/* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include "kernel-shared/ctree.h" #include "kernel-shared/free-space-cache.h" #include "kernel-shared/transaction.h" #include "kernel-shared/disk-io.h" #include "kernel-shared/extent_io.h" #include "crypto/crc32c.h" #include "kernel-lib/bitops.h" #include "common/internal.h" #include "common/utils.h" /* * Kernel always uses PAGE_CACHE_SIZE for sectorsize, but we don't have * anything like that in userspace and have to get the value from the * filesystem */ #define BITS_PER_BITMAP(sectorsize) ((sectorsize) * 8) #define MAX_CACHE_BYTES_PER_GIG SZ_32K static int link_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info); static void merge_space_tree(struct btrfs_free_space_ctl *ctl); struct io_ctl { void *cur, *orig; void *buffer; struct btrfs_root *root; unsigned long size; u64 total_size; int index; int num_pages; unsigned check_crcs:1; }; static int io_ctl_init(struct io_ctl *io_ctl, u64 size, u64 ino, struct btrfs_root *root) { memset(io_ctl, 0, sizeof(struct io_ctl)); io_ctl->num_pages = DIV_ROUND_UP(size, root->fs_info->sectorsize); io_ctl->buffer = kzalloc(size, GFP_NOFS); if (!io_ctl->buffer) return -ENOMEM; io_ctl->total_size = size; io_ctl->root = root; if (ino != BTRFS_FREE_INO_OBJECTID) io_ctl->check_crcs = 1; return 0; } static void io_ctl_free(struct io_ctl *io_ctl) { kfree(io_ctl->buffer); } static void io_ctl_unmap_page(struct io_ctl *io_ctl) { if (io_ctl->cur) { io_ctl->cur = NULL; io_ctl->orig = NULL; } } static void io_ctl_map_page(struct io_ctl *io_ctl, int clear) { BUG_ON(io_ctl->index >= io_ctl->num_pages); io_ctl->cur = io_ctl->buffer + (io_ctl->index++ * io_ctl->root->fs_info->sectorsize); io_ctl->orig = io_ctl->cur; io_ctl->size = io_ctl->root->fs_info->sectorsize; if (clear) memset(io_ctl->cur, 0, io_ctl->root->fs_info->sectorsize); } static void io_ctl_drop_pages(struct io_ctl *io_ctl) { io_ctl_unmap_page(io_ctl); } static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct btrfs_root *root, struct btrfs_path *path, u64 ino) { struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr, len; u64 total_read = 0; int ret = 0; key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret) { fprintf(stderr, "Couldn't find file extent item for free space inode" " %llu\n", ino); btrfs_release_path(path); return -EINVAL; } while (total_read < io_ctl->total_size) { u64 offset = 0; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret) { ret = -EINVAL; break; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != ino) { ret = -EINVAL; break; } if (key.type != BTRFS_EXTENT_DATA_KEY) { ret = -EINVAL; break; } fi = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(path->nodes[0], fi) != BTRFS_FILE_EXTENT_REG) { fprintf(stderr, "Not the file extent type we wanted\n"); ret = -EINVAL; break; } bytenr = btrfs_file_extent_disk_bytenr(leaf, fi) + btrfs_file_extent_offset(leaf, fi); len = btrfs_file_extent_num_bytes(leaf, fi); while (offset < len) { u64 read_len = len - offset; ret = read_data_from_disk(root->fs_info, io_ctl->buffer + key.offset + offset, bytenr + offset, &read_len, 0); if (ret < 0) { btrfs_release_path(path); return ret; } offset += read_len; } total_read += len; path->slots[0]++; } btrfs_release_path(path); return ret; } static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation) { __le64 *gen; /* * Skip the crc area. If we don't check crcs then we just have a 64bit * chunk at the front of the first page. */ if (io_ctl->check_crcs) { io_ctl->cur += sizeof(u32) * io_ctl->num_pages; io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); } else { io_ctl->cur += sizeof(u64); io_ctl->size -= sizeof(u64) * 2; } gen = io_ctl->cur; if (le64_to_cpu(*gen) != generation) { printk("btrfs: space cache generation " "(%llu) does not match inode (%llu)\n", *gen, generation); io_ctl_unmap_page(io_ctl); return -EIO; } io_ctl->cur += sizeof(u64); return 0; } static int io_ctl_check_crc(struct io_ctl *io_ctl, int index) { u32 *tmp, val; u32 crc = ~(u32)0; unsigned offset = 0; if (!io_ctl->check_crcs) { io_ctl_map_page(io_ctl, 0); return 0; } if (index == 0) offset = sizeof(u32) * io_ctl->num_pages; tmp = io_ctl->buffer; tmp += index; val = *tmp; io_ctl_map_page(io_ctl, 0); crc = crc32c(crc, io_ctl->orig + offset, io_ctl->root->fs_info->sectorsize - offset); put_unaligned_le32(~crc, (u8 *)&crc); if (val != crc) { printk("btrfs: csum mismatch on free space cache\n"); io_ctl_unmap_page(io_ctl); return -EIO; } return 0; } static int io_ctl_read_entry(struct io_ctl *io_ctl, struct btrfs_free_space *entry, u8 *type) { struct btrfs_free_space_entry *e; int ret; if (!io_ctl->cur) { ret = io_ctl_check_crc(io_ctl, io_ctl->index); if (ret) return ret; } e = io_ctl->cur; entry->offset = le64_to_cpu(e->offset); entry->bytes = le64_to_cpu(e->bytes); *type = e->type; io_ctl->cur += sizeof(struct btrfs_free_space_entry); io_ctl->size -= sizeof(struct btrfs_free_space_entry); if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) return 0; io_ctl_unmap_page(io_ctl); return 0; } static int io_ctl_read_bitmap(struct io_ctl *io_ctl, struct btrfs_free_space *entry) { int ret; ret = io_ctl_check_crc(io_ctl, io_ctl->index); if (ret) return ret; memcpy(entry->bitmap, io_ctl->cur, io_ctl->root->fs_info->sectorsize); io_ctl_unmap_page(io_ctl); return 0; } static int __load_free_space_cache(struct btrfs_root *root, struct btrfs_free_space_ctl *ctl, struct btrfs_path *path, u64 offset) { struct btrfs_free_space_header *header; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct io_ctl io_ctl; struct btrfs_key key; struct btrfs_key inode_location; struct btrfs_disk_key disk_key; struct btrfs_free_space *e, *n; struct list_head bitmaps; u64 num_entries; u64 num_bitmaps; u64 generation; u64 inode_size; u8 type; int ret = 0; INIT_LIST_HEAD(&bitmaps); key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = offset; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { return 0; } else if (ret > 0) { btrfs_release_path(path); return 0; } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); num_entries = btrfs_free_space_entries(leaf, header); num_bitmaps = btrfs_free_space_bitmaps(leaf, header); generation = btrfs_free_space_generation(leaf, header); btrfs_free_space_key(leaf, header, &disk_key); btrfs_disk_key_to_cpu(&inode_location, &disk_key); btrfs_release_path(path); ret = btrfs_search_slot(NULL, root, &inode_location, path, 0, 0); if (ret) { fprintf(stderr, "Couldn't find free space inode %d\n", ret); return 0; } leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); inode_size = btrfs_inode_size(leaf, inode_item); if (!inode_size || !btrfs_inode_generation(leaf, inode_item)) { btrfs_release_path(path); return 0; } if (btrfs_inode_generation(leaf, inode_item) != generation) { fprintf(stderr, "free space inode generation (%llu) did not match " "free space cache generation (%llu)\n", (unsigned long long)btrfs_inode_generation(leaf, inode_item), (unsigned long long)generation); btrfs_release_path(path); return 0; } btrfs_release_path(path); if (!num_entries) return 0; ret = io_ctl_init(&io_ctl, inode_size, inode_location.objectid, root); if (ret) return ret; ret = io_ctl_prepare_pages(&io_ctl, root, path, inode_location.objectid); if (ret) goto out; ret = io_ctl_check_crc(&io_ctl, 0); if (ret) goto free_cache; ret = io_ctl_check_generation(&io_ctl, generation); if (ret) goto free_cache; while (num_entries) { e = calloc(1, sizeof(*e)); if (!e) goto free_cache; ret = io_ctl_read_entry(&io_ctl, e, &type); if (ret) { free(e); goto free_cache; } if (!e->bytes) { free(e); goto free_cache; } if (type == BTRFS_FREE_SPACE_EXTENT) { ret = link_free_space(ctl, e); if (ret) { fprintf(stderr, "Duplicate entries in free space cache\n"); free(e); goto free_cache; } } else { BUG_ON(!num_bitmaps); num_bitmaps--; e->bitmap = kzalloc(ctl->sectorsize, GFP_NOFS); if (!e->bitmap) { free(e); goto free_cache; } ret = link_free_space(ctl, e); ctl->total_bitmaps++; if (ret) { fprintf(stderr, "Duplicate entries in free space cache\n"); free(e->bitmap); free(e); goto free_cache; } list_add_tail(&e->list, &bitmaps); } num_entries--; } io_ctl_unmap_page(&io_ctl); /* * We add the bitmaps at the end of the entries in order that * the bitmap entries are added to the cache. */ list_for_each_entry_safe(e, n, &bitmaps, list) { list_del_init(&e->list); ret = io_ctl_read_bitmap(&io_ctl, e); if (ret) goto free_cache; } io_ctl_drop_pages(&io_ctl); merge_space_tree(ctl); ret = 1; out: io_ctl_free(&io_ctl); return ret; free_cache: io_ctl_drop_pages(&io_ctl); __btrfs_remove_free_space_cache(ctl); goto out; } int load_free_space_cache(struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_path *path; u64 used = block_group->used; int ret = 0; u64 bg_free; s64 diff; path = btrfs_alloc_path(); if (!path) return 0; ret = __load_free_space_cache(fs_info->tree_root, ctl, path, block_group->start); btrfs_free_path(path); bg_free = block_group->length - used - block_group->bytes_super; diff = ctl->free_space - bg_free; if (ret == 1 && diff) { fprintf(stderr, "block group %llu has wrong amount of free space, free space cache has %llu block group has %llu\n", block_group->start, ctl->free_space, bg_free); __btrfs_remove_free_space_cache(ctl); /* * Due to btrfs_reserve_extent() can happen out of a * transaction, but all btrfs_release_extent() happens inside * a transaction, so under heavy race it's possible that free * space cache has less free space, and both kernel just discard * such cache. But if we find some case where free space cache * has more free space, this means under certain case such * cache can be loaded and cause double allocate. * * Detect such possibility here. */ if (diff > 0) error( "free space cache has more free space than block group item, this could leads to serious corruption, please contact btrfs developers"); ret = -1; } if (ret < 0) { if (diff <= 0) ret = 0; fprintf(stderr, "failed to load free space cache for block group %llu\n", block_group->start); } return ret; } static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, u64 offset) { BUG_ON(offset < bitmap_start); offset -= bitmap_start; return (unsigned long)(offset / unit); } static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) { return (unsigned long)(bytes / unit); } static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node, int bitmap) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) { p = &(*p)->rb_left; } else if (offset > info->offset) { p = &(*p)->rb_right; } else { /* * we could have a bitmap entry and an extent entry * share the same offset. If this is the case, we want * the extent entry to always be found first if we do a * linear search through the tree, since we want to have * the quickest allocation time, and allocating from an * extent is faster than allocating from a bitmap. So * if we're inserting a bitmap and we find an entry at * this offset, we want to go right, or after this entry * logically. If we are inserting an extent and we've * found a bitmap, we want to go left, or before * logically. */ if (bitmap) { if (info->bitmap) return -EEXIST; p = &(*p)->rb_right; } else { if (!info->bitmap) return -EEXIST; p = &(*p)->rb_left; } } } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. * * fuzzy - If this is set, then we are trying to make an allocation, and we just * want a section that has at least bytes size and comes at or after the given * offset. */ static struct btrfs_free_space * tree_search_offset(struct btrfs_free_space_ctl *ctl, u64 offset, int bitmap_only, int fuzzy) { struct rb_node *n = ctl->free_space_offset.rb_node; struct btrfs_free_space *entry, *prev = NULL; u32 sectorsize = ctl->sectorsize; /* find entry that is closest to the 'offset' */ while (1) { if (!n) { entry = NULL; break; } entry = rb_entry(n, struct btrfs_free_space, offset_index); prev = entry; if (offset < entry->offset) n = n->rb_left; else if (offset > entry->offset) n = n->rb_right; else break; } if (bitmap_only) { if (!entry) return NULL; if (entry->bitmap) return entry; /* * bitmap entry and extent entry may share same offset, * in that case, bitmap entry comes after extent entry. */ n = rb_next(n); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); if (entry->offset != offset) return NULL; WARN_ON(!entry->bitmap); return entry; } else if (entry) { if (entry->bitmap) { /* * if previous extent entry covers the offset, * we should return it instead of the bitmap entry */ n = rb_prev(&entry->offset_index); if (n) { prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap && prev->offset + prev->bytes > offset) entry = prev; } } return entry; } if (!prev) return NULL; /* find last entry before the 'offset' */ entry = prev; if (entry->offset > offset) { n = rb_prev(&entry->offset_index); if (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); BUG_ON(entry->offset > offset); } else { if (fuzzy) return entry; else return NULL; } } if (entry->bitmap) { n = rb_prev(&entry->offset_index); if (n) { prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap && prev->offset + prev->bytes > offset) return prev; } if (entry->offset + BITS_PER_BITMAP(sectorsize) * ctl->unit > offset) return entry; } else if (entry->offset + entry->bytes > offset) return entry; if (!fuzzy) return NULL; while (1) { if (entry->bitmap) { if (entry->offset + BITS_PER_BITMAP(sectorsize) * ctl->unit > offset) break; } else { if (entry->offset + entry->bytes > offset) break; } n = rb_next(&entry->offset_index); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); } return entry; } void unlink_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &ctl->free_space_offset); ctl->free_extents--; ctl->free_space -= info->bytes; } static int link_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { int ret = 0; BUG_ON(!info->bitmap && !info->bytes); ret = tree_insert_offset(&ctl->free_space_offset, info->offset, &info->offset_index, (info->bitmap != NULL)); if (ret) return ret; ctl->free_space += info->bytes; ctl->free_extents++; return ret; } static int search_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *bitmap_info, u64 *offset, u64 *bytes) { unsigned long found_bits = 0; unsigned long bits, i; unsigned long next_zero; u32 sectorsize = ctl->sectorsize; i = offset_to_bit(bitmap_info->offset, ctl->unit, max_t(u64, *offset, bitmap_info->offset)); bits = bytes_to_bits(*bytes, ctl->unit); for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP(sectorsize)) { next_zero = find_next_zero_bit(bitmap_info->bitmap, BITS_PER_BITMAP(sectorsize), i); if ((next_zero - i) >= bits) { found_bits = next_zero - i; break; } i = next_zero; } if (found_bits) { *offset = (u64)(i * ctl->unit) + bitmap_info->offset; *bytes = (u64)(found_bits) * ctl->unit; return 0; } return -1; } struct btrfs_free_space * btrfs_find_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes) { return tree_search_offset(ctl, offset, 0, 0); } static void try_merge_free_space(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { struct btrfs_free_space *left_info; struct btrfs_free_space *right_info; u64 offset = info->offset; u64 bytes = info->bytes; /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(ctl, offset + bytes, 0, 0); if (right_info && rb_prev(&right_info->offset_index)) left_info = rb_entry(rb_prev(&right_info->offset_index), struct btrfs_free_space, offset_index); else left_info = tree_search_offset(ctl, offset - 1, 0, 0); if (right_info && !right_info->bitmap) { unlink_free_space(ctl, right_info); info->bytes += right_info->bytes; free(right_info); } if (left_info && !left_info->bitmap && left_info->offset + left_info->bytes == offset) { unlink_free_space(ctl, left_info); info->offset = left_info->offset; info->bytes += left_info->bytes; free(left_info); } } void btrfs_dump_free_space(struct btrfs_block_group *block_group, u64 bytes) { struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes && !block_group->ro) count++; printk("entry offset %llu, bytes %llu, bitmap %s\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (info->bitmap) ? "yes" : "no"); } printk("%d blocks of free space at or bigger than bytes is \n", count); } int btrfs_init_free_space_ctl(struct btrfs_block_group *block_group, int sectorsize) { struct btrfs_free_space_ctl *ctl; ctl = calloc(1, sizeof(*ctl)); if (!ctl) return -ENOMEM; ctl->sectorsize = sectorsize; ctl->unit = sectorsize; ctl->start = block_group->start; ctl->private = block_group; block_group->free_space_ctl = ctl; return 0; } void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) { struct btrfs_free_space *info; struct rb_node *node; while ((node = rb_last(&ctl->free_space_offset)) != NULL) { info = rb_entry(node, struct btrfs_free_space, offset_index); unlink_free_space(ctl, info); free(info->bitmap); free(info); } } void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group) { __btrfs_remove_free_space_cache(block_group->free_space_ctl); } int btrfs_add_free_space(struct btrfs_free_space_ctl *ctl, u64 offset, u64 bytes) { struct btrfs_free_space *info; int ret = 0; info = calloc(1, sizeof(*info)); if (!info) return -ENOMEM; info->offset = offset; info->bytes = bytes; try_merge_free_space(ctl, info); ret = link_free_space(ctl, info); if (ret) printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); return ret; } /* * Merges all the free space cache and kills the bitmap entries since we just * want to use the free space cache to verify it's correct, no reason to keep * the bitmaps around to confuse things. */ static void merge_space_tree(struct btrfs_free_space_ctl *ctl) { struct btrfs_free_space *e, *prev = NULL; struct rb_node *n; int ret; u32 sectorsize = ctl->sectorsize; again: prev = NULL; for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { e = rb_entry(n, struct btrfs_free_space, offset_index); if (e->bitmap) { u64 offset = e->offset, bytes = ctl->unit; u64 end; end = e->offset + (u64)(BITS_PER_BITMAP(sectorsize) * ctl->unit); unlink_free_space(ctl, e); while (!(search_bitmap(ctl, e, &offset, &bytes))) { ret = btrfs_add_free_space(ctl, offset, bytes); BUG_ON(ret); offset += bytes; if (offset >= end) break; bytes = ctl->unit; } free(e->bitmap); free(e); goto again; } if (!prev) goto next; if (prev->offset + prev->bytes == e->offset) { unlink_free_space(ctl, prev); unlink_free_space(ctl, e); prev->bytes += e->bytes; free(e); link_free_space(ctl, prev); goto again; } next: prev = e; } } int btrfs_clear_free_space_cache(struct btrfs_trans_handle *trans, struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path path; struct btrfs_key key; struct btrfs_disk_key location; struct btrfs_free_space_header *sc_header; struct extent_buffer *node; u64 ino; int slot; int ret; btrfs_init_path(&path); key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.type = 0; key.offset = bg->start; ret = btrfs_search_slot(trans, tree_root, &key, &path, -1, 1); if (ret > 0) { ret = 0; goto out; } if (ret < 0) goto out; node = path.nodes[0]; slot = path.slots[0]; sc_header = btrfs_item_ptr(node, slot, struct btrfs_free_space_header); btrfs_free_space_key(node, sc_header, &location); ino = btrfs_disk_key_objectid(&location); /* Delete the free space header, as we have the ino to continue */ ret = btrfs_del_item(trans, tree_root, &path); if (ret < 0) { error("failed to remove free space header for block group %llu: %d", bg->start, ret); goto out; } btrfs_release_path(&path); /* Iterate from the end of the free space cache inode */ key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(trans, tree_root, &key, &path, -1, 1); if (ret < 0) { error("failed to locate free space cache extent for block group %llu: %d", bg->start, ret); goto out; } while (1) { struct btrfs_file_extent_item *fi; u64 disk_bytenr; u64 disk_num_bytes; ret = btrfs_previous_item(tree_root, &path, ino, BTRFS_EXTENT_DATA_KEY); if (ret > 0) { ret = 0; break; } if (ret < 0) { error( "failed to locate free space cache extent for block group %llu: %d", bg->start, ret); goto out; } node = path.nodes[0]; slot = path.slots[0]; btrfs_item_key_to_cpu(node, &key, slot); fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item); disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi); disk_num_bytes = btrfs_file_extent_disk_num_bytes(node, fi); ret = btrfs_free_extent(trans, tree_root, disk_bytenr, disk_num_bytes, 0, tree_root->objectid, ino, key.offset); if (ret < 0) { error("failed to remove backref for disk bytenr %llu: %d", disk_bytenr, ret); goto out; } ret = btrfs_del_item(trans, tree_root, &path); if (ret < 0) { error( "failed to remove free space extent data for ino %llu offset %llu: %d", ino, key.offset, ret); goto out; } } btrfs_release_path(&path); /* Now delete free space cache inode item */ key.objectid = ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, tree_root, &key, &path, -1, 1); if (ret > 0) warning("free space inode %llu not found, ignore", ino); if (ret < 0) { error( "failed to locate free space cache inode %llu for block group %llu: %d", ino, bg->start, ret); goto out; } ret = btrfs_del_item(trans, tree_root, &path); if (ret < 0) { error( "failed to delete free space cache inode %llu for block group %llu: %d", ino, bg->start, ret); } out: btrfs_release_path(&path); return ret; }