/* * Copyright (C) 2008 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "crypto/crc32c.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "common/utils.h" #include "volumes.h" #include "extent_io.h" #include "extent-cache.h" #include "common/help.h" #include "common/device-utils.h" #include "image/metadump.h" #include "image/sanitize.h" #include "common/box.h" #define MAX_WORKER_THREADS (32) struct async_work { struct list_head list; struct list_head ordered; u64 start; u64 size; u8 *buffer; size_t bufsize; int error; }; struct metadump_struct { struct btrfs_root *root; FILE *out; union { struct meta_cluster cluster; char meta_cluster_bytes[BLOCK_SIZE]; }; pthread_t threads[MAX_WORKER_THREADS]; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; struct rb_root name_tree; struct list_head list; struct list_head ordered; size_t num_items; size_t num_ready; u64 pending_start; u64 pending_size; int compress_level; int done; int data; enum sanitize_mode sanitize_names; int error; }; struct mdrestore_struct { FILE *in; FILE *out; pthread_t threads[MAX_WORKER_THREADS]; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; /* * Records system chunk ranges, so restore can use this to determine * if an item is in chunk tree range. */ struct cache_tree sys_chunks; struct rb_root chunk_tree; struct rb_root physical_tree; struct list_head list; struct list_head overlapping_chunks; struct btrfs_super_block *original_super; size_t num_items; u32 nodesize; u64 devid; u64 alloced_chunks; u64 last_physical_offset; /* An quicker checker for if a item is in sys chunk range */ u64 sys_chunk_end; u8 uuid[BTRFS_UUID_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; int compress_method; int done; int error; int old_restore; int fixup_offset; int multi_devices; int clear_space_cache; struct btrfs_fs_info *info; }; static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size); static void csum_block(u8 *buf, size_t len) { u16 csum_size = btrfs_csum_type_size(BTRFS_CSUM_TYPE_CRC32); u8 result[csum_size]; u32 crc = ~(u32)0; crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE); put_unaligned_le32(~crc, result); memcpy(buf, result, csum_size); } static int has_name(struct btrfs_key *key) { switch (key->type) { case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_INODE_REF_KEY: case BTRFS_INODE_EXTREF_KEY: case BTRFS_XATTR_ITEM_KEY: return 1; default: break; } return 0; } static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz) { struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l); struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l); if (fuzz && ins->logical >= entry->logical && ins->logical < entry->logical + entry->bytes) return 0; if (ins->logical < entry->logical) return -1; else if (ins->logical > entry->logical) return 1; return 0; } static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz) { struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p); struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p); if (fuzz && ins->physical >= entry->physical && ins->physical < entry->physical + entry->bytes) return 0; if (fuzz && entry->physical >= ins->physical && entry->physical < ins->physical + ins->bytes) return 0; if (ins->physical < entry->physical) return -1; else if (ins->physical > entry->physical) return 1; return 0; } static void tree_insert(struct rb_root *root, struct rb_node *ins, int (*cmp)(struct rb_node *a, struct rb_node *b, int fuzz)) { struct rb_node ** p = &root->rb_node; struct rb_node * parent = NULL; int dir; while(*p) { parent = *p; dir = cmp(*p, ins, 1); if (dir < 0) p = &(*p)->rb_left; else if (dir > 0) p = &(*p)->rb_right; else BUG(); } rb_link_node(ins, parent, p); rb_insert_color(ins, root); } static struct rb_node *tree_search(struct rb_root *root, struct rb_node *search, int (*cmp)(struct rb_node *a, struct rb_node *b, int fuzz), int fuzz) { struct rb_node *n = root->rb_node; int dir; while (n) { dir = cmp(n, search, fuzz); if (dir < 0) n = n->rb_left; else if (dir > 0) n = n->rb_right; else return n; } return NULL; } static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical, u64 *size, u64 *physical_dup) { struct fs_chunk *fs_chunk; struct rb_node *entry; struct fs_chunk search; u64 offset; if (logical == BTRFS_SUPER_INFO_OFFSET) return logical; search.logical = logical; entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1); if (!entry) { if (mdres->in != stdin) warning("cannot find a chunk, using logical"); return logical; } fs_chunk = rb_entry(entry, struct fs_chunk, l); if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical) BUG(); offset = search.logical - fs_chunk->logical; if (physical_dup) { /* Only in dup case, physical_dup is not equal to 0 */ if (fs_chunk->physical_dup) *physical_dup = fs_chunk->physical_dup + offset; else *physical_dup = 0; } *size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical); return fs_chunk->physical + offset; } /* * zero inline extents and csum items */ static void zero_items(struct metadump_struct *md, u8 *dst, struct extent_buffer *src) { struct btrfs_file_extent_item *fi; struct btrfs_item *item; struct btrfs_key key; u32 nritems = btrfs_header_nritems(src); size_t size; unsigned long ptr; int i, extent_type; for (i = 0; i < nritems; i++) { item = btrfs_item_nr(i); btrfs_item_key_to_cpu(src, &key, i); if (key.type == BTRFS_CSUM_ITEM_KEY) { size = btrfs_item_size_nr(src, i); memset(dst + btrfs_leaf_data(src) + btrfs_item_offset_nr(src, i), 0, size); continue; } if (md->sanitize_names && has_name(&key)) { sanitize_name(md->sanitize_names, &md->name_tree, dst, src, &key, i); continue; } if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(src, fi); if (extent_type != BTRFS_FILE_EXTENT_INLINE) continue; ptr = btrfs_file_extent_inline_start(fi); size = btrfs_file_extent_inline_item_len(src, item); memset(dst + ptr, 0, size); } } /* * copy buffer and zero useless data in the buffer */ static void copy_buffer(struct metadump_struct *md, u8 *dst, struct extent_buffer *src) { int level; size_t size; u32 nritems; memcpy(dst, src->data, src->len); if (src->start == BTRFS_SUPER_INFO_OFFSET) return; level = btrfs_header_level(src); nritems = btrfs_header_nritems(src); if (nritems == 0) { size = sizeof(struct btrfs_header); memset(dst + size, 0, src->len - size); } else if (level == 0) { size = btrfs_leaf_data(src) + btrfs_item_offset_nr(src, nritems - 1) - btrfs_item_nr_offset(nritems); memset(dst + btrfs_item_nr_offset(nritems), 0, size); zero_items(md, dst, src); } else { size = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nritems; memset(dst + size, 0, src->len - size); } csum_block(dst, src->len); } static void *dump_worker(void *data) { struct metadump_struct *md = (struct metadump_struct *)data; struct async_work *async; int ret; while (1) { pthread_mutex_lock(&md->mutex); while (list_empty(&md->list)) { if (md->done) { pthread_mutex_unlock(&md->mutex); goto out; } pthread_cond_wait(&md->cond, &md->mutex); } async = list_entry(md->list.next, struct async_work, list); list_del_init(&async->list); pthread_mutex_unlock(&md->mutex); if (md->compress_level > 0) { u8 *orig = async->buffer; async->bufsize = compressBound(async->size); async->buffer = malloc(async->bufsize); if (!async->buffer) { error("not enough memory for async buffer"); pthread_mutex_lock(&md->mutex); if (!md->error) md->error = -ENOMEM; pthread_mutex_unlock(&md->mutex); pthread_exit(NULL); } ret = compress2(async->buffer, (unsigned long *)&async->bufsize, orig, async->size, md->compress_level); if (ret != Z_OK) async->error = 1; free(orig); } pthread_mutex_lock(&md->mutex); md->num_ready++; pthread_mutex_unlock(&md->mutex); } out: pthread_exit(NULL); } static void meta_cluster_init(struct metadump_struct *md, u64 start) { struct meta_cluster_header *header; md->num_items = 0; md->num_ready = 0; header = &md->cluster.header; header->magic = cpu_to_le64(HEADER_MAGIC); header->bytenr = cpu_to_le64(start); header->nritems = cpu_to_le32(0); header->compress = md->compress_level > 0 ? COMPRESS_ZLIB : COMPRESS_NONE; } static void metadump_destroy(struct metadump_struct *md, int num_threads) { int i; struct rb_node *n; pthread_mutex_lock(&md->mutex); md->done = 1; pthread_cond_broadcast(&md->cond); pthread_mutex_unlock(&md->mutex); for (i = 0; i < num_threads; i++) pthread_join(md->threads[i], NULL); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); while ((n = rb_first(&md->name_tree))) { struct name *name; name = rb_entry(n, struct name, n); rb_erase(n, &md->name_tree); free(name->val); free(name->sub); free(name); } } static int metadump_init(struct metadump_struct *md, struct btrfs_root *root, FILE *out, int num_threads, int compress_level, enum sanitize_mode sanitize_names) { int i, ret = 0; memset(md, 0, sizeof(*md)); INIT_LIST_HEAD(&md->list); INIT_LIST_HEAD(&md->ordered); md->root = root; md->out = out; md->pending_start = (u64)-1; md->compress_level = compress_level; md->sanitize_names = sanitize_names; if (sanitize_names == SANITIZE_COLLISIONS) crc32c_optimization_init(); md->name_tree.rb_node = NULL; md->num_threads = num_threads; pthread_cond_init(&md->cond, NULL); pthread_mutex_init(&md->mutex, NULL); meta_cluster_init(md, 0); if (!num_threads) return 0; for (i = 0; i < num_threads; i++) { ret = pthread_create(md->threads + i, NULL, dump_worker, md); if (ret) break; } if (ret) metadump_destroy(md, i + 1); return ret; } static int write_zero(FILE *out, size_t size) { static char zero[BLOCK_SIZE]; return fwrite(zero, size, 1, out); } static int write_buffers(struct metadump_struct *md, u64 *next) { struct meta_cluster_header *header = &md->cluster.header; struct meta_cluster_item *item; struct async_work *async; u64 bytenr = 0; u32 nritems = 0; int ret; int err = 0; if (list_empty(&md->ordered)) goto out; /* wait until all buffers are compressed */ while (!err && md->num_items > md->num_ready) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&md->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&md->mutex); err = md->error; } if (err) { errno = -err; error("one of the threads failed: %m"); goto out; } /* setup and write index block */ list_for_each_entry(async, &md->ordered, ordered) { item = &md->cluster.items[nritems]; item->bytenr = cpu_to_le64(async->start); item->size = cpu_to_le32(async->bufsize); nritems++; } header->nritems = cpu_to_le32(nritems); ret = fwrite(&md->cluster, BLOCK_SIZE, 1, md->out); if (ret != 1) { error("unable to write out cluster: %m"); return -errno; } /* write buffers */ bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE; while (!list_empty(&md->ordered)) { async = list_entry(md->ordered.next, struct async_work, ordered); list_del_init(&async->ordered); bytenr += async->bufsize; if (!err) ret = fwrite(async->buffer, async->bufsize, 1, md->out); if (ret != 1) { error("unable to write out cluster: %m"); err = -errno; ret = 0; } free(async->buffer); free(async); } /* zero unused space in the last block */ if (!err && bytenr & BLOCK_MASK) { size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = write_zero(md->out, size); if (ret != 1) { error("unable to zero out buffer: %m"); err = -errno; } } out: *next = bytenr; return err; } static int read_data_extent(struct metadump_struct *md, struct async_work *async) { struct btrfs_root *root = md->root; struct btrfs_fs_info *fs_info = root->fs_info; u64 bytes_left = async->size; u64 logical = async->start; u64 offset = 0; u64 read_len; int num_copies; int cur_mirror; int ret; num_copies = btrfs_num_copies(root->fs_info, logical, bytes_left); /* Try our best to read data, just like read_tree_block() */ for (cur_mirror = 1; cur_mirror <= num_copies; cur_mirror++) { while (bytes_left) { read_len = bytes_left; ret = read_extent_data(fs_info, (char *)(async->buffer + offset), logical, &read_len, cur_mirror); if (ret < 0) break; offset += read_len; logical += read_len; bytes_left -= read_len; } } if (bytes_left) return -EIO; return 0; } static int get_dev_fd(struct btrfs_root *root) { struct btrfs_device *dev; dev = list_first_entry(&root->fs_info->fs_devices->devices, struct btrfs_device, dev_list); return dev->fd; } static int flush_pending(struct metadump_struct *md, int done) { struct async_work *async = NULL; struct extent_buffer *eb; u64 start = 0; u64 size; size_t offset; int ret = 0; if (md->pending_size) { async = calloc(1, sizeof(*async)); if (!async) return -ENOMEM; async->start = md->pending_start; async->size = md->pending_size; async->bufsize = async->size; async->buffer = malloc(async->bufsize); if (!async->buffer) { free(async); return -ENOMEM; } offset = 0; start = async->start; size = async->size; if (md->data) { ret = read_data_extent(md, async); if (ret) { free(async->buffer); free(async); return ret; } } /* * Balance can make the mapping not cover the super block, so * just copy directly from one of the devices. */ if (start == BTRFS_SUPER_INFO_OFFSET) { int fd = get_dev_fd(md->root); ret = pread64(fd, async->buffer, size, start); if (ret < size) { free(async->buffer); free(async); error("unable to read superblock at %llu: %m", (unsigned long long)start); return -errno; } size = 0; ret = 0; } while (!md->data && size > 0) { u64 this_read = min((u64)md->root->fs_info->nodesize, size); eb = read_tree_block(md->root->fs_info, start, 0); if (!extent_buffer_uptodate(eb)) { free(async->buffer); free(async); error("unable to read metadata block %llu", (unsigned long long)start); return -EIO; } copy_buffer(md, async->buffer + offset, eb); free_extent_buffer(eb); start += this_read; offset += this_read; size -= this_read; } md->pending_start = (u64)-1; md->pending_size = 0; } else if (!done) { return 0; } pthread_mutex_lock(&md->mutex); if (async) { list_add_tail(&async->ordered, &md->ordered); md->num_items++; if (md->compress_level > 0) { list_add_tail(&async->list, &md->list); pthread_cond_signal(&md->cond); } else { md->num_ready++; } } if (md->num_items >= ITEMS_PER_CLUSTER || done) { ret = write_buffers(md, &start); if (ret) { errno = -ret; error("unable to write buffers: %m"); } else { meta_cluster_init(md, start); } } pthread_mutex_unlock(&md->mutex); return ret; } static int add_extent(u64 start, u64 size, struct metadump_struct *md, int data) { int ret; if (md->data != data || md->pending_size + size > MAX_PENDING_SIZE || md->pending_start + md->pending_size != start) { ret = flush_pending(md, 0); if (ret) return ret; md->pending_start = start; } readahead_tree_block(md->root->fs_info, start, 0); md->pending_size += size; md->data = data; return 0; } static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb, struct metadump_struct *metadump, int root_tree) { struct extent_buffer *tmp; struct btrfs_root_item *ri; struct btrfs_key key; struct btrfs_fs_info *fs_info = root->fs_info; u64 bytenr; int level; int nritems = 0; int i = 0; int ret; ret = add_extent(btrfs_header_bytenr(eb), fs_info->nodesize, metadump, 0); if (ret) { error("unable to add metadata block %llu: %d", btrfs_header_bytenr(eb), ret); return ret; } if (btrfs_header_level(eb) == 0 && !root_tree) return 0; level = btrfs_header_level(eb); nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { if (level == 0) { btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_ROOT_ITEM_KEY) continue; ri = btrfs_item_ptr(eb, i, struct btrfs_root_item); bytenr = btrfs_disk_root_bytenr(eb, ri); tmp = read_tree_block(fs_info, bytenr, 0); if (!extent_buffer_uptodate(tmp)) { error("unable to read log root block"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, 0); free_extent_buffer(tmp); if (ret) return ret; } else { bytenr = btrfs_node_blockptr(eb, i); tmp = read_tree_block(fs_info, bytenr, 0); if (!extent_buffer_uptodate(tmp)) { error("unable to read log root block"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, root_tree); free_extent_buffer(tmp); if (ret) return ret; } } return 0; } static int copy_log_trees(struct btrfs_root *root, struct metadump_struct *metadump) { u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy); if (blocknr == 0) return 0; if (!root->fs_info->log_root_tree || !root->fs_info->log_root_tree->node) { error("unable to copy tree log, it has not been setup"); return -EIO; } return copy_tree_blocks(root, root->fs_info->log_root_tree->node, metadump, 1); } static int copy_space_cache(struct btrfs_root *root, struct metadump_struct *metadump, struct btrfs_path *path) { struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr, num_bytes; int ret; root = root->fs_info->tree_root; key.objectid = 0; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { error("free space inode not found: %d", ret); return ret; } leaf = path->nodes[0]; while (1) { if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) { error("cannot go to next leaf %d", ret); return ret; } if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_EXTENT_DATA_KEY) { path->slots[0]++; continue; } fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) { path->slots[0]++; continue; } bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); ret = add_extent(bytenr, num_bytes, metadump, 1); if (ret) { error("unable to add space cache blocks %d", ret); btrfs_release_path(path); return ret; } path->slots[0]++; } return 0; } static int copy_from_extent_tree(struct metadump_struct *metadump, struct btrfs_path *path) { struct btrfs_root *extent_root; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_key key; u64 bytenr; u64 num_bytes; int ret; extent_root = metadump->root->fs_info->extent_root; bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) { error("extent root not found: %d", ret); return ret; } ret = 0; leaf = path->nodes[0]; while (1) { if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, path); if (ret < 0) { error("cannot go to next leaf %d", ret); break; } if (ret > 0) { ret = 0; break; } leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid < bytenr || (key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY)) { path->slots[0]++; continue; } bytenr = key.objectid; if (key.type == BTRFS_METADATA_ITEM_KEY) { num_bytes = extent_root->fs_info->nodesize; } else { num_bytes = key.offset; } if (num_bytes == 0) { error("extent length 0 at bytenr %llu key type %d", (unsigned long long)bytenr, key.type); ret = -EIO; break; } if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) { ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); if (btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK) { ret = add_extent(bytenr, num_bytes, metadump, 0); if (ret) { error("unable to add block %llu: %d", (unsigned long long)bytenr, ret); break; } } } else { error( "either extent tree is corrupted or deprecated extent ref format"); ret = -EIO; break; } bytenr += num_bytes; } btrfs_release_path(path); return ret; } static int create_metadump(const char *input, FILE *out, int num_threads, int compress_level, enum sanitize_mode sanitize, int walk_trees) { struct btrfs_root *root; struct btrfs_path path; struct metadump_struct metadump; int ret; int err = 0; root = open_ctree(input, 0, 0); if (!root) { error("open ctree failed"); return -EIO; } ret = metadump_init(&metadump, root, out, num_threads, compress_level, sanitize); if (ret) { error("failed to initialize metadump: %d", ret); close_ctree(root); return ret; } ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE, &metadump, 0); if (ret) { error("unable to add metadata: %d", ret); err = ret; goto out; } btrfs_init_path(&path); if (walk_trees) { ret = copy_tree_blocks(root, root->fs_info->chunk_root->node, &metadump, 1); if (ret) { err = ret; goto out; } ret = copy_tree_blocks(root, root->fs_info->tree_root->node, &metadump, 1); if (ret) { err = ret; goto out; } } else { ret = copy_from_extent_tree(&metadump, &path); if (ret) { err = ret; goto out; } } ret = copy_log_trees(root, &metadump); if (ret) { err = ret; goto out; } ret = copy_space_cache(root, &metadump, &path); out: ret = flush_pending(&metadump, 1); if (ret) { if (!err) err = ret; error("failed to flush pending data: %d", ret); } metadump_destroy(&metadump, num_threads); btrfs_release_path(&path); ret = close_ctree(root); return err ? err : ret; } static void update_super_old(u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *key; u32 sectorsize = btrfs_super_sectorsize(super); u64 flags = btrfs_super_flags(super); flags |= BTRFS_SUPER_FLAG_METADUMP; btrfs_set_super_flags(super, flags); key = (struct btrfs_disk_key *)(super->sys_chunk_array); chunk = (struct btrfs_chunk *)(super->sys_chunk_array + sizeof(struct btrfs_disk_key)); btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_disk_key_offset(key, 0); btrfs_set_stack_chunk_length(chunk, (u64)-1); btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_chunk_io_align(chunk, sectorsize); btrfs_set_stack_chunk_io_width(chunk, sectorsize); btrfs_set_stack_chunk_sector_size(chunk, sectorsize); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); chunk->stripe.devid = super->dev_item.devid; btrfs_set_stack_stripe_offset(&chunk->stripe, 0); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk)); csum_block(buffer, BTRFS_SUPER_INFO_SIZE); } static int update_super(struct mdrestore_struct *mdres, u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *disk_key; struct btrfs_key key; u64 flags = btrfs_super_flags(super); u32 new_array_size = 0; u32 array_size; u32 cur = 0; u8 *ptr, *write_ptr; int old_num_stripes; /* No need to fix, use all data as is */ if (btrfs_super_num_devices(mdres->original_super) == 1) { new_array_size = btrfs_super_sys_array_size(super); goto finish; } write_ptr = ptr = super->sys_chunk_array; array_size = btrfs_super_sys_array_size(super); while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); new_array_size += sizeof(*disk_key); memmove(write_ptr, ptr, sizeof(*disk_key)); write_ptr += sizeof(*disk_key); ptr += sizeof(*disk_key); cur += sizeof(*disk_key); if (key.type == BTRFS_CHUNK_ITEM_KEY) { u64 type, physical, physical_dup, size = 0; chunk = (struct btrfs_chunk *)ptr; old_num_stripes = btrfs_stack_chunk_num_stripes(chunk); chunk = (struct btrfs_chunk *)write_ptr; memmove(write_ptr, ptr, sizeof(*chunk)); btrfs_set_stack_chunk_sub_stripes(chunk, 0); type = btrfs_stack_chunk_type(chunk); if (type & BTRFS_BLOCK_GROUP_DUP) { new_array_size += sizeof(struct btrfs_stripe); write_ptr += sizeof(struct btrfs_stripe); } else { btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); } chunk->stripe.devid = super->dev_item.devid; physical = logical_to_physical(mdres, key.offset, &size, &physical_dup); if (size != (u64)-1) btrfs_set_stack_stripe_offset(&chunk->stripe, physical); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); new_array_size += sizeof(*chunk); } else { error("bogus key in the sys array %d", key.type); return -EIO; } write_ptr += sizeof(*chunk); ptr += btrfs_chunk_item_size(old_num_stripes); cur += btrfs_chunk_item_size(old_num_stripes); } finish: if (mdres->clear_space_cache) btrfs_set_super_cache_generation(super, 0); flags |= BTRFS_SUPER_FLAG_METADUMP_V2; btrfs_set_super_flags(super, flags); btrfs_set_super_sys_array_size(super, new_array_size); btrfs_set_super_num_devices(super, 1); csum_block(buffer, BTRFS_SUPER_INFO_SIZE); return 0; } static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size) { struct extent_buffer *eb; eb = calloc(1, sizeof(struct extent_buffer) + size); if (!eb) return NULL; eb->start = bytenr; eb->len = size; return eb; } static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size) { struct btrfs_item *item; u32 nritems; u32 old_size; u32 old_data_start; u32 size_diff; u32 data_end; int i; old_size = btrfs_item_size_nr(eb, slot); if (old_size == new_size) return; nritems = btrfs_header_nritems(eb); data_end = btrfs_item_offset_nr(eb, nritems - 1); old_data_start = btrfs_item_offset_nr(eb, slot); size_diff = old_size - new_size; for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(i); ioff = btrfs_item_offset(eb, item); btrfs_set_item_offset(eb, item, ioff + size_diff); } memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff, btrfs_leaf_data(eb) + data_end, old_data_start + new_size - data_end); item = btrfs_item_nr(slot); btrfs_set_item_size(eb, item, new_size); } static int fixup_chunk_tree_block(struct mdrestore_struct *mdres, struct async_work *async, u8 *buffer, size_t size) { struct extent_buffer *eb; size_t size_left = size; u64 bytenr = async->start; int i; if (btrfs_super_num_devices(mdres->original_super) == 1) return 0; if (size_left % mdres->nodesize) return 0; eb = alloc_dummy_eb(bytenr, mdres->nodesize); if (!eb) return -ENOMEM; while (size_left) { eb->start = bytenr; memcpy(eb->data, buffer, mdres->nodesize); if (btrfs_header_bytenr(eb) != bytenr) break; if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE)) break; if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) goto next; if (btrfs_header_level(eb) != 0) goto next; for (i = 0; i < btrfs_header_nritems(eb); i++) { struct btrfs_chunk *chunk; struct btrfs_key key; u64 type, physical, physical_dup, size = (u64)-1; btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_CHUNK_ITEM_KEY) continue; size = 0; physical = logical_to_physical(mdres, key.offset, &size, &physical_dup); if (!physical_dup) truncate_item(eb, i, sizeof(*chunk)); chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk); /* Zero out the RAID profile */ type = btrfs_chunk_type(eb, chunk); type &= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DUP); btrfs_set_chunk_type(eb, chunk, type); if (!physical_dup) btrfs_set_chunk_num_stripes(eb, chunk, 1); btrfs_set_chunk_sub_stripes(eb, chunk, 0); btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid); if (size != (u64)-1) btrfs_set_stripe_offset_nr(eb, chunk, 0, physical); /* update stripe 2 offset */ if (physical_dup) btrfs_set_stripe_offset_nr(eb, chunk, 1, physical_dup); write_extent_buffer(eb, mdres->uuid, (unsigned long)btrfs_stripe_dev_uuid_nr( chunk, 0), BTRFS_UUID_SIZE); } memcpy(buffer, eb->data, eb->len); csum_block(buffer, eb->len); next: size_left -= mdres->nodesize; buffer += mdres->nodesize; bytenr += mdres->nodesize; } free(eb); return 0; } static void write_backup_supers(int fd, u8 *buf) { struct btrfs_super_block *super = (struct btrfs_super_block *)buf; struct stat st; u64 size; u64 bytenr; int i; int ret; if (fstat(fd, &st)) { error( "cannot stat restore point, won't be able to write backup supers: %m"); return; } size = btrfs_device_size(fd, &st); for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE > size) break; btrfs_set_super_bytenr(super, bytenr); csum_block(buf, BTRFS_SUPER_INFO_SIZE); ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr); if (ret < BTRFS_SUPER_INFO_SIZE) { if (ret < 0) error( "problem writing out backup super block %d: %m", i); else error("short write writing out backup super block"); break; } } } static void *restore_worker(void *data) { struct mdrestore_struct *mdres = (struct mdrestore_struct *)data; struct async_work *async; size_t size; u8 *buffer; u8 *outbuf; int outfd; int ret; int compress_size = MAX_PENDING_SIZE * 4; outfd = fileno(mdres->out); buffer = malloc(compress_size); if (!buffer) { error("not enough memory for restore worker buffer"); pthread_mutex_lock(&mdres->mutex); if (!mdres->error) mdres->error = -ENOMEM; pthread_mutex_unlock(&mdres->mutex); pthread_exit(NULL); } while (1) { u64 bytenr, physical_dup; off_t offset = 0; int err = 0; pthread_mutex_lock(&mdres->mutex); while (!mdres->nodesize || list_empty(&mdres->list)) { if (mdres->done) { pthread_mutex_unlock(&mdres->mutex); goto out; } pthread_cond_wait(&mdres->cond, &mdres->mutex); } async = list_entry(mdres->list.next, struct async_work, list); list_del_init(&async->list); if (mdres->compress_method == COMPRESS_ZLIB) { size = compress_size; pthread_mutex_unlock(&mdres->mutex); ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); pthread_mutex_lock(&mdres->mutex); if (ret != Z_OK) { error("decompression failed with %d", ret); err = -EIO; } outbuf = buffer; } else { outbuf = async->buffer; size = async->bufsize; } if (!mdres->multi_devices) { if (async->start == BTRFS_SUPER_INFO_OFFSET) { memcpy(mdres->original_super, outbuf, BTRFS_SUPER_INFO_SIZE); if (mdres->old_restore) { update_super_old(outbuf); } else { ret = update_super(mdres, outbuf); if (ret) err = ret; } } else if (!mdres->old_restore) { ret = fixup_chunk_tree_block(mdres, async, outbuf, size); if (ret) err = ret; } } if (!mdres->fixup_offset) { while (size) { u64 chunk_size = size; physical_dup = 0; if (!mdres->multi_devices && !mdres->old_restore) bytenr = logical_to_physical(mdres, async->start + offset, &chunk_size, &physical_dup); else bytenr = async->start + offset; ret = pwrite64(outfd, outbuf+offset, chunk_size, bytenr); if (ret != chunk_size) goto error; if (physical_dup) ret = pwrite64(outfd, outbuf+offset, chunk_size, physical_dup); if (ret != chunk_size) goto error; size -= chunk_size; offset += chunk_size; continue; error: if (ret < 0) { error("unable to write to device: %m"); err = errno; } else { error("short write"); err = -EIO; } } } else if (async->start != BTRFS_SUPER_INFO_OFFSET) { ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0); if (ret) { error("failed to write data"); exit(1); } } /* backup super blocks are already there at fixup_offset stage */ if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET) write_backup_supers(outfd, outbuf); if (err && !mdres->error) mdres->error = err; mdres->num_items--; pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); } out: free(buffer); pthread_exit(NULL); } static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads) { struct rb_node *n; int i; while ((n = rb_first(&mdres->chunk_tree))) { struct fs_chunk *entry; entry = rb_entry(n, struct fs_chunk, l); rb_erase(n, &mdres->chunk_tree); rb_erase(&entry->p, &mdres->physical_tree); free(entry); } free_extent_cache_tree(&mdres->sys_chunks); pthread_mutex_lock(&mdres->mutex); mdres->done = 1; pthread_cond_broadcast(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); for (i = 0; i < num_threads; i++) pthread_join(mdres->threads[i], NULL); pthread_cond_destroy(&mdres->cond); pthread_mutex_destroy(&mdres->mutex); free(mdres->original_super); } static int mdrestore_init(struct mdrestore_struct *mdres, FILE *in, FILE *out, int old_restore, int num_threads, int fixup_offset, struct btrfs_fs_info *info, int multi_devices) { int i, ret = 0; memset(mdres, 0, sizeof(*mdres)); pthread_cond_init(&mdres->cond, NULL); pthread_mutex_init(&mdres->mutex, NULL); INIT_LIST_HEAD(&mdres->list); INIT_LIST_HEAD(&mdres->overlapping_chunks); cache_tree_init(&mdres->sys_chunks); mdres->in = in; mdres->out = out; mdres->old_restore = old_restore; mdres->chunk_tree.rb_node = NULL; mdres->fixup_offset = fixup_offset; mdres->info = info; mdres->multi_devices = multi_devices; mdres->clear_space_cache = 0; mdres->last_physical_offset = 0; mdres->alloced_chunks = 0; mdres->original_super = malloc(BTRFS_SUPER_INFO_SIZE); if (!mdres->original_super) return -ENOMEM; if (!num_threads) return 0; mdres->num_threads = num_threads; for (i = 0; i < num_threads; i++) { ret = pthread_create(&mdres->threads[i], NULL, restore_worker, mdres); if (ret) { /* pthread_create returns errno directly */ ret = -ret; break; } } if (ret) mdrestore_destroy(mdres, i + 1); return ret; } static int fill_mdres_info(struct mdrestore_struct *mdres, struct async_work *async) { struct btrfs_super_block *super; u8 *buffer = NULL; u8 *outbuf; int ret; /* We've already been initialized */ if (mdres->nodesize) return 0; if (mdres->compress_method == COMPRESS_ZLIB) { /* * We know this item is superblock, its should only be 4K. * Don't need to waste memory following max_pending_size as it * can be as large as 256M. */ size_t size = BTRFS_SUPER_INFO_SIZE; buffer = malloc(size); if (!buffer) return -ENOMEM; ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); if (ret != Z_OK) { error("decompression failed with %d", ret); free(buffer); return -EIO; } outbuf = buffer; } else { outbuf = async->buffer; } super = (struct btrfs_super_block *)outbuf; mdres->nodesize = btrfs_super_nodesize(super); if (btrfs_super_incompat_flags(super) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID) memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE); else memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE); memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); mdres->devid = le64_to_cpu(super->dev_item.devid); free(buffer); return 0; } static int add_cluster(struct meta_cluster *cluster, struct mdrestore_struct *mdres, u64 *next) { struct meta_cluster_item *item; struct meta_cluster_header *header = &cluster->header; struct async_work *async; u64 bytenr; u32 i, nritems; int ret; pthread_mutex_lock(&mdres->mutex); mdres->compress_method = header->compress; pthread_mutex_unlock(&mdres->mutex); bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { item = &cluster->items[i]; async = calloc(1, sizeof(*async)); if (!async) { error("not enough memory for async data"); return -ENOMEM; } async->start = le64_to_cpu(item->bytenr); async->bufsize = le32_to_cpu(item->size); async->buffer = malloc(async->bufsize); if (!async->buffer) { error("not enough memory for async buffer"); free(async); return -ENOMEM; } ret = fread(async->buffer, async->bufsize, 1, mdres->in); if (ret != 1) { error("unable to read buffer: %m"); free(async->buffer); free(async); return -EIO; } bytenr += async->bufsize; pthread_mutex_lock(&mdres->mutex); if (async->start == BTRFS_SUPER_INFO_OFFSET) { ret = fill_mdres_info(mdres, async); if (ret) { error("unable to set up restore state"); pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); return ret; } } list_add_tail(&async->list, &mdres->list); mdres->num_items++; pthread_cond_signal(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); } if (bytenr & BLOCK_MASK) { char buffer[BLOCK_MASK]; size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = fread(buffer, size, 1, mdres->in); if (ret != 1) { error("failed to read buffer: %m"); return -EIO; } } *next = bytenr; return 0; } static int wait_for_worker(struct mdrestore_struct *mdres) { int ret = 0; pthread_mutex_lock(&mdres->mutex); ret = mdres->error; while (!ret && mdres->num_items > 0) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&mdres->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&mdres->mutex); ret = mdres->error; } pthread_mutex_unlock(&mdres->mutex); return ret; } /* * Check if a range [start, start + len] has ANY bytes covered by system chunk * ranges. */ static bool is_in_sys_chunks(struct mdrestore_struct *mdres, u64 start, u64 len) { struct rb_node *node = mdres->sys_chunks.root.rb_node; struct cache_extent *entry; struct cache_extent *next; struct cache_extent *prev; if (start > mdres->sys_chunk_end) return false; while (node) { entry = rb_entry(node, struct cache_extent, rb_node); if (start > entry->start) { if (!node->rb_right) break; node = node->rb_right; } else if (start < entry->start) { if (!node->rb_left) break; node = node->rb_left; } else { /* Already in a system chunk */ return true; } } if (!node) return false; entry = rb_entry(node, struct cache_extent, rb_node); /* Now we have entry which is the nearst chunk around @start */ if (start > entry->start) { prev = entry; next = next_cache_extent(entry); } else { prev = prev_cache_extent(entry); next = entry; } if (prev && prev->start + prev->size > start) return true; if (next && start + len > next->start) return true; return false; } static int read_chunk_tree_block(struct mdrestore_struct *mdres, struct extent_buffer *eb) { int i; for (i = 0; i < btrfs_header_nritems(eb); i++) { struct btrfs_chunk *chunk; struct fs_chunk *fs_chunk; struct btrfs_key key; u64 type; btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_CHUNK_ITEM_KEY) continue; fs_chunk = malloc(sizeof(struct fs_chunk)); if (!fs_chunk) { error("not enough memory to allocate chunk"); return -ENOMEM; } memset(fs_chunk, 0, sizeof(*fs_chunk)); chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk); fs_chunk->logical = key.offset; fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0); fs_chunk->bytes = btrfs_chunk_length(eb, chunk); INIT_LIST_HEAD(&fs_chunk->list); if (tree_search(&mdres->physical_tree, &fs_chunk->p, physical_cmp, 1) != NULL) list_add(&fs_chunk->list, &mdres->overlapping_chunks); else tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp); type = btrfs_chunk_type(eb, chunk); if (type & BTRFS_BLOCK_GROUP_DUP) { fs_chunk->physical_dup = btrfs_stripe_offset_nr(eb, chunk, 1); } if (fs_chunk->physical_dup + fs_chunk->bytes > mdres->last_physical_offset) mdres->last_physical_offset = fs_chunk->physical_dup + fs_chunk->bytes; else if (fs_chunk->physical + fs_chunk->bytes > mdres->last_physical_offset) mdres->last_physical_offset = fs_chunk->physical + fs_chunk->bytes; mdres->alloced_chunks += fs_chunk->bytes; /* in dup case, fs_chunk->bytes should add twice */ if (fs_chunk->physical_dup) mdres->alloced_chunks += fs_chunk->bytes; tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp); } return 0; } static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer, u64 item_bytenr, u32 bufsize, u64 cluster_bytenr) { struct extent_buffer *eb; u32 nodesize = mdres->nodesize; u64 bytenr; size_t cur_offset; int ret = 0; eb = alloc_dummy_eb(0, mdres->nodesize); if (!eb) return -ENOMEM; for (cur_offset = 0; cur_offset < bufsize; cur_offset += nodesize) { bytenr = item_bytenr + cur_offset; if (!is_in_sys_chunks(mdres, bytenr, nodesize)) continue; memcpy(eb->data, buffer + cur_offset, nodesize); if (btrfs_header_bytenr(eb) != bytenr) { error( "eb bytenr does not match found bytenr: %llu != %llu", (unsigned long long)btrfs_header_bytenr(eb), (unsigned long long)bytenr); ret = -EUCLEAN; break; } if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE)) { error( "filesystem metadata UUID of eb %llu does not match", bytenr); ret = -EUCLEAN; break; } if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) { error("wrong eb %llu owner %llu", (unsigned long long)bytenr, (unsigned long long)btrfs_header_owner(eb)); ret = -EUCLEAN; break; } /* * No need to search node, as we will iterate all tree blocks * in chunk tree, only need to bother leaves. */ if (btrfs_header_level(eb)) continue; ret = read_chunk_tree_block(mdres, eb); if (ret < 0) break; } free(eb); return ret; } /* * This function will try to find all chunk items in the dump image. * * This function will iterate all clusters, and find any item inside system * chunk ranges. For such item, it will try to read them as tree blocks, and * find CHUNK_ITEMs, add them to @mdres. */ static int search_for_chunk_blocks(struct mdrestore_struct *mdres) { struct meta_cluster *cluster; struct meta_cluster_header *header; struct meta_cluster_item *item; u64 current_cluster = 0, bytenr; u64 item_bytenr; u32 bufsize, nritems, i; u32 max_size = MAX_PENDING_SIZE * 2; u8 *buffer, *tmp = NULL; int ret = 0; cluster = malloc(BLOCK_SIZE); if (!cluster) { error("not enough memory for cluster"); return -ENOMEM; } buffer = malloc(max_size); if (!buffer) { error("not enough memory for buffer"); free(cluster); return -ENOMEM; } if (mdres->compress_method == COMPRESS_ZLIB) { tmp = malloc(max_size); if (!tmp) { error("not enough memory for buffer"); free(cluster); free(buffer); return -ENOMEM; } } bytenr = current_cluster; /* Main loop, iterating all clusters */ while (1) { if (fseek(mdres->in, current_cluster, SEEK_SET)) { error("seek failed: %m"); ret = -EIO; goto out; } ret = fread(cluster, BLOCK_SIZE, 1, mdres->in); if (ret == 0) { if (feof(mdres->in)) goto out; error( "unknown state after reading cluster at %llu, probably corrupted data", current_cluster); ret = -EIO; goto out; } else if (ret < 0) { error("unable to read image at %llu: %m", current_cluster); goto out; } ret = 0; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != current_cluster) { error("bad header in metadump image"); ret = -EIO; goto out; } /* We're already over the system chunk end, no need to search*/ if (current_cluster > mdres->sys_chunk_end) goto out; bytenr += BLOCK_SIZE; nritems = le32_to_cpu(header->nritems); /* Search items for tree blocks in sys chunks */ for (i = 0; i < nritems; i++) { size_t size; item = &cluster->items[i]; bufsize = le32_to_cpu(item->size); item_bytenr = le64_to_cpu(item->bytenr); /* * Only data extent/free space cache can be that big, * adjacent tree blocks won't be able to be merged * beyond max_size. Also, we can skip super block. */ if (bufsize > max_size || !is_in_sys_chunks(mdres, item_bytenr, bufsize) || item_bytenr == BTRFS_SUPER_INFO_OFFSET) { ret = fseek(mdres->in, bufsize, SEEK_CUR); if (ret < 0) { error("failed to seek: %m"); ret = -errno; goto out; } bytenr += bufsize; continue; } if (mdres->compress_method == COMPRESS_ZLIB) { ret = fread(tmp, bufsize, 1, mdres->in); if (ret != 1) { error("read error: %m"); ret = -EIO; goto out; } size = max_size; ret = uncompress(buffer, (unsigned long *)&size, tmp, bufsize); if (ret != Z_OK) { error("decompression failed with %d", ret); ret = -EIO; goto out; } } else { ret = fread(buffer, bufsize, 1, mdres->in); if (ret != 1) { error("read error: %m"); ret = -EIO; goto out; } size = bufsize; } ret = 0; ret = read_chunk_block(mdres, buffer, item_bytenr, size, current_cluster); if (ret < 0) { error( "failed to search tree blocks in item bytenr %llu size %lu", item_bytenr, size); goto out; } bytenr += bufsize; } if (bytenr & BLOCK_MASK) bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK); current_cluster = bytenr; } out: free(tmp); free(buffer); free(cluster); return ret; } /* * Add system chunks in super blocks into mdres->sys_chunks, so later we can * determine if an item is a chunk tree block. */ static int add_sys_array(struct mdrestore_struct *mdres, struct btrfs_super_block *sb) { struct btrfs_disk_key *disk_key; struct btrfs_key key; struct btrfs_chunk *chunk; struct cache_extent *cache; u32 cur_offset; u32 len = 0; u32 array_size; u8 *array_ptr; int ret = 0; array_size = btrfs_super_sys_array_size(sb); array_ptr = sb->sys_chunk_array; cur_offset = 0; while (cur_offset < array_size) { u32 num_stripes; disk_key = (struct btrfs_disk_key *)array_ptr; len = sizeof(*disk_key); if (cur_offset + len > array_size) goto out_short_read; btrfs_disk_key_to_cpu(&key, disk_key); array_ptr += len; cur_offset += len; if (key.type != BTRFS_CHUNK_ITEM_KEY) { error("unexpected item type %u in sys_array offset %u", key.type, cur_offset); ret = -EUCLEAN; break; } chunk = (struct btrfs_chunk *)array_ptr; /* * At least one btrfs_chunk with one stripe must be present, * exact stripe count check comes afterwards */ len = btrfs_chunk_item_size(1); if (cur_offset + len > array_size) goto out_short_read; num_stripes = btrfs_stack_chunk_num_stripes(chunk); if (!num_stripes) { error( "invalid number of stripes %u in sys_array at offset %u", num_stripes, cur_offset); ret = -EIO; break; } len = btrfs_chunk_item_size(num_stripes); if (cur_offset + len > array_size) goto out_short_read; if (btrfs_stack_chunk_type(chunk) & BTRFS_BLOCK_GROUP_SYSTEM) { ret = add_merge_cache_extent(&mdres->sys_chunks, key.offset, btrfs_stack_chunk_length(chunk)); if (ret < 0) break; } array_ptr += len; cur_offset += len; } /* Get the last system chunk end as a quicker check */ cache = last_cache_extent(&mdres->sys_chunks); if (!cache) { error("no system chunk found in super block"); return -EUCLEAN; } mdres->sys_chunk_end = cache->start + cache->size - 1; return ret; out_short_read: error("sys_array too short to read %u bytes at offset %u", len, cur_offset); return -EUCLEAN; } static int build_chunk_tree(struct mdrestore_struct *mdres, struct meta_cluster *cluster) { struct btrfs_super_block *super; struct meta_cluster_header *header; struct meta_cluster_item *item = NULL; u32 i, nritems; u64 bytenr = 0; u8 *buffer; int ret; /* We can't seek with stdin so don't bother doing this */ if (mdres->in == stdin) return 0; ret = fread(cluster, BLOCK_SIZE, 1, mdres->in); if (ret <= 0) { error("unable to read cluster: %m"); return -EIO; } ret = 0; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != 0) { error("bad header in metadump image"); return -EIO; } bytenr += BLOCK_SIZE; mdres->compress_method = header->compress; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { item = &cluster->items[i]; if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET) break; bytenr += le32_to_cpu(item->size); if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) { error("seek failed: %m"); return -EIO; } } if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) { error("did not find superblock at %llu", le64_to_cpu(item->bytenr)); return -EINVAL; } buffer = malloc(le32_to_cpu(item->size)); if (!buffer) { error("not enough memory to allocate buffer"); return -ENOMEM; } ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in); if (ret != 1) { error("unable to read buffer: %m"); free(buffer); return -EIO; } if (mdres->compress_method == COMPRESS_ZLIB) { size_t size = BTRFS_SUPER_INFO_SIZE; u8 *tmp; tmp = malloc(size); if (!tmp) { free(buffer); return -ENOMEM; } ret = uncompress(tmp, (unsigned long *)&size, buffer, le32_to_cpu(item->size)); if (ret != Z_OK) { error("decompression failed with %d", ret); free(buffer); free(tmp); return -EIO; } free(buffer); buffer = tmp; } pthread_mutex_lock(&mdres->mutex); super = (struct btrfs_super_block *)buffer; ret = btrfs_check_super(super, 0); if (ret < 0) { error("invalid superblock"); return ret; } ret = add_sys_array(mdres, super); if (ret < 0) { error("failed to read system chunk array"); free(buffer); pthread_mutex_unlock(&mdres->mutex); return ret; } mdres->nodesize = btrfs_super_nodesize(super); if (btrfs_super_incompat_flags(super) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID) memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE); else memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE); memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); mdres->devid = le64_to_cpu(super->dev_item.devid); free(buffer); pthread_mutex_unlock(&mdres->mutex); return search_for_chunk_blocks(mdres); } static int range_contains_super(u64 physical, u64 bytes) { u64 super_bytenr; int i; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { super_bytenr = btrfs_sb_offset(i); if (super_bytenr >= physical && super_bytenr < physical + bytes) return 1; } return 0; } static void remap_overlapping_chunks(struct mdrestore_struct *mdres) { struct fs_chunk *fs_chunk; while (!list_empty(&mdres->overlapping_chunks)) { fs_chunk = list_first_entry(&mdres->overlapping_chunks, struct fs_chunk, list); list_del_init(&fs_chunk->list); if (range_contains_super(fs_chunk->physical, fs_chunk->bytes)) { warning( "remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption"); mdres->clear_space_cache = 1; } fs_chunk->physical = mdres->last_physical_offset; tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp); mdres->last_physical_offset += fs_chunk->bytes; } } static int fixup_device_size(struct btrfs_trans_handle *trans, struct mdrestore_struct *mdres, int out_fd) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_dev_item *dev_item; struct btrfs_dev_extent *dev_ext; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_root *root = fs_info->chunk_root; struct btrfs_key key; struct stat buf; u64 devid, cur_devid; u64 dev_size; /* Get from last dev extents */ int ret; dev_item = &fs_info->super_copy->dev_item; btrfs_init_path(&path); devid = btrfs_stack_device_id(dev_item); key.objectid = devid; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->dev_root, &key, &path, 0, 0); if (ret < 0) { errno = -ret; error("failed to locate last dev extent of devid %llu: %m", devid); btrfs_release_path(&path); return ret; } if (ret == 0) { error("found invalid dev extent devid %llu offset -1", devid); btrfs_release_path(&path); return -EUCLEAN; } ret = btrfs_previous_item(fs_info->dev_root, &path, devid, BTRFS_DEV_EXTENT_KEY); if (ret > 0) ret = -ENOENT; if (ret < 0) { errno = -ret; error("failed to locate last dev extent of devid %llu: %m", devid); btrfs_release_path(&path); return ret; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_extent); dev_size = key.offset + btrfs_dev_extent_length(path.nodes[0], dev_ext); btrfs_release_path(&path); btrfs_set_stack_device_total_bytes(dev_item, dev_size); btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks); ret = fstat(out_fd, &buf); if (ret < 0) { error("failed to stat result image: %m"); return -errno; } if (S_ISREG(buf.st_mode)) { /* Don't forget to enlarge the real file */ ret = ftruncate64(out_fd, dev_size); if (ret < 0) { error("failed to enlarge result image: %m"); return -errno; } } key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = 0; again: ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) { error("search failed: %d", ret); return ret; } while (1) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret < 0) { error("cannot go to next leaf %d", ret); exit(1); } if (ret > 0) { ret = 0; break; } leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type > BTRFS_DEV_ITEM_KEY) break; if (key.type != BTRFS_DEV_ITEM_KEY) { path.slots[0]++; continue; } dev_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_dev_item); cur_devid = btrfs_device_id(leaf, dev_item); if (devid != cur_devid) { ret = btrfs_del_item(trans, root, &path); if (ret) { error("cannot delete item: %d", ret); exit(1); } btrfs_release_path(&path); goto again; } btrfs_set_device_total_bytes(leaf, dev_item, dev_size); btrfs_set_device_bytes_used(leaf, dev_item, mdres->alloced_chunks); btrfs_mark_buffer_dirty(leaf); path.slots[0]++; } btrfs_release_path(&path); return 0; } static void fixup_block_groups(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_block_group *bg; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct cache_extent *ce; struct map_lookup *map; u64 extra_flags; for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce; ce = next_cache_extent(ce)) { map = container_of(ce, struct map_lookup, ce); bg = btrfs_lookup_block_group(fs_info, ce->start); if (!bg) { warning( "cannot find block group %llu, filesystem may not be mountable", ce->start); continue; } extra_flags = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; if (bg->flags == map->type) continue; /* Update the block group item and mark the bg dirty */ bg->flags = map->type; if (list_empty(&bg->dirty_list)) list_add_tail(&bg->dirty_list, &trans->dirty_bgs); /* * Chunk and bg flags can be different, changing bg flags * without update avail_data/meta_alloc_bits will lead to * ENOSPC. * So here we set avail_*_alloc_bits to match chunk types. */ if (map->type & BTRFS_BLOCK_GROUP_DATA) fs_info->avail_data_alloc_bits = extra_flags; if (map->type & BTRFS_BLOCK_GROUP_METADATA) fs_info->avail_metadata_alloc_bits = extra_flags; if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) fs_info->avail_system_alloc_bits = extra_flags; } } static int remove_all_dev_extents(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = fs_info->dev_root; struct btrfs_path path; struct btrfs_key key; struct extent_buffer *leaf; int slot; int ret; key.objectid = 1; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) { errno = -ret; error("failed to search dev tree: %m"); return ret; } while (1) { slot = path.slots[0]; leaf = path.nodes[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret < 0) { errno = -ret; error("failed to search dev tree: %m"); goto out; } if (ret > 0) { ret = 0; goto out; } } btrfs_item_key_to_cpu(leaf, &key, slot); if (key.type != BTRFS_DEV_EXTENT_KEY) break; ret = btrfs_del_item(trans, root, &path); if (ret < 0) { errno = -ret; error("failed to delete dev extent %llu, %llu: %m", key.objectid, key.offset); goto out; } } out: btrfs_release_path(&path); return ret; } static int fixup_dev_extents(struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct btrfs_device *dev; struct cache_extent *ce; struct map_lookup *map; u64 devid = btrfs_stack_device_id(&fs_info->super_copy->dev_item); int i; int ret; ret = remove_all_dev_extents(trans); if (ret < 0) { errno = -ret; error("failed to remove all existing dev extents: %m"); } dev = btrfs_find_device(fs_info, devid, NULL, NULL); if (!dev) { error("failed to find devid %llu", devid); return -ENODEV; } /* Rebuild all dev extents using chunk maps */ for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce; ce = next_cache_extent(ce)) { u64 stripe_len; map = container_of(ce, struct map_lookup, ce); stripe_len = calc_stripe_length(map->type, ce->size, map->num_stripes); for (i = 0; i < map->num_stripes; i++) { ret = btrfs_insert_dev_extent(trans, dev, ce->start, stripe_len, map->stripes[i].physical); if (ret < 0) { errno = -ret; error( "failed to insert dev extent %llu %llu: %m", devid, map->stripes[i].physical); goto out; } } } out: return ret; } static int iter_tree_blocks(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, bool pin) { void (*func)(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes); int nritems; int level; int i; int ret; if (pin) func = btrfs_pin_extent; else func = btrfs_unpin_extent; func(fs_info, eb->start, eb->len); level = btrfs_header_level(eb); nritems = btrfs_header_nritems(eb); if (level == 0) return 0; for (i = 0; i < nritems; i++) { u64 bytenr; struct extent_buffer *tmp; if (level == 0) { struct btrfs_root_item *ri; struct btrfs_key key; btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_ROOT_ITEM_KEY) continue; ri = btrfs_item_ptr(eb, i, struct btrfs_root_item); bytenr = btrfs_disk_root_bytenr(eb, ri); tmp = read_tree_block(fs_info, bytenr, 0); if (!extent_buffer_uptodate(tmp)) { error("unable to read log root block"); return -EIO; } ret = iter_tree_blocks(fs_info, tmp, pin); free_extent_buffer(tmp); if (ret) return ret; } else { bytenr = btrfs_node_blockptr(eb, i); tmp = read_tree_block(fs_info, bytenr, 0); if (!extent_buffer_uptodate(tmp)) { error("unable to read log root block"); return -EIO; } ret = iter_tree_blocks(fs_info, tmp, pin); free_extent_buffer(tmp); if (ret) return ret; } } return 0; } static int fixup_chunks_and_devices(struct btrfs_fs_info *fs_info, struct mdrestore_struct *mdres, int out_fd) { struct btrfs_trans_handle *trans; int ret; if (btrfs_super_log_root(fs_info->super_copy)) { warning( "log tree detected, its generation will not match superblock"); } trans = btrfs_start_transaction(fs_info->tree_root, 1); if (IS_ERR(trans)) { error("cannot start transaction %ld", PTR_ERR(trans)); return PTR_ERR(trans); } if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree) iter_tree_blocks(fs_info, fs_info->log_root_tree->node, true); fixup_block_groups(trans); ret = fixup_dev_extents(trans); if (ret < 0) goto error; ret = fixup_device_size(trans, mdres, out_fd); if (ret < 0) goto error; ret = btrfs_commit_transaction(trans, fs_info->tree_root); if (ret) { error("unable to commit transaction: %d", ret); return ret; } if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree) iter_tree_blocks(fs_info, fs_info->log_root_tree->node, false); return 0; error: errno = -ret; error( "failed to fix chunks and devices mapping, the fs may not be mountable: %m"); btrfs_abort_transaction(trans, ret); return ret; } static int restore_metadump(const char *input, FILE *out, int old_restore, int num_threads, int fixup_offset, const char *target, int multi_devices) { struct meta_cluster *cluster = NULL; struct meta_cluster_header *header; struct mdrestore_struct mdrestore; struct btrfs_fs_info *info = NULL; u64 bytenr = 0; FILE *in = NULL; int ret = 0; if (!strcmp(input, "-")) { in = stdin; } else { in = fopen(input, "r"); if (!in) { error("unable to open metadump image: %m"); return 1; } } /* NOTE: open with write mode */ if (fixup_offset) { info = open_ctree_fs_info(target, 0, 0, 0, OPEN_CTREE_WRITES | OPEN_CTREE_RESTORE | OPEN_CTREE_PARTIAL); if (!info) { error("open ctree failed"); ret = -EIO; goto failed_open; } } cluster = malloc(BLOCK_SIZE); if (!cluster) { error("not enough memory for cluster"); ret = -ENOMEM; goto failed_info; } ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads, fixup_offset, info, multi_devices); if (ret) { error("failed to initialize metadata restore state: %d", ret); goto failed_cluster; } if (!multi_devices && !old_restore) { ret = build_chunk_tree(&mdrestore, cluster); if (ret) { error("failed to build chunk tree"); goto out; } if (!list_empty(&mdrestore.overlapping_chunks)) remap_overlapping_chunks(&mdrestore); } if (in != stdin && fseek(in, 0, SEEK_SET)) { error("seek failed: %m"); goto out; } while (!mdrestore.error) { ret = fread(cluster, BLOCK_SIZE, 1, in); if (!ret) break; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != bytenr) { error("bad header in metadump image"); ret = -EIO; break; } ret = add_cluster(cluster, &mdrestore, &bytenr); if (ret) { error("failed to add cluster: %d", ret); break; } } ret = wait_for_worker(&mdrestore); if (!ret && !multi_devices && !old_restore && btrfs_super_num_devices(mdrestore.original_super) != 1) { struct btrfs_root *root; struct stat st; root = open_ctree_fd(fileno(out), target, 0, OPEN_CTREE_PARTIAL | OPEN_CTREE_WRITES | OPEN_CTREE_NO_DEVICES); if (!root) { error("open ctree failed in %s", target); ret = -EIO; goto out; } info = root->fs_info; if (stat(target, &st)) { error("stat %s failed: %m", target); close_ctree(info->chunk_root); free(cluster); return 1; } ret = fixup_chunks_and_devices(info, &mdrestore, fileno(out)); close_ctree(info->chunk_root); if (ret) goto out; } out: mdrestore_destroy(&mdrestore, num_threads); failed_cluster: free(cluster); failed_info: if (fixup_offset && info) close_ctree(info->chunk_root); failed_open: if (in != stdin) fclose(in); return ret; } static int update_disk_super_on_device(struct btrfs_fs_info *info, const char *other_dev, u64 cur_devid) { struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_path path; struct btrfs_dev_item *dev_item; struct btrfs_super_block *disk_super; char dev_uuid[BTRFS_UUID_SIZE]; char fs_uuid[BTRFS_UUID_SIZE]; u64 devid, type, io_align, io_width; u64 sector_size, total_bytes, bytes_used; char buf[BTRFS_SUPER_INFO_SIZE]; int fp = -1; int ret; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = cur_devid; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0); if (ret) { error("search key failed: %d", ret); ret = -EIO; goto out; } leaf = path.nodes[0]; dev_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_dev_item); devid = btrfs_device_id(leaf, dev_item); if (devid != cur_devid) { error("devid mismatch: %llu != %llu", (unsigned long long)devid, (unsigned long long)cur_devid); ret = -EIO; goto out; } type = btrfs_device_type(leaf, dev_item); io_align = btrfs_device_io_align(leaf, dev_item); io_width = btrfs_device_io_width(leaf, dev_item); sector_size = btrfs_device_sector_size(leaf, dev_item); total_bytes = btrfs_device_total_bytes(leaf, dev_item); bytes_used = btrfs_device_bytes_used(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); btrfs_release_path(&path); printf("update disk super on %s devid=%llu\n", other_dev, devid); /* update other devices' super block */ fp = open(other_dev, O_CREAT | O_RDWR, 0600); if (fp < 0) { error("could not open %s: %m", other_dev); ret = -EIO; goto out; } memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE); disk_super = (struct btrfs_super_block *)buf; dev_item = &disk_super->dev_item; btrfs_set_stack_device_type(dev_item, type); btrfs_set_stack_device_id(dev_item, devid); btrfs_set_stack_device_total_bytes(dev_item, total_bytes); btrfs_set_stack_device_bytes_used(dev_item, bytes_used); btrfs_set_stack_device_io_align(dev_item, io_align); btrfs_set_stack_device_io_width(dev_item, io_width); btrfs_set_stack_device_sector_size(dev_item, sector_size); memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE); csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE); ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET); if (ret != BTRFS_SUPER_INFO_SIZE) { if (ret < 0) { errno = ret; error("cannot write superblock: %m"); } else { error("cannot write superblock"); } ret = -EIO; goto out; } write_backup_supers(fp, (u8 *)buf); out: if (fp != -1) close(fp); return ret; } static void print_usage(int ret) { printf("usage: btrfs-image [options] source target\n"); printf("\t-r \trestore metadump image\n"); printf("\t-c value\tcompression level (0 ~ 9)\n"); printf("\t-t value\tnumber of threads (1 ~ 32)\n"); printf("\t-o \tdon't mess with the chunk tree when restoring\n"); printf("\t-s \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n"); printf("\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n"); printf("\t-m \trestore for multiple devices\n"); printf("\n"); printf("\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n"); printf("\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n"); exit(ret); } int BOX_MAIN(image)(int argc, char *argv[]) { char *source; char *target; u64 num_threads = 0; u64 compress_level = 0; int create = 1; int old_restore = 0; int walk_trees = 0; int multi_devices = 0; int ret; enum sanitize_mode sanitize = SANITIZE_NONE; int dev_cnt = 0; int usage_error = 0; FILE *out; while (1) { static const struct option long_options[] = { { "help", no_argument, NULL, GETOPT_VAL_HELP}, { NULL, 0, NULL, 0 } }; int c = getopt_long(argc, argv, "rc:t:oswm", long_options, NULL); if (c < 0) break; switch (c) { case 'r': create = 0; break; case 't': num_threads = arg_strtou64(optarg); if (num_threads > MAX_WORKER_THREADS) { error("number of threads out of range: %llu > %d", (unsigned long long)num_threads, MAX_WORKER_THREADS); return 1; } break; case 'c': compress_level = arg_strtou64(optarg); if (compress_level > 9) { error("compression level out of range: %llu", (unsigned long long)compress_level); return 1; } break; case 'o': old_restore = 1; break; case 's': if (sanitize == SANITIZE_NONE) sanitize = SANITIZE_NAMES; else if (sanitize == SANITIZE_NAMES) sanitize = SANITIZE_COLLISIONS; break; case 'w': walk_trees = 1; break; case 'm': create = 0; multi_devices = 1; break; case GETOPT_VAL_HELP: default: print_usage(c != GETOPT_VAL_HELP); } } set_argv0(argv); if (check_argc_min(argc - optind, 2)) print_usage(1); dev_cnt = argc - optind - 1; if (create) { if (old_restore) { error( "create and restore cannot be used at the same time"); usage_error++; } } else { if (walk_trees || sanitize != SANITIZE_NONE || compress_level) { error( "using -w, -s, -c options for restore makes no sense"); usage_error++; } if (multi_devices && dev_cnt < 2) { error("not enough devices specified for -m option"); usage_error++; } if (!multi_devices && dev_cnt != 1) { error("accepts only 1 device without -m option"); usage_error++; } } if (usage_error) print_usage(1); source = argv[optind]; target = argv[optind + 1]; if (create && !strcmp(target, "-")) { out = stdout; } else { out = fopen(target, "w+"); if (!out) { error("unable to create target file %s", target); exit(1); } } if (compress_level > 0 || create == 0) { if (num_threads == 0) { long tmp = sysconf(_SC_NPROCESSORS_ONLN); if (tmp <= 0) tmp = 1; tmp = min_t(long, tmp, MAX_WORKER_THREADS); num_threads = tmp; } } else { num_threads = 0; } if (create) { ret = check_mounted(source); if (ret < 0) { errno = -ret; warning("unable to check mount status of: %m"); } else if (ret) { warning("%s already mounted, results may be inaccurate", source); } ret = create_metadump(source, out, num_threads, compress_level, sanitize, walk_trees); } else { ret = restore_metadump(source, out, old_restore, num_threads, 0, target, multi_devices); } if (ret) { error("%s failed: %d", (create) ? "create" : "restore", ret); goto out; } /* extended support for multiple devices */ if (!create && multi_devices) { struct btrfs_fs_info *info; u64 total_devs; int i; info = open_ctree_fs_info(target, 0, 0, 0, OPEN_CTREE_PARTIAL | OPEN_CTREE_RESTORE); if (!info) { error("open ctree failed at %s", target); return 1; } total_devs = btrfs_super_num_devices(info->super_copy); if (total_devs != dev_cnt) { error("it needs %llu devices but has only %d", total_devs, dev_cnt); close_ctree(info->chunk_root); goto out; } /* update super block on other disks */ for (i = 2; i <= dev_cnt; i++) { ret = update_disk_super_on_device(info, argv[optind + i], (u64)i); if (ret) { error("update disk superblock failed devid %d: %d", i, ret); close_ctree(info->chunk_root); exit(1); } } close_ctree(info->chunk_root); /* fix metadata block to map correct chunk */ ret = restore_metadump(source, out, 0, num_threads, 1, target, 1); if (ret) { error("unable to fixup metadump: %d", ret); exit(1); } } out: if (out == stdout) { fflush(out); } else { fclose(out); if (ret && create) { int unlink_ret; unlink_ret = unlink(target); if (unlink_ret) error("unlink output file %s failed: %m", target); } } btrfs_close_all_devices(); return !!ret; }