "btrfs filesystem [] []", NULL }; static const char * const cmd_filesystem_df_usage[] = { "btrfs filesystem df [options] ", "Show space usage information for a mount point", "", HELPINFO_UNITS_SHORT_LONG, NULL }; static void print_df(struct btrfs_ioctl_space_args *sargs, unsigned unit_mode) { u64 i; struct btrfs_ioctl_space_info *sp = sargs->spaces; for (i = 0; i < sargs->total_spaces; i++, sp++) { printf("%s, %s: total=%s, used=%s\n", btrfs_group_type_str(sp->flags), btrfs_group_profile_str(sp->flags), pretty_size_mode(sp->total_bytes, unit_mode), pretty_size_mode(sp->used_bytes, unit_mode)); } } static int cmd_filesystem_df(const struct cmd_struct *cmd, int argc, char **argv) { struct btrfs_ioctl_space_args *sargs = NULL; int ret; int fd; char *path; DIR *dirstream = NULL; unsigned unit_mode; unit_mode = get_unit_mode_from_arg(&argc, argv, 1); clean_args_no_options(cmd, argc, argv); if (check_argc_exact(argc - optind, 1)) return 1; path = argv[optind]; fd = btrfs_open_dir(path, &dirstream, 1); if (fd < 0) return 1; ret = get_df(fd, &sargs); if (ret == 0) { print_df(sargs, unit_mode); free(sargs); } else { errno = -ret; error("get_df failed: %m"); } btrfs_warn_multiple_profiles(fd); close_file_or_dir(fd, dirstream); return !!ret; } static DEFINE_SIMPLE_COMMAND(filesystem_df, "df"); static int match_search_item_kernel(u8 *fsid, char *mnt, char *label, char *search) { char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; int search_len = strlen(search); search_len = min(search_len, BTRFS_UUID_UNPARSED_SIZE); uuid_unparse(fsid, uuidbuf); if (!strncmp(uuidbuf, search, search_len)) return 1; if (*label && strcmp(label, search) == 0) return 1; if (strcmp(mnt, search) == 0) return 1; return 0; } /* Search for user visible uuid 'search' in registered filesystems */ static int uuid_search(struct btrfs_fs_devices *fs_devices, const char *search) { char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; struct btrfs_device *device; int search_len = strlen(search); search_len = min(search_len, BTRFS_UUID_UNPARSED_SIZE); uuid_unparse(fs_devices->fsid, uuidbuf); if (!strncmp(uuidbuf, search, search_len)) return 1; list_for_each_entry(device, &fs_devices->devices, dev_list) { if ((device->label && strcmp(device->label, search) == 0) || strcmp(device->name, search) == 0) return 1; } return 0; } /* * Sort devices by devid, ascending */ static int cmp_device_id(void *priv, struct list_head *a, struct list_head *b) { const struct btrfs_device *da = list_entry(a, struct btrfs_device, dev_list); const struct btrfs_device *db = list_entry(b, struct btrfs_device, dev_list); return da->devid < db->devid ? -1 : da->devid > db->devid ? 1 : 0; } static void splice_device_list(struct list_head *seed_devices, struct list_head *all_devices) { struct btrfs_device *in_all, *next_all; struct btrfs_device *in_seed, *next_seed; list_for_each_entry_safe(in_all, next_all, all_devices, dev_list) { list_for_each_entry_safe(in_seed, next_seed, seed_devices, dev_list) { if (in_all->devid == in_seed->devid) { /* * When do dev replace in a sprout fs * to a dev in its seed fs, the replacing * dev will reside in the sprout fs and * the replaced dev will still exist * in the seed fs. * So pick the latest one when showing * the sprout fs. */ if (in_all->generation < in_seed->generation) { list_del(&in_all->dev_list); free(in_all); } else if (in_all->generation > in_seed->generation) { list_del(&in_seed->dev_list); free(in_seed); } break; } } } list_splice(seed_devices, all_devices); } static void print_devices(struct btrfs_fs_devices *fs_devices, u64 *devs_found, unsigned unit_mode) { struct btrfs_device *device; struct btrfs_fs_devices *cur_fs; struct list_head *all_devices; all_devices = &fs_devices->devices; cur_fs = fs_devices->seed; /* add all devices of seed fs to the fs to be printed */ while (cur_fs) { splice_device_list(&cur_fs->devices, all_devices); cur_fs = cur_fs->seed; } list_sort(NULL, all_devices, cmp_device_id); list_for_each_entry(device, all_devices, dev_list) { printf("\tdevid %4llu size %s used %s path %s\n", (unsigned long long)device->devid, pretty_size_mode(device->total_bytes, unit_mode), pretty_size_mode(device->bytes_used, unit_mode), device->name); (*devs_found)++; } } static void print_one_uuid(struct btrfs_fs_devices *fs_devices, unsigned unit_mode) { char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; struct btrfs_device *device; u64 devs_found = 0; u64 total; if (add_seen_fsid(fs_devices->fsid, seen_fsid_hash, -1, NULL)) return; uuid_unparse(fs_devices->fsid, uuidbuf); device = list_entry(fs_devices->devices.next, struct btrfs_device, dev_list); if (device->label && device->label[0]) printf("Label: '%s' ", device->label); else printf("Label: none "); total = device->total_devs; printf(" uuid: %s\n\tTotal devices %llu FS bytes used %s\n", uuidbuf, (unsigned long long)total, pretty_size_mode(device->super_bytes_used, unit_mode)); print_devices(fs_devices, &devs_found, unit_mode); if (devs_found < total) { printf("\t*** Some devices missing\n"); } printf("\n"); } /* adds up all the used spaces as reported by the space info ioctl */ static u64 calc_used_bytes(struct btrfs_ioctl_space_args *si) { u64 ret = 0; int i; for (i = 0; i < si->total_spaces; i++) ret += si->spaces[i].used_bytes; return ret; } static int print_one_fs(struct btrfs_ioctl_fs_info_args *fs_info, struct btrfs_ioctl_dev_info_args *dev_info, struct btrfs_ioctl_space_args *space_info, char *label, unsigned unit_mode) { int i; int fd; int missing = 0; char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; struct btrfs_ioctl_dev_info_args *tmp_dev_info; int ret; ret = add_seen_fsid(fs_info->fsid, seen_fsid_hash, -1, NULL); if (ret == -EEXIST) return 0; else if (ret) return ret; uuid_unparse(fs_info->fsid, uuidbuf); if (label && *label) printf("Label: '%s' ", label); else printf("Label: none "); printf(" uuid: %s\n\tTotal devices %llu FS bytes used %s\n", uuidbuf, fs_info->num_devices, pretty_size_mode(calc_used_bytes(space_info), unit_mode)); for (i = 0; i < fs_info->num_devices; i++) { char *canonical_path; tmp_dev_info = (struct btrfs_ioctl_dev_info_args *)&dev_info[i]; /* Add check for missing devices even mounted */ fd = open((char *)tmp_dev_info->path, O_RDONLY); if (fd < 0) { missing = 1; continue; } close(fd); canonical_path = path_canonicalize((char *)tmp_dev_info->path); printf("\tdevid %4llu size %s used %s path %s\n", tmp_dev_info->devid, pretty_size_mode(tmp_dev_info->total_bytes, unit_mode), pretty_size_mode(tmp_dev_info->bytes_used, unit_mode), canonical_path); free(canonical_path); } if (missing) printf("\t*** Some devices missing\n"); printf("\n"); return 0; } static int btrfs_scan_kernel(void *search, unsigned unit_mode) { int ret = 0, fd; int found = 0; FILE *f; struct mntent *mnt; struct btrfs_ioctl_fs_info_args fs_info_arg; struct btrfs_ioctl_dev_info_args *dev_info_arg = NULL; struct btrfs_ioctl_space_args *space_info_arg = NULL; char label[BTRFS_LABEL_SIZE]; f = setmntent("/proc/self/mounts", "r"); if (f == NULL) return 1; memset(label, 0, sizeof(label)); while ((mnt = getmntent(f)) != NULL) { free(dev_info_arg); dev_info_arg = NULL; if (strcmp(mnt->mnt_type, "btrfs")) continue; ret = get_fs_info(mnt->mnt_dir, &fs_info_arg, &dev_info_arg); if (ret) goto out; /* skip all fs already shown as mounted fs */ if (is_seen_fsid(fs_info_arg.fsid, seen_fsid_hash)) continue; ret = get_label_mounted(mnt->mnt_dir, label); /* provide backward kernel compatibility */ if (ret == -ENOTTY) ret = get_label_unmounted( (const char *)dev_info_arg->path, label); if (ret) goto out; if (search && !match_search_item_kernel(fs_info_arg.fsid, mnt->mnt_dir, label, search)) { continue; } fd = open(mnt->mnt_dir, O_RDONLY); if ((fd != -1) && !get_df(fd, &space_info_arg)) { print_one_fs(&fs_info_arg, dev_info_arg, space_info_arg, label, unit_mode); free(space_info_arg); memset(label, 0, sizeof(label)); found = 1; } if (fd != -1) close(fd); } out: free(dev_info_arg); endmntent(f); return !found; } static void free_fs_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_fs_devices *cur_seed, *next_seed; struct btrfs_device *device; while (!list_empty(&fs_devices->devices)) { device = list_entry(fs_devices->devices.next, struct btrfs_device, dev_list); list_del(&device->dev_list); free(device->name); free(device->label); free(device); } /* free seed fs chain */ cur_seed = fs_devices->seed; fs_devices->seed = NULL; while (cur_seed) { next_seed = cur_seed->seed; free(cur_seed); cur_seed = next_seed; } list_del(&fs_devices->list); free(fs_devices); } static int copy_device(struct btrfs_device *dst, struct btrfs_device *src) { dst->devid = src->devid; memcpy(dst->uuid, src->uuid, BTRFS_UUID_SIZE); if (src->name == NULL) dst->name = NULL; else { dst->name = strdup(src->name); if (!dst->name) return -ENOMEM; } if (src->label == NULL) dst->label = NULL; else { dst->label = strdup(src->label); if (!dst->label) { free(dst->name); return -ENOMEM; } } dst->total_devs = src->total_devs; dst->super_bytes_used = src->super_bytes_used; dst->total_bytes = src->total_bytes; dst->bytes_used = src->bytes_used; dst->generation = src->generation; return 0; } static int copy_fs_devices(struct btrfs_fs_devices *dst, struct btrfs_fs_devices *src) { struct btrfs_device *cur_dev, *dev_copy; int ret = 0; memcpy(dst->fsid, src->fsid, BTRFS_FSID_SIZE); memcpy(dst->metadata_uuid, src->metadata_uuid, BTRFS_FSID_SIZE); INIT_LIST_HEAD(&dst->devices); dst->seed = NULL; list_for_each_entry(cur_dev, &src->devices, dev_list) { dev_copy = malloc(sizeof(*dev_copy)); if (!dev_copy) { ret = -ENOMEM; break; } ret = copy_device(dev_copy, cur_dev); if (ret) { free(dev_copy); break; } list_add(&dev_copy->dev_list, &dst->devices); dev_copy->fs_devices = dst; } return ret; } static int find_and_copy_seed(struct btrfs_fs_devices *seed, struct btrfs_fs_devices *copy, struct list_head *fs_uuids) { struct btrfs_fs_devices *cur_fs; list_for_each_entry(cur_fs, fs_uuids, list) if (!memcmp(seed->fsid, cur_fs->fsid, BTRFS_FSID_SIZE)) return copy_fs_devices(copy, cur_fs); return 1; } static int has_seed_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_device *device; int dev_cnt_total, dev_cnt = 0; device = list_first_entry(&fs_devices->devices, struct btrfs_device, dev_list); dev_cnt_total = device->total_devs; list_for_each_entry(device, &fs_devices->devices, dev_list) dev_cnt++; return dev_cnt_total != dev_cnt; } static int search_umounted_fs_uuids(struct list_head *all_uuids, char *search, int *found) { struct btrfs_fs_devices *cur_fs, *fs_copy; struct list_head *fs_uuids; int ret = 0; fs_uuids = btrfs_scanned_uuids(); /* * The fs_uuids list is global, and open_ctree_* will * modify it, make a private copy here */ list_for_each_entry(cur_fs, fs_uuids, list) { /* don't bother handle all fs, if search target specified */ if (search) { if (uuid_search(cur_fs, search) == 0) continue; if (found) *found = 1; } /* skip all fs already shown as mounted fs */ if (is_seen_fsid(cur_fs->fsid, seen_fsid_hash)) continue; fs_copy = calloc(1, sizeof(*fs_copy)); if (!fs_copy) { ret = -ENOMEM; goto out; } ret = copy_fs_devices(fs_copy, cur_fs); if (ret) { free(fs_copy); goto out; } list_add(&fs_copy->list, all_uuids); } out: return ret; } static int map_seed_devices(struct list_head *all_uuids) { struct btrfs_fs_devices *cur_fs, *cur_seed; struct btrfs_fs_devices *seed_copy; struct btrfs_fs_devices *opened_fs; struct btrfs_device *device; struct btrfs_fs_info *fs_info; struct list_head *fs_uuids; int ret = 0; fs_uuids = btrfs_scanned_uuids(); list_for_each_entry(cur_fs, all_uuids, list) { struct open_ctree_flags ocf = { 0 }; device = list_first_entry(&cur_fs->devices, struct btrfs_device, dev_list); if (!device) continue; /* skip fs without seeds */ if (!has_seed_devices(cur_fs)) continue; /* * open_ctree_* detects seed/sprout mapping */ ocf.filename = device->name; ocf.flags = OPEN_CTREE_PARTIAL; fs_info = open_ctree_fs_info(&ocf); if (!fs_info) continue; /* * copy the seed chain under the opened fs */ opened_fs = fs_info->fs_devices; cur_seed = cur_fs; while (opened_fs->seed) { seed_copy = malloc(sizeof(*seed_copy)); if (!seed_copy) { ret = -ENOMEM; goto fail_out; } ret = find_and_copy_seed(opened_fs->seed, seed_copy, fs_uuids); if (ret) { free(seed_copy); goto fail_out; } cur_seed->seed = seed_copy; opened_fs = opened_fs->seed; cur_seed = cur_seed->seed; } close_ctree(fs_info->chunk_root); } out: return ret; fail_out: close_ctree(fs_info->chunk_root); goto out; } static const char * const cmd_filesystem_show_usage[] = { "btrfs filesystem show [options] [|||label]", "Show the structure of a filesystem", "", "-d|--all-devices show only disks under /dev containing btrfs filesystem", "-m|--mounted show only mounted btrfs", HELPINFO_UNITS_LONG, "", "If no argument is given, structure of all present filesystems is shown.", NULL }; static int cmd_filesystem_show(const struct cmd_struct *cmd, int argc, char **argv) { LIST_HEAD(all_uuids); struct btrfs_fs_devices *fs_devices; char *search = NULL; int ret; /* default, search both kernel and udev */ int where = -1; int type = 0; char mp[PATH_MAX]; char path[PATH_MAX]; u8 fsid[BTRFS_FSID_SIZE]; char uuid_buf[BTRFS_UUID_UNPARSED_SIZE]; unsigned unit_mode; int found = 0; unit_mode = get_unit_mode_from_arg(&argc, argv, 0); optind = 0; while (1) { int c; static const struct option long_options[] = { { "all-devices", no_argument, NULL, 'd'}, { "mounted", no_argument, NULL, 'm'}, { NULL, 0, NULL, 0 } }; c = getopt_long(argc, argv, "dm", long_options, NULL); if (c < 0) break; switch (c) { case 'd': where = BTRFS_SCAN_LBLKID; break; case 'm': where = BTRFS_SCAN_MOUNTED; break; default: usage_unknown_option(cmd, argv); } } if (check_argc_max(argc, optind + 1)) return 1; if (argc > optind) { search = argv[optind]; if (*search == 0) usage(cmd); type = check_arg_type(search); /* * For search is a device: * realpath do /dev/mapper/XX => /dev/dm-X * which is required by BTRFS_SCAN_DEV * For search is a mountpoint: * realpath do /mnt/btrfs/ => /mnt/btrfs * which shall be recognized by btrfs_scan_kernel() */ if (realpath(search, path)) search = path; /* * Needs special handling if input arg is block dev And if * input arg is mount-point just print it right away */ if (type == BTRFS_ARG_BLKDEV && where != BTRFS_SCAN_LBLKID) { ret = get_btrfs_mount(search, mp, sizeof(mp)); if (!ret) { /* given block dev is mounted */ search = mp; type = BTRFS_ARG_MNTPOINT; } else { ret = dev_to_fsid(search, fsid); if (ret) { error("no btrfs on %s", search); return 1; } uuid_unparse(fsid, uuid_buf); search = uuid_buf; type = BTRFS_ARG_UUID; goto devs_only; } } } if (where == BTRFS_SCAN_LBLKID) goto devs_only; /* show mounted btrfs */ ret = btrfs_scan_kernel(search, unit_mode); if (search && !ret) { /* since search is found we are done */ goto out; } /* shows mounted only */ if (where == BTRFS_SCAN_MOUNTED) goto out; devs_only: if (type == BTRFS_ARG_REG) { /* * We don't close the fs_info because it will free the device, * this is not a long-running process so it's fine */ if (open_ctree(search, btrfs_sb_offset(0), 0)) ret = 0; else ret = 1; } else { ret = btrfs_scan_devices(0); } if (ret) { error("blkid device scan returned %d", ret); return 1; } ret = search_umounted_fs_uuids(&all_uuids, search, &found); if (ret < 0) { error("searching target device returned error %d", ret); return 1; } /* * The seed/sprout mapping are not detected yet, * do mapping build for all umounted fs */ ret = map_seed_devices(&all_uuids); if (ret) { error("mapping seed devices returned error %d", ret); return 1; } list_for_each_entry(fs_devices, &all_uuids, list) print_one_uuid(fs_devices, unit_mode); if (search && !found) { error("not a valid btrfs filesystem: %s", search); ret = 1; } while (!list_empty(&all_uuids)) { fs_devices = list_entry(all_uuids.next, struct btrfs_fs_devices, list); free_fs_devices(fs_devices); } out: free_seen_fsid(seen_fsid_hash); return ret; } static DEFINE_SIMPLE_COMMAND(filesystem_show, "show"); static const char * const cmd_filesystem_sync_usage[] = { "btrfs filesystem sync ", "Force a sync on a filesystem", NULL }; static int cmd_filesystem_sync(const struct cmd_struct *cmd, int argc, char **argv) { enum btrfs_util_error err; clean_args_no_options(cmd, argc, argv); if (check_argc_exact(argc - optind, 1)) return 1; err = btrfs_util_sync(argv[optind]); if (err) { error_btrfs_util(err); return 1; } return 0; } static DEFINE_SIMPLE_COMMAND(filesystem_sync, "sync"); static int parse_compress_type(char *s) { if (strcmp(optarg, "zlib") == 0) return BTRFS_COMPRESS_ZLIB; else if (strcmp(optarg, "lzo") == 0) return BTRFS_COMPRESS_LZO; else if (strcmp(optarg, "zstd") == 0) return BTRFS_COMPRESS_ZSTD; else { error("unknown compression type %s", s); exit(1); }; } static const char * const cmd_filesystem_defrag_usage[] = { "btrfs filesystem defragment [options] | [|...]", "Defragment a file or a directory", "", "-r defragment files recursively", "-c[zlib,lzo,zstd] compress the file while defragmenting", "-f flush data to disk immediately after defragmenting", "-s start defragment only from byte onward", "-l len defragment only up to len bytes", "-t size target extent size hint (default: 32M)", "-v deprecated, alias for global -v option", HELPINFO_INSERT_GLOBALS, HELPINFO_INSERT_VERBOSE, "", "Warning: most Linux kernels will break up the ref-links of COW data", "(e.g., files copied with 'cp --reflink', snapshots) which may cause", "considerable increase of space usage. See btrfs-filesystem(8) for", "more information.", NULL }; static struct btrfs_ioctl_defrag_range_args defrag_global_range; static int defrag_global_errors; static int defrag_callback(const char *fpath, const struct stat *sb, int typeflag, struct FTW *ftwbuf) { int ret = 0; int fd = 0; if ((typeflag == FTW_F) && S_ISREG(sb->st_mode)) { pr_verbose(1, "%s\n", fpath); fd = open(fpath, defrag_open_mode); if (fd < 0) { goto error; } ret = ioctl(fd, BTRFS_IOC_DEFRAG_RANGE, &defrag_global_range); close(fd); if (ret && errno == ENOTTY) { error( "defrag range ioctl not supported in this kernel version, 2.6.33 and newer is required"); defrag_global_errors++; return ENOTTY; } if (ret) { goto error; } } return 0; error: error("defrag failed on %s: %m", fpath); defrag_global_errors++; return 0; } static int cmd_filesystem_defrag(const struct cmd_struct *cmd, int argc, char **argv) { int fd; int flush = 0; u64 start = 0; u64 len = (u64)-1; u64 thresh; int i; int recursive = 0; int ret = 0; int compress_type = BTRFS_COMPRESS_NONE; DIR *dirstream; /* * Kernel 4.19+ supports defragmention of files open read-only, * otherwise it's an ETXTBSY error */ if (get_running_kernel_version() < KERNEL_VERSION(4,19,0)) defrag_open_mode = O_RDWR; /* * Kernel has a different default (256K) that is supposed to be safe, * but it does not defragment very well. The 32M will likely lead to * better results and is independent of the kernel default. We have to * use the v2 defrag ioctl. */ thresh = SZ_32M; defrag_global_errors = 0; defrag_global_errors = 0; optind = 0; while(1) { int c = getopt(argc, argv, "vrc::fs:l:t:"); if (c < 0) break; switch(c) { case 'c': compress_type = BTRFS_COMPRESS_ZLIB; if (optarg) compress_type = parse_compress_type(optarg); break; case 'f': flush = 1; break; case 'v': bconf_be_verbose(); break; case 's': start = parse_size_from_string(optarg); break; case 'l': len = parse_size_from_string(optarg); break; case 't': thresh = parse_size_from_string(optarg); if (thresh > (u32)-1) { warning( "target extent size %llu too big, trimmed to %u", thresh, (u32)-1); thresh = (u32)-1; } break; case 'r': recursive = 1; break; default: usage_unknown_option(cmd, argv); } } if (check_argc_min(argc - optind, 1)) return 1; memset(&defrag_global_range, 0, sizeof(defrag_global_range)); defrag_global_range.start = start; defrag_global_range.len = len; defrag_global_range.extent_thresh = (u32)thresh; if (compress_type) { defrag_global_range.flags |= BTRFS_DEFRAG_RANGE_COMPRESS; defrag_global_range.compress_type = compress_type; } if (flush) defrag_global_range.flags |= BTRFS_DEFRAG_RANGE_START_IO; /* * Look for directory arguments and warn if the recursive mode is not * requested, as this is not implemented as recursive defragmentation * in kernel. The stat errors are silent here as we check them below. */ if (!recursive) { int found = 0; for (i = optind; i < argc; i++) { struct stat st; if (stat(argv[i], &st)) continue; if (S_ISDIR(st.st_mode)) { warning( "directory specified but recursive mode not requested: %s", argv[i]); found = 1; } } if (found) { warning( "a directory passed to the defrag ioctl will not process the files\n" "recursively but will defragment the subvolume tree and the extent tree.\n" "If this is not intended, please use option -r ."); } } for (i = optind; i < argc; i++) { struct stat st; int defrag_err = 0; dirstream = NULL; fd = open_file_or_dir3(argv[i], &dirstream, defrag_open_mode); if (fd < 0) { error("cannot open %s: %m", argv[i]); ret = -errno; goto next; } ret = fstat(fd, &st); if (ret) { error("failed to stat %s: %m", argv[i]); ret = -errno; goto next; } if (!(S_ISDIR(st.st_mode) || S_ISREG(st.st_mode))) { error("%s is not a directory or a regular file", argv[i]); ret = -EINVAL; goto next; } if (recursive && S_ISDIR(st.st_mode)) { ret = nftw(argv[i], defrag_callback, 10, FTW_MOUNT | FTW_PHYS); if (ret == ENOTTY) exit(1); /* errors are handled in the callback */ ret = 0; } else { pr_verbose(1, "%s\n", argv[i]); ret = ioctl(fd, BTRFS_IOC_DEFRAG_RANGE, &defrag_global_range); defrag_err = errno; if (ret && defrag_err == ENOTTY) { error( "defrag range ioctl not supported in this kernel version, 2.6.33 and newer is required"); defrag_global_errors++; close_file_or_dir(fd, dirstream); break; } if (ret) { errno = defrag_err; error("defrag failed on %s: %m", argv[i]); goto next; } } next: if (ret) defrag_global_errors++; close_file_or_dir(fd, dirstream); } if (defrag_global_errors) fprintf(stderr, "total %d failures\n", defrag_global_errors); return !!defrag_global_errors; } static DEFINE_SIMPLE_COMMAND(filesystem_defrag, "defragment"); static const char * const cmd_filesystem_resize_usage[] = { "btrfs filesystem resize [options] [devid:][+/-][kKmMgGtTpPeE]|[devid:]max ", "Resize a filesystem", "If 'max' is passed, the filesystem will occupy all available space", "on the device 'devid'.", "[kK] means KiB, which denotes 1KiB = 1024B, 1MiB = 1024KiB, etc.", "", "--enqueue wait if there's another exclusive operation running,", " otherwise continue", NULL }; static int check_resize_args(const char *amount, const char *path) { struct btrfs_ioctl_fs_info_args fi_args; struct btrfs_ioctl_dev_info_args *di_args = NULL; int ret, i, dev_idx = -1; u64 devid = 1; const char *res_str = NULL; char *devstr = NULL, *sizestr = NULL; u64 new_size = 0, old_size = 0, diff = 0; int mod = 0; char amount_dup[BTRFS_VOL_NAME_MAX]; ret = get_fs_info(path, &fi_args, &di_args); if (ret) { error("unable to retrieve fs info"); return 1; } if (!fi_args.num_devices) { error("no devices found"); ret = 1; goto out; } ret = snprintf(amount_dup, BTRFS_VOL_NAME_MAX, "%s", amount); if (strlen(amount) != ret) { error("newsize argument is too long"); ret = 1; goto out; } sizestr = amount_dup; devstr = strchr(sizestr, ':'); if (devstr) { sizestr = devstr + 1; *devstr = 0; devstr = amount_dup; errno = 0; devid = strtoull(devstr, NULL, 10); if (errno) { error("failed to parse devid %s: %m", devstr); ret = 1; goto out; } } dev_idx = -1; for(i = 0; i < fi_args.num_devices; i++) { if (di_args[i].devid == devid) { dev_idx = i; break; } } if (dev_idx < 0) { error("cannot find devid: %lld", devid); ret = 1; goto out; } if (strcmp(sizestr, "max") == 0) { res_str = "max"; } else { if (sizestr[0] == '-') { mod = -1; sizestr++; } else if (sizestr[0] == '+') { mod = 1; sizestr++; } diff = parse_size_from_string(sizestr); if (!diff) { error("failed to parse size %s", sizestr); ret = 1; goto out; } old_size = di_args[dev_idx].total_bytes; /* For target sizes without +/- sign prefix (e.g. 1:150g) */ if (mod == 0) { new_size = diff; } else if (mod < 0) { if (diff > old_size) { error("current size is %s which is smaller than %s", pretty_size_mode(old_size, UNITS_DEFAULT), pretty_size_mode(diff, UNITS_DEFAULT)); ret = 1; goto out; } new_size = old_size - diff; } else if (mod > 0) { if (diff > ULLONG_MAX - old_size) { error("increasing %s is out of range", pretty_size_mode(diff, UNITS_DEFAULT)); ret = 1; goto out; } new_size = old_size + diff; } new_size = round_down(new_size, fi_args.sectorsize); res_str = pretty_size_mode(new_size, UNITS_DEFAULT); } printf("Resize device id %lld (%s) from %s to %s\n", devid, di_args[dev_idx].path, pretty_size_mode(di_args[dev_idx].total_bytes, UNITS_DEFAULT), res_str); out: free(di_args); return 0; } static int cmd_filesystem_resize(const struct cmd_struct *cmd, int argc, char **argv) { struct btrfs_ioctl_vol_args args; int fd, res, len, e; char *amount, *path; DIR *dirstream = NULL; int ret; bool enqueue = false; /* * Simplified option parser, accept only long options, the resize value * could be negative and is recognized as short options by getopt */ for (optind = 1; optind < argc; optind++) { if (strcmp(argv[optind], "--enqueue") == 0) { enqueue = true; } else if (strcmp(argv[optind], "--") == 0) { /* Separator: options -- non-options */ } else if (strncmp(argv[optind], "--", 2) == 0) { /* Emulate what getopt does on unkonwn option */ optind++; usage_unknown_option(cmd, argv); } else { break; } } if (check_argc_exact(argc - optind, 2)) return 1; amount = argv[optind]; path = argv[optind + 1]; len = strlen(amount); if (len == 0 || len >= BTRFS_VOL_NAME_MAX) { error("resize value too long (%s)", amount); return 1; } fd = btrfs_open_dir(path, &dirstream, 1); if (fd < 0) { /* The path is a directory */ if (fd == -3) { error( "resize works on mounted filesystems and accepts only\n" "directories as argument. Passing file containing a btrfs image\n" "would resize the underlying filesystem instead of the image.\n"); } return 1; } ret = check_running_fs_exclop(fd, BTRFS_EXCLOP_RESIZE, enqueue); if (ret != 0) { if (ret < 0) error("unable to check status of exclusive operation: %m"); close_file_or_dir(fd, dirstream); return 1; } ret = check_resize_args(amount, path); if (ret != 0) { close_file_or_dir(fd, dirstream); return 1; } memset(&args, 0, sizeof(args)); strncpy_null(args.name, amount); res = ioctl(fd, BTRFS_IOC_RESIZE, &args); e = errno; close_file_or_dir(fd, dirstream); if( res < 0 ){ switch (e) { case EFBIG: error("unable to resize '%s': no enough free space", path); break; default: error("unable to resize '%s': %m", path); break; } return 1; } else if (res > 0) { const char *err_str = btrfs_err_str(res); if (err_str) { error("resizing of '%s' failed: %s", path, err_str); } else { error("resizing of '%s' failed: unknown error %d", path, res); } return 1; } return 0; } static DEFINE_SIMPLE_COMMAND(filesystem_resize, "resize"); static const char * const cmd_filesystem_label_usage[] = { "btrfs filesystem label [|] []", "Get or change the label of a filesystem", "With one argument, get the label of filesystem on .", "If is passed, set the filesystem label to .", NULL }; static int cmd_filesystem_label(const struct cmd_struct *cmd, int argc, char **argv) { clean_args_no_options(cmd, argc, argv); if (check_argc_min(argc - optind, 1) || check_argc_max(argc - optind, 2)) return 1; if (argc - optind > 1) { return set_label(argv[optind], argv[optind + 1]); } else { char label[BTRFS_LABEL_SIZE]; int ret; ret = get_label(argv[optind], label); if (!ret) fprintf(stdout, "%s\n", label); return ret; } } static DEFINE_SIMPLE_COMMAND(filesystem_label, "label"); static const char * const cmd_filesystem_balance_usage[] = { "btrfs filesystem balance [args...] (alias of \"btrfs balance\")", "Please see \"btrfs balance --help\" for more information.", NULL }; static int cmd_filesystem_balance(const struct cmd_struct *unused, int argc, char **argv) { return cmd_execute(&cmd_struct_balance, argc, argv); } /* * Compatible old "btrfs filesystem balance" command * * We can't use cmd_struct_balance directly here since this alias is * for historical compatibility and is hidden. */ static DEFINE_COMMAND(filesystem_balance, "balance", cmd_filesystem_balance, cmd_filesystem_balance_usage, NULL, CMD_HIDDEN); static const char filesystem_cmd_group_info[] = "overall filesystem tasks and information"; static const struct cmd_group filesystem_cmd_group = { filesystem_cmd_group_usage, filesystem_cmd_group_info, { &cmd_struct_filesystem_df, &cmd_struct_filesystem_du, &cmd_struct_filesystem_show, &cmd_struct_filesystem_sync, &cmd_struct_filesystem_defrag, &cmd_struct_filesystem_balance, &cmd_struct_filesystem_resize, &cmd_struct_filesystem_label, &cmd_struct_filesystem_usage, NULL } }; DEFINE_GROUP_COMMAND_TOKEN(filesystem);