/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#ifndef BTRFS_DELAYED_REF_H
#define BTRFS_DELAYED_REF_H

#include "kerncompat.h"

/* these are the possible values of struct btrfs_delayed_ref_node->action */
#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */

struct btrfs_delayed_ref_node {
	struct rb_node ref_node;
	/*
	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
	 * ref_head->ref_add_list, then we do not need to iterate the
	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
	 */
	struct list_head add_list;

	/* the starting bytenr of the extent */
	u64 bytenr;

	/* the size of the extent */
	u64 num_bytes;

	/* seq number to keep track of insertion order */
	u64 seq;

	/* ref count on this data structure */
	u64 refs;

	/*
	 * how many refs is this entry adding or deleting.  For
	 * head refs, this may be a negative number because it is keeping
	 * track of the total mods done to the reference count.
	 * For individual refs, this will always be a positive number
	 *
	 * It may be more than one, since it is possible for a single
	 * parent to have more than one ref on an extent
	 */
	int ref_mod;

	unsigned int action:8;
	unsigned int type:8;
	/* is this node still in the rbtree? */
	unsigned int is_head:1;
	unsigned int in_tree:1;
};

struct btrfs_delayed_extent_op {
	struct btrfs_disk_key key;
	u8 level;
	bool update_key;
	bool update_flags;
	bool is_data;
	u64 flags_to_set;
};

/*
 * the head refs are used to hold a lock on a given extent, which allows us
 * to make sure that only one process is running the delayed refs
 * at a time for a single extent.  They also store the sum of all the
 * reference count modifications we've queued up.
 */
struct btrfs_delayed_ref_head {
	u64 bytenr;
	u64 num_bytes;
	u64 refs;

	struct rb_root ref_tree;
	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
	struct list_head ref_add_list;

	struct rb_node href_node;

	struct btrfs_delayed_extent_op *extent_op;

	/*
	 * This is used to track the final ref_mod from all the refs associated
	 * with this head ref, this is not adjusted as delayed refs are run,
	 * this is meant to track if we need to do the csum accounting or not.
	 */
	int total_ref_mod;

	/*
	 * This is the current outstanding mod references for this bytenr.  This
	 * is used with lookup_extent_info to get an accurate reference count
	 * for a bytenr, so it is adjusted as delayed refs are run so that any
	 * on disk reference count + ref_mod is accurate.
	 */
	int ref_mod;

	/*
	 * when a new extent is allocated, it is just reserved in memory
	 * The actual extent isn't inserted into the extent allocation tree
	 * until the delayed ref is processed.  must_insert_reserved is
	 * used to flag a delayed ref so the accounting can be updated
	 * when a full insert is done.
	 *
	 * It is possible the extent will be freed before it is ever
	 * inserted into the extent allocation tree.  In this case
	 * we need to update the in ram accounting to properly reflect
	 * the free has happened.
	 */
	unsigned int must_insert_reserved:1;
	unsigned int is_data:1;
	unsigned int is_system:1;
	unsigned int processing:1;
};

struct btrfs_delayed_tree_ref {
	struct btrfs_delayed_ref_node node;
	u64 root;
	u64 parent;
	int level;
};

struct btrfs_delayed_ref_root {
	/* head ref rbtree */
	struct rb_root href_root;

	/* dirty extent records */
	struct rb_root dirty_extent_root;

	/* total number of head nodes in tree */
	unsigned long num_heads;

	/* total number of head nodes ready for processing */
	unsigned long num_heads_ready;

	/*
	 * set when the tree is flushing before a transaction commit,
	 * used by the throttling code to decide if new updates need
	 * to be run right away
	 */
	int flushing;

	u64 run_delayed_start;
};


static inline struct btrfs_delayed_extent_op *
btrfs_alloc_delayed_extent_op(void)
{
	return kmalloc(sizeof(struct btrfs_delayed_extent_op), GFP_KERNEL);
}

static inline void
btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
{
	if (op)
		kfree(op);
}

static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
{
	WARN_ON(ref->refs == 0);
	if (--ref->refs == 0) {
		WARN_ON(ref->in_tree);
		switch (ref->type) {
		case BTRFS_TREE_BLOCK_REF_KEY:
		case BTRFS_SHARED_BLOCK_REF_KEY:
			kfree(ref);
			break;
		case BTRFS_EXTENT_DATA_REF_KEY:
		case BTRFS_SHARED_DATA_REF_KEY:
			kfree(ref);
			break;
		default:
			BUG();
		}
	}
}

static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
{
	if (--head->refs == 0)
		kfree(head);
}

int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
			       struct btrfs_trans_handle *trans,
			       u64 bytenr, u64 num_bytes, u64 parent,
			       u64 ref_root, int level, int action,
			       struct btrfs_delayed_extent_op *extent_op,
			       int *old_ref_mod, int *new_ref_mod);
void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
			      struct btrfs_delayed_ref_root *delayed_refs,
			      struct btrfs_delayed_ref_head *head);

struct btrfs_delayed_ref_head *
btrfs_select_ref_head(struct btrfs_trans_handle *trans);

/*
 * helper functions to cast a node into its container
 */
static inline struct btrfs_delayed_tree_ref *
btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
{
	return container_of(node, struct btrfs_delayed_tree_ref, node);
}

int cleanup_ref_head(struct btrfs_trans_handle *trans,
		     struct btrfs_fs_info *fs_info,
		     struct btrfs_delayed_ref_head *head);
void btrfs_destroy_delayed_refs(struct btrfs_trans_handle *trans);

#endif