/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include "common/utils.h" #include "kerncompat.h" #include "kernel-shared/ctree.h" #include "common/string-table.h" #include "cmds/filesystem-usage.h" #include "cmds/commands.h" #include "kernel-shared/disk-io.h" #include "common/open-utils.h" #include "common/units.h" #include "version.h" #include "common/help.h" #include "common/device-utils.h" #include "common/open-utils.h" /* * Add the chunk info to the chunk_info list */ static int add_info_to_list(struct chunk_info **info_ptr, int *info_count, struct btrfs_chunk *chunk) { u64 type = btrfs_stack_chunk_type(chunk); u64 size = btrfs_stack_chunk_length(chunk); int num_stripes = btrfs_stack_chunk_num_stripes(chunk); int j; for (j = 0 ; j < num_stripes ; j++) { int i; struct chunk_info *p = NULL; struct btrfs_stripe *stripe; u64 devid; stripe = btrfs_stripe_nr(chunk, j); devid = btrfs_stack_stripe_devid(stripe); for (i = 0 ; i < *info_count ; i++) if ((*info_ptr)[i].type == type && (*info_ptr)[i].devid == devid && (*info_ptr)[i].num_stripes == num_stripes ) { p = (*info_ptr) + i; break; } if (!p) { int tmp = sizeof(struct btrfs_chunk) * (*info_count + 1); struct chunk_info *res = realloc(*info_ptr, tmp); if (!res) { free(*info_ptr); error("not enough memory"); return -ENOMEM; } *info_ptr = res; p = res + *info_count; (*info_count)++; p->devid = devid; p->type = type; p->size = 0; p->num_stripes = num_stripes; } p->size += size; } return 0; } /* * Helper to sort the chunk type */ static int cmp_chunk_block_group(u64 f1, u64 f2) { u64 mask; if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) == (f2 & BTRFS_BLOCK_GROUP_TYPE_MASK)) mask = BTRFS_BLOCK_GROUP_PROFILE_MASK; else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM) return -1; else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM) return +1; else mask = BTRFS_BLOCK_GROUP_TYPE_MASK; if ((f1 & mask) > (f2 & mask)) return +1; else if ((f1 & mask) < (f2 & mask)) return -1; else return 0; } /* * Helper to sort the chunk */ static int cmp_chunk_info(const void *a, const void *b) { return cmp_chunk_block_group( ((struct chunk_info *)a)->type, ((struct chunk_info *)b)->type); } static int load_chunk_info(int fd, struct chunk_info **info_ptr, int *info_count) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; int i, e; memset(&args, 0, sizeof(args)); /* * there may be more than one ROOT_ITEM key if there are * snapshots pending deletion, we have to loop through * them. */ sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID; sk->min_objectid = 0; sk->max_objectid = (u64)-1; sk->max_type = 0; sk->min_type = (u8)-1; sk->min_offset = 0; sk->max_offset = (u64)-1; sk->min_transid = 0; sk->max_transid = (u64)-1; sk->nr_items = 4096; while (1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); e = errno; if (e == EPERM) return -e; if (ret < 0) { error("cannot look up chunk tree info: %m"); return 1; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; for (i = 0; i < sk->nr_items; i++) { struct btrfs_chunk *item; sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); item = (struct btrfs_chunk *)(args.buf + off); ret = add_info_to_list(info_ptr, info_count, item); if (ret) { *info_ptr = NULL; return 1; } off += btrfs_search_header_len(sh); sk->min_objectid = btrfs_search_header_objectid(sh); sk->min_type = btrfs_search_header_type(sh); sk->min_offset = btrfs_search_header_offset(sh)+1; } if (!sk->min_offset) /* overflow */ sk->min_type++; else continue; if (!sk->min_type) sk->min_objectid++; else continue; if (!sk->min_objectid) break; } qsort(*info_ptr, *info_count, sizeof(struct chunk_info), cmp_chunk_info); return 0; } /* * Helper to sort the struct btrfs_ioctl_space_info */ static int cmp_btrfs_ioctl_space_info(const void *a, const void *b) { return cmp_chunk_block_group( ((struct btrfs_ioctl_space_info *)a)->flags, ((struct btrfs_ioctl_space_info *)b)->flags); } /* * This function load all the information about the space usage */ static struct btrfs_ioctl_space_args *load_space_info(int fd, const char *path) { struct btrfs_ioctl_space_args *sargs = NULL, *sargs_orig = NULL; int ret, count; sargs_orig = sargs = calloc(1, sizeof(struct btrfs_ioctl_space_args)); if (!sargs) { error("not enough memory"); return NULL; } sargs->space_slots = 0; sargs->total_spaces = 0; ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs); if (ret < 0) { error("cannot get space info on '%s': %m", path); free(sargs); return NULL; } if (!sargs->total_spaces) { free(sargs); printf("No chunks found\n"); return NULL; } count = sargs->total_spaces; sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) + (count * sizeof(struct btrfs_ioctl_space_info))); if (!sargs) { free(sargs_orig); error("not enough memory"); return NULL; } sargs->space_slots = count; sargs->total_spaces = 0; ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs); if (ret < 0) { error("cannot get space info with %u slots: %m", count); free(sargs); return NULL; } qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info), cmp_btrfs_ioctl_space_info); return sargs; } /* * Compute the ratio between logical space used over logical space allocated * by profile basis */ static void get_raid56_logical_ratio(struct btrfs_ioctl_space_args *sargs, u64 type, double *data_ratio, double *metadata_ratio, double *system_ratio) { u64 l_data_chunk = 0, l_data_used = 0; u64 l_metadata_chunk = 0, l_metadata_used = 0; u64 l_system_chunk = 0, l_system_used = 0; int i; for (i = 0; i < sargs->total_spaces; i++) { u64 flags = sargs->spaces[i].flags; if (!(flags & type)) continue; if (flags & BTRFS_BLOCK_GROUP_DATA) { l_data_used += sargs->spaces[i].used_bytes; l_data_chunk += sargs->spaces[i].total_bytes; } else if (flags & BTRFS_BLOCK_GROUP_METADATA) { l_metadata_used += sargs->spaces[i].used_bytes; l_metadata_chunk += sargs->spaces[i].total_bytes; } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) { l_system_used += sargs->spaces[i].used_bytes; l_system_chunk += sargs->spaces[i].total_bytes; } } *data_ratio = -1.0; *metadata_ratio = -1.0; *system_ratio = -1.0; if (l_data_chunk) *data_ratio = (double)l_data_used / l_data_chunk; if (l_metadata_chunk) *metadata_ratio = (double)l_metadata_used / l_metadata_chunk; if (l_system_chunk) *system_ratio = (double)l_system_used / l_system_chunk; } /* * Compute the "raw" space allocated for a chunk (r_*_chunks) * and the "raw" space used by a chunk (r_*_used) */ static void get_raid56_space_info(struct btrfs_ioctl_space_args *sargs, struct chunk_info *chunks, int chunkcount, double *max_data_ratio, u64 *r_data_chunks, u64 *r_data_used, u64 *r_metadata_chunks, u64 *r_metadata_used, u64 *r_system_chunks, u64 *r_system_used) { struct chunk_info *info_ptr; double l_data_ratio_r5, l_metadata_ratio_r5, l_system_ratio_r5; double l_data_ratio_r6, l_metadata_ratio_r6, l_system_ratio_r6; get_raid56_logical_ratio(sargs, BTRFS_BLOCK_GROUP_RAID5, &l_data_ratio_r5, &l_metadata_ratio_r5, &l_system_ratio_r5); get_raid56_logical_ratio(sargs, BTRFS_BLOCK_GROUP_RAID6, &l_data_ratio_r6, &l_metadata_ratio_r6, &l_system_ratio_r6); for(info_ptr = chunks; chunkcount > 0; chunkcount--, info_ptr++) { int parities_count; u64 size; double l_data_ratio, l_metadata_ratio, l_system_ratio, rt; if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID5) { parities_count = 1; l_data_ratio = l_data_ratio_r5; l_metadata_ratio = l_metadata_ratio_r5; l_system_ratio = l_system_ratio_r5; } else if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID6) { parities_count = 2; l_data_ratio = l_data_ratio_r6; l_metadata_ratio = l_metadata_ratio_r6; l_system_ratio = l_system_ratio_r6; } else { continue; } rt = (double)info_ptr->num_stripes / (info_ptr->num_stripes - parities_count); if (rt > *max_data_ratio) *max_data_ratio = rt; /* * size is the total disk(s) space occupied by a chunk * the product of 'size' and '*_ratio' is "in average" * the disk(s) space used by the data */ size = info_ptr->size / (info_ptr->num_stripes - parities_count); if (info_ptr->type & BTRFS_BLOCK_GROUP_DATA) { assert(l_data_ratio >= 0); *r_data_chunks += size; *r_data_used += size * l_data_ratio; } else if (info_ptr->type & BTRFS_BLOCK_GROUP_METADATA) { assert(l_metadata_ratio >= 0); *r_metadata_chunks += size; *r_metadata_used += size * l_metadata_ratio; } else if (info_ptr->type & BTRFS_BLOCK_GROUP_SYSTEM) { assert(l_system_ratio >= 0); *r_system_chunks += size; *r_system_used += size * l_system_ratio; } } } static u64 get_first_device_zone_size(int fd) { int dirfd; DIR *dir; struct dirent *de; char name[NAME_MAX] = {0}; u64 ret; dirfd = sysfs_open_fsid_dir(fd, "devices"); if (dirfd < 0) return 0; dir = fdopendir(dirfd); if (!dir) { ret = 0; goto out; } while (1) { de = readdir(dir); if (strcmp(".", de->d_name) == 0 || strcmp("..", de->d_name) == 0) continue; strcpy(name, de->d_name); name[NAME_MAX - 1] = 0; break; } ret = device_get_zone_size(fd, name); ret *= 512; out: closedir(dir); return ret; } #define MIN_UNALOCATED_THRESH SZ_16M static int print_filesystem_usage_overall(int fd, struct chunk_info *chunkinfo, int chunkcount, struct device_info *devinfo, int devcount, const char *path, unsigned unit_mode) { struct btrfs_ioctl_space_args *sargs = NULL; char *tmp; int i; int ret = 0; int width = 10; /* default 10 for human units */ /* * r_* prefix is for raw data * l_* prefix is for logical * *_used suffix is for space used for data or metadata * *_chunks suffix is for total space used by the chunk */ u64 r_total_size = 0; /* filesystem size, sum of device sizes */ u64 r_total_chunks = 0; /* sum of chunks sizes on disk(s) */ u64 r_total_used = 0; u64 r_total_unused = 0; u64 r_total_missing = 0; /* sum of missing devices size */ u64 r_data_used = 0; u64 r_data_chunks = 0; u64 l_data_chunks = 0; u64 r_metadata_used = 0; u64 r_metadata_chunks = 0; u64 l_metadata_chunks = 0; u64 r_system_used = 0; u64 r_system_chunks = 0; double data_ratio; double metadata_ratio; /* logical */ u64 l_global_reserve = 0; u64 l_global_reserve_used = 0; u64 free_estimated = 0; u64 free_min = 0; u64 zone_unusable = 0; double max_data_ratio = 1.0; int mixed = 0; struct statfs statfs_buf; struct btrfs_ioctl_feature_flags feature_flags; sargs = load_space_info(fd, path); if (!sargs) { ret = 1; goto exit; } r_total_size = 0; for (i = 0; i < devcount; i++) { r_total_size += devinfo[i].size; if (!devinfo[i].device_size) r_total_missing += devinfo[i].size; } if (r_total_size == 0) { error("cannot get space info on '%s': %m", path); ret = 1; goto exit; } get_raid56_space_info(sargs, chunkinfo, chunkcount, &max_data_ratio, &r_data_chunks, &r_data_used, &r_metadata_chunks, &r_metadata_used, &r_system_chunks, &r_system_used); for (i = 0; i < sargs->total_spaces; i++) { int ratio; u64 flags = sargs->spaces[i].flags; /* * The RAID5/6 ratio depends on the number of stripes and is * computed separately. Setting ratio to 0 will not account * the chunks in this loop. */ if (flags & BTRFS_BLOCK_GROUP_RAID0) ratio = 1; else if (flags & BTRFS_BLOCK_GROUP_RAID1) ratio = 2; else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) ratio = 3; else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) ratio = 4; else if (flags & BTRFS_BLOCK_GROUP_RAID5) ratio = 0; else if (flags & BTRFS_BLOCK_GROUP_RAID6) ratio = 0; else if (flags & BTRFS_BLOCK_GROUP_DUP) ratio = 2; else if (flags & BTRFS_BLOCK_GROUP_RAID10) ratio = 2; else ratio = 1; if (ratio > max_data_ratio) max_data_ratio = ratio; if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) { l_global_reserve = sargs->spaces[i].total_bytes; l_global_reserve_used = sargs->spaces[i].used_bytes; } if ((flags & (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA)) == (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA)) { mixed = 1; } else { /* * As mixed mode is not supported in zoned mode, this * will account for all profile types */ u64 tmp; tmp = device_get_zone_unusable(fd, flags); if (tmp != DEVICE_ZONE_UNUSABLE_UNKNOWN) zone_unusable += tmp; } if (flags & BTRFS_BLOCK_GROUP_DATA) { r_data_used += sargs->spaces[i].used_bytes * ratio; r_data_chunks += sargs->spaces[i].total_bytes * ratio; l_data_chunks += sargs->spaces[i].total_bytes; } if (flags & BTRFS_BLOCK_GROUP_METADATA) { r_metadata_used += sargs->spaces[i].used_bytes * ratio; r_metadata_chunks += sargs->spaces[i].total_bytes * ratio; l_metadata_chunks += sargs->spaces[i].total_bytes; } if (flags & BTRFS_BLOCK_GROUP_SYSTEM) { r_system_used += sargs->spaces[i].used_bytes * ratio; r_system_chunks += sargs->spaces[i].total_bytes * ratio; } } r_total_chunks = r_data_chunks + r_system_chunks; r_total_used = r_data_used + r_system_used; if (!mixed) { r_total_chunks += r_metadata_chunks; r_total_used += r_metadata_used; } r_total_unused = r_total_size - r_total_chunks; /* Raw / Logical = raid factor, >= 1 */ data_ratio = (double)r_data_chunks / l_data_chunks; if (mixed) metadata_ratio = data_ratio; else metadata_ratio = (double)r_metadata_chunks / l_metadata_chunks; /* * We're able to fill at least DATA for the unused space * * With mixed raid levels, this gives a rough estimate but more * accurate than just counting the logical free space * (l_data_chunks - l_data_used) * * In non-mixed case there's no difference. */ free_estimated = (r_data_chunks - r_data_used) / data_ratio; /* * For mixed-bg the metadata are left out in calculations thus global * reserve would be lost. Part of it could be permanently allocated, * we have to subtract the used bytes so we don't go under zero free. */ if (mixed) free_estimated -= l_global_reserve - l_global_reserve_used; free_min = free_estimated; /* Chop unallocatable space */ /* FIXME: must be applied per device */ if (r_total_unused >= MIN_UNALOCATED_THRESH) { free_estimated += r_total_unused / data_ratio; /* Match the calculation of 'df', use the highest raid ratio */ free_min += r_total_unused / max_data_ratio; } if (unit_mode != UNITS_HUMAN) width = 18; ret = statfs(path, &statfs_buf); if (ret) { warning("cannot get space info with statfs() on '%s': %m", path); memset(&statfs_buf, 0, sizeof(statfs_buf)); ret = 0; } printf("Overall:\n"); printf(" Device size:\t\t%*s\n", width, pretty_size_mode(r_total_size, unit_mode)); printf(" Device allocated:\t\t%*s\n", width, pretty_size_mode(r_total_chunks, unit_mode)); printf(" Device unallocated:\t\t%*s\n", width, pretty_size_mode(r_total_unused, unit_mode | UNITS_NEGATIVE)); printf(" Device missing:\t\t%*s\n", width, pretty_size_mode(r_total_missing, unit_mode)); ret = ioctl(fd, BTRFS_IOC_GET_FEATURES, &feature_flags); if (ret == 0 && (feature_flags.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)) { u64 zone_size; printf(" Device zone unusable:\t%*s\n", width, pretty_size_mode(zone_unusable, unit_mode)); zone_size = get_first_device_zone_size(fd); printf(" Device zone size:\t\t%*s\n", width, pretty_size_mode(zone_size, unit_mode)); } printf(" Used:\t\t\t%*s\n", width, pretty_size_mode(r_total_used, unit_mode)); printf(" Free (estimated):\t\t%*s\t(", width, pretty_size_mode(free_estimated, unit_mode)); printf("min: %s)\n", pretty_size_mode(free_min, unit_mode)); printf(" Free (statfs, df):\t\t%*s\n", width, pretty_size_mode(statfs_buf.f_bavail * statfs_buf.f_bsize, unit_mode)); printf(" Data ratio:\t\t\t%*.2f\n", width, data_ratio); printf(" Metadata ratio:\t\t%*.2f\n", width, metadata_ratio); printf(" Global reserve:\t\t%*s\t(used: %s)\n", width, pretty_size_mode(l_global_reserve, unit_mode), pretty_size_mode(l_global_reserve_used, unit_mode)); tmp = btrfs_test_for_multiple_profiles(fd); if (tmp[0]) printf(" Multiple profiles:\t\t%*s\t(%s)\n", width, "yes", tmp); else printf(" Multiple profiles:\t\t%*s\n", width, "no"); free(tmp); exit: if (sargs) free(sargs); return ret; } /* * Helper to sort the device_info structure */ static int cmp_device_info(const void *a, const void *b) { const struct device_info *deva = a; const struct device_info *devb = b; if (deva->devid < devb->devid) return -1; if (deva->devid > devb->devid) return 1; return 0; } int dev_to_fsid(const char *dev, u8 *fsid) { struct btrfs_super_block *disk_super; char buf[BTRFS_SUPER_INFO_SIZE]; int ret; int fd; fd = open(dev, O_RDONLY); if (fd < 0) { ret = -errno; return ret; } disk_super = (struct btrfs_super_block *)buf; ret = btrfs_read_dev_super(fd, disk_super, BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT); if (ret) goto out; memcpy(fsid, disk_super->fsid, BTRFS_FSID_SIZE); ret = 0; out: close(fd); return ret; } /* * This function loads the device_info structure and put them in an array */ static int load_device_info(int fd, struct device_info **device_info_ptr, int *device_info_count) { int ret, i, ndevs; struct btrfs_ioctl_fs_info_args fi_args; struct btrfs_ioctl_dev_info_args dev_info; struct device_info *info; u8 fsid[BTRFS_UUID_SIZE]; *device_info_count = 0; *device_info_ptr = NULL; ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args); if (ret < 0) { if (errno == EPERM) return -errno; error("cannot get filesystem info: %m"); return 1; } info = calloc(fi_args.num_devices, sizeof(struct device_info)); if (!info) { error("not enough memory"); return 1; } for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) { if (ndevs >= fi_args.num_devices) { error("unexpected number of devices: %d >= %llu", ndevs, (unsigned long long)fi_args.num_devices); error( "if seed device is used, try running this command as root"); goto out; } memset(&dev_info, 0, sizeof(dev_info)); ret = get_device_info(fd, i, &dev_info); if (ret == -ENODEV) continue; if (ret) { error("cannot get info about device devid=%d", i); goto out; } /* * Skip seed device by checking device's fsid (requires root). * And we will skip only if dev_to_fsid is successful and dev * is a seed device. * Ignore any other error including -EACCES, which is seen when * a non-root process calls dev_to_fsid(path)->open(path). */ ret = dev_to_fsid((const char *)dev_info.path, fsid); if (!ret && memcmp(fi_args.fsid, fsid, BTRFS_FSID_SIZE) != 0) continue; info[ndevs].devid = dev_info.devid; if (!dev_info.path[0]) { strcpy(info[ndevs].path, "missing"); } else { strcpy(info[ndevs].path, (char *)dev_info.path); info[ndevs].device_size = device_get_partition_size((const char *)dev_info.path); } info[ndevs].size = dev_info.total_bytes; ++ndevs; } if (ndevs != fi_args.num_devices) { error("unexpected number of devices: %d != %llu", ndevs, (unsigned long long)fi_args.num_devices); goto out; } qsort(info, fi_args.num_devices, sizeof(struct device_info), cmp_device_info); *device_info_count = fi_args.num_devices; *device_info_ptr = info; return 0; out: free(info); return ret; } int load_chunk_and_device_info(int fd, struct chunk_info **chunkinfo, int *chunkcount, struct device_info **devinfo, int *devcount) { int ret; ret = load_chunk_info(fd, chunkinfo, chunkcount); if (ret == -EPERM) { warning( "cannot read detailed chunk info, per-device usage will not be shown, run as root"); } else if (ret) { return ret; } ret = load_device_info(fd, devinfo, devcount); if (ret == -EPERM) { warning( "cannot get filesystem info from ioctl(FS_INFO), run as root"); ret = 0; } return ret; } /* * This function computes the size of a chunk in a disk */ static u64 calc_chunk_size(struct chunk_info *ci) { if (ci->type & BTRFS_BLOCK_GROUP_RAID0) return ci->size / ci->num_stripes; else if (ci->type & BTRFS_BLOCK_GROUP_RAID1_MASK) return ci->size ; else if (ci->type & BTRFS_BLOCK_GROUP_DUP) return ci->size ; else if (ci->type & BTRFS_BLOCK_GROUP_RAID5) return ci->size / (ci->num_stripes -1); else if (ci->type & BTRFS_BLOCK_GROUP_RAID6) return ci->size / (ci->num_stripes -2); else if (ci->type & BTRFS_BLOCK_GROUP_RAID10) return ci->size / (ci->num_stripes / 2); return ci->size; } /* * This function print the results of the command "btrfs fi usage" * in tabular format */ static void _cmd_filesystem_usage_tabular(unsigned unit_mode, struct btrfs_ioctl_space_args *sargs, struct chunk_info *chunks_info_ptr, int chunks_info_count, struct device_info *device_info_ptr, int device_info_count) { int i; u64 total_unused = 0; struct string_table *matrix = NULL; int ncols, nrows; int col; int unallocated_col; int spaceinfos_col; const int vhdr_skip = 3; /* amount of vertical header space */ /* id, path, unallocated */ ncols = 3; spaceinfos_col = 2; /* Properly count the real space infos */ for (i = 0; i < sargs->total_spaces; i++) { if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; ncols++; } /* 2 for header, empty line, devices, ===, total, used */ nrows = vhdr_skip + device_info_count + 1 + 2; matrix = table_create(ncols, nrows); if (!matrix) { error("not enough memory"); return; } /* * We have to skip the global block reserve everywhere as it's an * artificial blockgroup */ /* header */ for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) { u64 flags = sargs->spaces[i].flags; if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; table_printf(matrix, col, 0, "<%s", btrfs_group_type_str(flags)); table_printf(matrix, col, 1, "<%s", btrfs_group_profile_str(flags)); col++; } unallocated_col = col; table_printf(matrix, 0, 1, "%llu", device_info_ptr[i].devid); table_printf(matrix, 1, vhdr_skip + i, "<%s", device_info_ptr[i].path); for (col = spaceinfos_col, k = 0; k < sargs->total_spaces; k++) { u64 flags = sargs->spaces[k].flags; u64 devid = device_info_ptr[i].devid; int j; u64 size = 0; if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; for (j = 0 ; j < chunks_info_count ; j++) { if (chunks_info_ptr[j].type != flags ) continue; if (chunks_info_ptr[j].devid != devid) continue; size += calc_chunk_size(chunks_info_ptr+j); } if (size) table_printf(matrix, col, vhdr_skip+ i, ">%s", pretty_size_mode(size, unit_mode)); else table_printf(matrix, col, vhdr_skip + i, ">-"); total_allocated += size; col++; } unused = device_get_partition_size(device_info_ptr[i].path) - total_allocated; table_printf(matrix, unallocated_col, vhdr_skip + i, ">%s", pretty_size_mode(unused, unit_mode | UNITS_NEGATIVE)); total_unused += unused; } for (i = 0; i < spaceinfos_col; i++) { table_printf(matrix, i, vhdr_skip - 1, "*-"); table_printf(matrix, i, vhdr_skip + device_info_count, "*-"); } for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) { if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; table_printf(matrix, col, vhdr_skip - 1, "*-"); table_printf(matrix, col, vhdr_skip + device_info_count, "*-"); col++; } /* One for Unallocated */ table_printf(matrix, col, vhdr_skip - 1, "*-"); table_printf(matrix, col, vhdr_skip + device_info_count, "*-"); /* footer */ table_printf(matrix, 1, vhdr_skip + device_info_count + 1, "total_spaces; i++) { if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; table_printf(matrix, col++, vhdr_skip + device_info_count + 1, ">%s", pretty_size_mode(sargs->spaces[i].total_bytes, unit_mode)); } table_printf(matrix, unallocated_col, vhdr_skip + device_info_count + 1, ">%s", pretty_size_mode(total_unused, unit_mode | UNITS_NEGATIVE)); table_printf(matrix, 1, vhdr_skip + device_info_count + 2, "total_spaces; i++) { if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; table_printf(matrix, col++, vhdr_skip + device_info_count + 2, ">%s", pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode)); } table_dump(matrix); table_free(matrix); } /* * This function prints the unused space per every disk */ static void print_unused(struct chunk_info *info_ptr, int info_count, struct device_info *device_info_ptr, int device_info_count, unsigned unit_mode) { int i; for (i = 0; i < device_info_count; i++) { int j; u64 total = 0; for (j = 0; j < info_count; j++) if (info_ptr[j].devid == device_info_ptr[i].devid) total += calc_chunk_size(info_ptr+j); printf(" %s\t%10s\n", device_info_ptr[i].path, pretty_size_mode(device_info_ptr[i].size - total, unit_mode)); } } /* * This function prints the allocated chunk per every disk */ static void print_chunk_device(u64 chunk_type, struct chunk_info *chunks_info_ptr, int chunks_info_count, struct device_info *device_info_ptr, int device_info_count, unsigned unit_mode) { int i; for (i = 0; i < device_info_count; i++) { int j; u64 total = 0; for (j = 0; j < chunks_info_count; j++) { if (chunks_info_ptr[j].type != chunk_type) continue; if (chunks_info_ptr[j].devid != device_info_ptr[i].devid) continue; total += calc_chunk_size(&(chunks_info_ptr[j])); //total += chunks_info_ptr[j].size; } if (total > 0) printf(" %s\t%10s\n", device_info_ptr[i].path, pretty_size_mode(total, unit_mode)); } } /* * This function print the results of the command "btrfs fi usage" * in linear format */ static void _cmd_filesystem_usage_linear(unsigned unit_mode, struct btrfs_ioctl_space_args *sargs, struct chunk_info *info_ptr, int info_count, struct device_info *device_info_ptr, int device_info_count) { int i; for (i = 0; i < sargs->total_spaces; i++) { const char *description; const char *r_mode; u64 flags = sargs->spaces[i].flags; if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) continue; description = btrfs_group_type_str(flags); r_mode = btrfs_group_profile_str(flags); printf("%s,%s: Size:%s, ", description, r_mode, pretty_size_mode(sargs->spaces[i].total_bytes, unit_mode)); printf("Used:%s (%.2f%%)\n", pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode), 100.0f * sargs->spaces[i].used_bytes / (sargs->spaces[i].total_bytes + 1)); print_chunk_device(flags, info_ptr, info_count, device_info_ptr, device_info_count, unit_mode); printf("\n"); } if (info_count) { printf("Unallocated:\n"); print_unused(info_ptr, info_count, device_info_ptr, device_info_count, unit_mode | UNITS_NEGATIVE); } } static int print_filesystem_usage_by_chunk(int fd, struct chunk_info *chunkinfo, int chunkcount, struct device_info *devinfo, int devcount, const char *path, unsigned unit_mode, int tabular) { struct btrfs_ioctl_space_args *sargs; int ret = 0; sargs = load_space_info(fd, path); if (!sargs) { ret = 1; goto out; } if (tabular) _cmd_filesystem_usage_tabular(unit_mode, sargs, chunkinfo, chunkcount, devinfo, devcount); else _cmd_filesystem_usage_linear(unit_mode, sargs, chunkinfo, chunkcount, devinfo, devcount); free(sargs); out: return ret; } static const char * const cmd_filesystem_usage_usage[] = { "btrfs filesystem usage [options] [..]", "Show detailed information about internal filesystem usage .", "", HELPINFO_UNITS_SHORT_LONG, "-T show data in tabular format", NULL }; static int cmd_filesystem_usage(const struct cmd_struct *cmd, int argc, char **argv) { int ret = 0; unsigned unit_mode; int i; int more_than_one = 0; int tabular = 0; unit_mode = get_unit_mode_from_arg(&argc, argv, 1); optind = 0; while (1) { int c; c = getopt(argc, argv, "T"); if (c < 0) break; switch (c) { case 'T': tabular = 1; break; default: usage_unknown_option(cmd, argv); } } if (check_argc_min(argc - optind, 1)) return 1; for (i = optind; i < argc; i++) { int fd; DIR *dirstream = NULL; struct chunk_info *chunkinfo = NULL; struct device_info *devinfo = NULL; int chunkcount = 0; int devcount = 0; fd = btrfs_open_dir(argv[i], &dirstream, 1); if (fd < 0) { ret = 1; goto out; } if (more_than_one) printf("\n"); ret = load_chunk_and_device_info(fd, &chunkinfo, &chunkcount, &devinfo, &devcount); if (ret) goto cleanup; ret = print_filesystem_usage_overall(fd, chunkinfo, chunkcount, devinfo, devcount, argv[i], unit_mode); if (ret) goto cleanup; printf("\n"); ret = print_filesystem_usage_by_chunk(fd, chunkinfo, chunkcount, devinfo, devcount, argv[i], unit_mode, tabular); cleanup: close_file_or_dir(fd, dirstream); free(chunkinfo); free(devinfo); if (ret) goto out; more_than_one = 1; } out: return !!ret; } DEFINE_SIMPLE_COMMAND(filesystem_usage, "usage"); void print_device_chunks(struct device_info *devinfo, struct chunk_info *chunks_info_ptr, int chunks_info_count, unsigned unit_mode) { int i; u64 allocated = 0; for (i = 0 ; i < chunks_info_count ; i++) { const char *description; const char *r_mode; u64 flags; u64 size; u64 num_stripes; u64 profile; if (chunks_info_ptr[i].devid != devinfo->devid) continue; flags = chunks_info_ptr[i].type; profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); description = btrfs_group_type_str(flags); r_mode = btrfs_group_profile_str(flags); size = calc_chunk_size(chunks_info_ptr+i); num_stripes = chunks_info_ptr[i].num_stripes; switch (profile) { case BTRFS_BLOCK_GROUP_RAID0: case BTRFS_BLOCK_GROUP_RAID5: case BTRFS_BLOCK_GROUP_RAID6: case BTRFS_BLOCK_GROUP_RAID10: printf(" %s,%s/%llu:%*s%10s\n", description, r_mode, num_stripes, (int)(20 - strlen(description) - strlen(r_mode) - count_digits(num_stripes) - 1), "", pretty_size_mode(size, unit_mode)); break; default: printf(" %s,%s:%*s%10s\n", description, r_mode, (int)(20 - strlen(description) - strlen(r_mode)), "", pretty_size_mode(size, unit_mode)); break; } allocated += size; } printf(" Unallocated: %*s%10s\n", (int)(20 - strlen("Unallocated")), "", pretty_size_mode(devinfo->size - allocated, unit_mode | UNITS_NEGATIVE)); } void print_device_sizes(struct device_info *devinfo, unsigned unit_mode) { printf(" Device size: %*s%10s\n", (int)(20 - strlen("Device size")), "", pretty_size_mode(devinfo->device_size, unit_mode)); printf(" Device slack: %*s%10s\n", (int)(20 - strlen("Device slack")), "", pretty_size_mode(devinfo->device_size > 0 ? devinfo->device_size - devinfo->size : 0, unit_mode)); }