/* Red Black Trees (C) 1999 Andrea Arcangeli This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA linux/include/linux/rbtree.h To use rbtrees you'll have to implement your own insert and search cores. This will avoid us to use callbacks and to drop drammatically performances. I know it's not the cleaner way, but in C (not in C++) to get performances and genericity... See Documentation/core-api/rbtree.rst for documentation and samples. */ #ifndef _LINUX_RBTREE_H #define _LINUX_RBTREE_H #if BTRFS_FLAT_INCLUDES #include "kerncompat.h" #include "kernel-lib/rbtree_types.h" #else #include #include #endif /* BTRFS_FLAT_INCLUDES */ #include #ifdef __cplusplus extern "C" { #endif #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3)) #define rb_entry(ptr, type, member) container_of(ptr, type, member) #define RB_EMPTY_ROOT(root) (READ_ONCE((root)->rb_node) == NULL) /* 'empty' nodes are nodes that are known not to be inserted in an rbtree */ #define RB_EMPTY_NODE(node) \ ((node)->__rb_parent_color == (unsigned long)(node)) #define RB_CLEAR_NODE(node) \ ((node)->__rb_parent_color = (unsigned long)(node)) extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *); /* Find logical next and previous nodes in a tree */ extern struct rb_node *rb_next(const struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *); extern struct rb_node *rb_first(const struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *); /* Postorder iteration - always visit the parent after its children */ extern struct rb_node *rb_first_postorder(const struct rb_root *); extern struct rb_node *rb_next_postorder(const struct rb_node *); /* Fast replacement of a single node without remove/rebalance/add/rebalance */ extern void rb_replace_node(struct rb_node *victim, struct rb_node *new_node, struct rb_root *root); static inline void rb_link_node(struct rb_node *node, struct rb_node *parent, struct rb_node **rb_link) { node->__rb_parent_color = (unsigned long)parent; node->rb_left = node->rb_right = NULL; *rb_link = node; } #define rb_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? rb_entry(____ptr, type, member) : NULL; \ }) /** * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. * * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as * list_for_each_entry_safe() and allows the iteration to continue independent * of changes to @pos by the body of the loop. * * Note, however, that it cannot handle other modifications that re-order the * rbtree it is iterating over. This includes calling rb_erase() on @pos, as * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \ typeof(*pos), field); 1; }); \ pos = n) /* Same as rb_first(), but O(1) */ #define rb_first_cached(root) (root)->rb_leftmost static inline void rb_insert_color_cached(struct rb_node *node, struct rb_root_cached *root, bool leftmost) { if (leftmost) root->rb_leftmost = node; rb_insert_color(node, &root->rb_root); } static inline struct rb_node * rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) { struct rb_node *leftmost = NULL; if (root->rb_leftmost == node) leftmost = root->rb_leftmost = rb_next(node); rb_erase(node, &root->rb_root); return leftmost; } static inline void rb_replace_node_cached(struct rb_node *victim, struct rb_node *new_node, struct rb_root_cached *root) { if (root->rb_leftmost == victim) root->rb_leftmost = new_node; rb_replace_node(victim, new_node, &root->rb_root); } /* * The below helper functions use 2 operators with 3 different * calling conventions. The operators are related like: * * comp(a->key,b) < 0 := less(a,b) * comp(a->key,b) > 0 := less(b,a) * comp(a->key,b) == 0 := !less(a,b) && !less(b,a) * * If these operators define a partial order on the elements we make no * guarantee on which of the elements matching the key is found. See * rb_find(). * * The reason for this is to allow the find() interface without requiring an * on-stack dummy object, which might not be feasible due to object size. */ /** * rb_add_cached() - insert @node into the leftmost cached tree @tree * @node: node to insert * @tree: leftmost cached tree to insert @node into * @less: operator defining the (partial) node order * * Returns @node when it is the new leftmost, or NULL. */ static __always_inline struct rb_node * rb_add_cached(struct rb_node *node, struct rb_root_cached *tree, bool (*less)(struct rb_node *, const struct rb_node *)) { struct rb_node **link = &tree->rb_root.rb_node; struct rb_node *parent = NULL; bool leftmost = true; while (*link) { parent = *link; if (less(node, parent)) { link = &parent->rb_left; } else { link = &parent->rb_right; leftmost = false; } } rb_link_node(node, parent, link); rb_insert_color_cached(node, tree, leftmost); return leftmost ? node : NULL; } /** * rb_add() - insert @node into @tree * @node: node to insert * @tree: tree to insert @node into * @less: operator defining the (partial) node order */ static __always_inline void rb_add(struct rb_node *node, struct rb_root *tree, bool (*less)(struct rb_node *, const struct rb_node *)) { struct rb_node **link = &tree->rb_node; struct rb_node *parent = NULL; while (*link) { parent = *link; if (less(node, parent)) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(node, parent, link); rb_insert_color(node, tree); } /** * rb_find_add() - find equivalent @node in @tree, or add @node * @node: node to look-for / insert * @tree: tree to search / modify * @cmp: operator defining the node order * * Returns the rb_node matching @node, or NULL when no match is found and @node * is inserted. */ static __always_inline struct rb_node * rb_find_add(struct rb_node *node, struct rb_root *tree, int (*cmp)(struct rb_node *, const struct rb_node *)) { struct rb_node **link = &tree->rb_node; struct rb_node *parent = NULL; int c; while (*link) { parent = *link; c = cmp(node, parent); if (c < 0) link = &parent->rb_left; else if (c > 0) link = &parent->rb_right; else return parent; } rb_link_node(node, parent, link); rb_insert_color(node, tree); return NULL; } /** * rb_find() - find @key in tree @tree * @key: key to match * @tree: tree to search * @cmp: operator defining the node order * * Returns the rb_node matching @key or NULL. */ static __always_inline struct rb_node * rb_find(const void *key, const struct rb_root *tree, int (*cmp)(const void *key, const struct rb_node *)) { struct rb_node *node = tree->rb_node; while (node) { int c = cmp(key, node); if (c < 0) node = node->rb_left; else if (c > 0) node = node->rb_right; else return node; } return NULL; } /** * rb_find_first() - find the first @key in @tree * @key: key to match * @tree: tree to search * @cmp: operator defining node order * * Returns the leftmost node matching @key, or NULL. */ static __always_inline struct rb_node * rb_find_first(const void *key, const struct rb_root *tree, int (*cmp)(const void *key, const struct rb_node *)) { struct rb_node *node = tree->rb_node; struct rb_node *match = NULL; while (node) { int c = cmp(key, node); if (c <= 0) { if (!c) match = node; node = node->rb_left; } else if (c > 0) { node = node->rb_right; } } return match; } /** * rb_next_match() - find the next @key in @tree * @key: key to match * @tree: tree to search * @cmp: operator defining node order * * Returns the next node matching @key, or NULL. */ static __always_inline struct rb_node * rb_next_match(const void *key, struct rb_node *node, int (*cmp)(const void *key, const struct rb_node *)) { node = rb_next(node); if (node && cmp(key, node)) node = NULL; return node; } /** * rb_for_each() - iterates a subtree matching @key * @node: iterator * @key: key to match * @tree: tree to search * @cmp: operator defining node order */ #define rb_for_each(node, key, tree, cmp) \ for ((node) = rb_find_first((key), (tree), (cmp)); \ (node); (node) = rb_next_match((key), (node), (cmp))) #ifdef __cplusplus } #endif #endif /* _LINUX_RBTREE_H */