/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 600 #define __USE_XOPEN2K #define _GNU_SOURCE 1 #include #include #include #include #include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "crc32c.h" #include "utils.h" #include "print-tree.h" static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) { struct btrfs_fs_devices *fs_devices; int ret = 1; if (buf->start != btrfs_header_bytenr(buf)) return ret; fs_devices = root->fs_info->fs_devices; while (fs_devices) { if (!memcmp_extent_buffer(buf, fs_devices->fsid, (unsigned long)btrfs_header_fsid(buf), BTRFS_FSID_SIZE)) { ret = 0; break; } fs_devices = fs_devices->seed; } return ret; } u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) { return crc32c(seed, data, len); } void btrfs_csum_final(u32 crc, char *result) { *(__le32 *)result = ~cpu_to_le32(crc); } int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { char result[BTRFS_CRC32_SIZE]; u32 len; u32 crc = ~(u32)0; len = buf->len - BTRFS_CSUM_SIZE; crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len); btrfs_csum_final(crc, result); if (verify) { if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) { printk("checksum verify failed on %llu wanted %X " "found %X\n", (unsigned long long)buf->start, *((int *)result), *((int *)buf)); return 1; } } else { write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE); } return 0; } struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { return find_extent_buffer(&root->fs_info->extent_cache, bytenr, blocksize); } struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr, blocksize); } int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { int ret; int dev_nr; struct extent_buffer *eb; u64 length; struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; eb = btrfs_find_tree_block(root, bytenr, blocksize); if (eb && btrfs_buffer_uptodate(eb, parent_transid)) { free_extent_buffer(eb); return 0; } dev_nr = 0; length = blocksize; ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, bytenr, &length, &multi, 0); BUG_ON(ret); device = multi->stripes[0].dev; device->total_ios++; blocksize = min(blocksize, (u32)(64 * 1024)); readahead(device->fd, multi->stripes[0].physical, blocksize); kfree(multi); return 0; } static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid) { int ret; if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 0; if (extent_buffer_uptodate(eb) && btrfs_header_generation(eb) == parent_transid) { ret = 0; goto out; } printk("parent transid verify failed on %llu wanted %llu found %llu\n", (unsigned long long)eb->start, (unsigned long long)parent_transid, (unsigned long long)btrfs_header_generation(eb)); ret = 1; out: clear_extent_buffer_uptodate(io_tree, eb); return ret; } struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { int ret; int dev_nr; struct extent_buffer *eb; u64 length; struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; int mirror_num = 0; int num_copies; eb = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!eb) return NULL; if (btrfs_buffer_uptodate(eb, parent_transid)) return eb; dev_nr = 0; length = blocksize; while (1) { ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, eb->start, &length, &multi, mirror_num); BUG_ON(ret); device = multi->stripes[0].dev; eb->fd = device->fd; device->total_ios++; eb->dev_bytenr = multi->stripes[0].physical; kfree(multi); ret = read_extent_from_disk(eb); if (ret == 0 && check_tree_block(root, eb) == 0 && csum_tree_block(root, eb, 1) == 0 && verify_parent_transid(eb->tree, eb, parent_transid) == 0) { btrfs_set_buffer_uptodate(eb); return eb; } num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, eb->start, eb->len); if (num_copies == 1) { break; } mirror_num++; if (mirror_num > num_copies) { break; } } free_extent_buffer(eb); return NULL; } int write_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *eb) { int ret; int dev_nr; u64 length; struct btrfs_multi_bio *multi = NULL; if (check_tree_block(root, eb)) BUG(); if (!btrfs_buffer_uptodate(eb, trans->transid)) BUG(); btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); csum_tree_block(root, eb, 0); dev_nr = 0; length = eb->len; ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE, eb->start, &length, &multi, 0); while(dev_nr < multi->num_stripes) { BUG_ON(ret); eb->fd = multi->stripes[dev_nr].dev->fd; eb->dev_bytenr = multi->stripes[dev_nr].physical; multi->stripes[dev_nr].dev->total_ios++; dev_nr++; ret = write_extent_to_disk(eb); BUG_ON(ret); } kfree(multi); return 0; } static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->commit_root = NULL; root->sectorsize = sectorsize; root->nodesize = nodesize; root->leafsize = leafsize; root->stripesize = stripesize; root->ref_cows = 0; root->track_dirty = 0; root->fs_info = fs_info; root->objectid = objectid; root->last_trans = 0; root->highest_inode = 0; root->last_inode_alloc = 0; INIT_LIST_HEAD(&root->dirty_list); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); root->root_key.objectid = objectid; return 0; } static int update_cowonly_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; u64 old_root_bytenr; struct btrfs_root *tree_root = root->fs_info->tree_root; btrfs_write_dirty_block_groups(trans, root); while(1) { old_root_bytenr = btrfs_root_bytenr(&root->root_item); if (old_root_bytenr == root->node->start) break; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_generation(&root->root_item, trans->transid); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_update_root(trans, tree_root, &root->root_key, &root->root_item); BUG_ON(ret); btrfs_write_dirty_block_groups(trans, root); } return 0; } static int commit_tree_roots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root; struct list_head *next; struct extent_buffer *eb; if (fs_info->readonly) return 0; eb = fs_info->tree_root->node; extent_buffer_get(eb); btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); free_extent_buffer(eb); while(!list_empty(&fs_info->dirty_cowonly_roots)) { next = fs_info->dirty_cowonly_roots.next; list_del_init(next); root = list_entry(next, struct btrfs_root, dirty_list); update_cowonly_root(trans, root); } return 0; } static int __commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { u64 start; u64 end; struct extent_buffer *eb; struct extent_io_tree *tree = &root->fs_info->extent_cache; int ret; while(1) { ret = find_first_extent_bit(tree, 0, &start, &end, EXTENT_DIRTY); if (ret) break; while(start <= end) { eb = find_first_extent_buffer(tree, start); BUG_ON(!eb || eb->start != start); ret = write_tree_block(trans, root, eb); BUG_ON(ret); start += eb->len; clear_extent_buffer_dirty(eb); free_extent_buffer(eb); } } return 0; } int btrfs_commit_transaction(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret = 0; struct btrfs_root *new_root = NULL; struct btrfs_fs_info *fs_info = root->fs_info; if (root->commit_root == root->node) goto commit_tree; new_root = malloc(sizeof(*new_root)); if (!new_root) return -ENOMEM; memcpy(new_root, root, sizeof(*new_root)); new_root->node = root->commit_root; root->commit_root = NULL; root->root_key.offset = trans->transid; btrfs_set_root_bytenr(&root->root_item, root->node->start); btrfs_set_root_generation(&root->root_item, root->root_key.offset); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_insert_root(trans, fs_info->tree_root, &root->root_key, &root->root_item); BUG_ON(ret); btrfs_set_root_refs(&new_root->root_item, 0); ret = btrfs_update_root(trans, root->fs_info->tree_root, &new_root->root_key, &new_root->root_item); BUG_ON(ret); ret = commit_tree_roots(trans, fs_info); BUG_ON(ret); ret = __commit_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_finish_extent_commit(trans, fs_info->extent_root, &fs_info->pinned_extents); btrfs_free_transaction(root, trans); fs_info->running_transaction = NULL; trans = btrfs_start_transaction(root, 1); ret = btrfs_drop_snapshot(trans, new_root); BUG_ON(ret); ret = btrfs_del_root(trans, fs_info->tree_root, &new_root->root_key); BUG_ON(ret); commit_tree: ret = commit_tree_roots(trans, fs_info); BUG_ON(ret); ret = __commit_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_finish_extent_commit(trans, fs_info->extent_root, &fs_info->pinned_extents); btrfs_free_transaction(root, trans); free_extent_buffer(root->commit_root); root->commit_root = NULL; fs_info->running_transaction = NULL; if (new_root) { free_extent_buffer(new_root->node); free(new_root); } return 0; } static int find_and_setup_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; u32 blocksize; u64 generation; __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); BUG_ON(ret); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); generation = btrfs_root_generation(&root->root_item); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); BUG_ON(!root->node); return 0; } int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { if (root->node) free_extent_buffer(root->node); if (root->commit_root) free_extent_buffer(root->commit_root); free(root); return 0; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path; struct extent_buffer *l; u64 generation; u32 blocksize; int ret = 0; root = malloc(sizeof(*root)); if (!root) return ERR_PTR(-ENOMEM); memset(root, 0, sizeof(*root)); if (location->offset == (u64)-1) { ret = find_and_setup_root(tree_root, fs_info, location->objectid, root); if (ret) { free(root); return ERR_PTR(ret); } goto insert; } __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, location->objectid); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret != 0) { if (ret > 0) ret = -ENOENT; goto out; } l = path->nodes[0]; read_extent_buffer(l, &root->root_item, btrfs_item_ptr_offset(l, path->slots[0]), sizeof(root->root_item)); memcpy(&root->root_key, location, sizeof(*location)); ret = 0; out: btrfs_release_path(root, path); btrfs_free_path(path); if (ret) { free(root); return ERR_PTR(ret); } generation = btrfs_root_generation(&root->root_item); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, generation); BUG_ON(!root->node); insert: root->ref_cows = 1; return root; } struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr, int writes) { int fp; struct btrfs_root *root; int flags = O_CREAT | O_RDWR; if (!writes) flags = O_RDONLY; fp = open(filename, flags, 0600); if (fp < 0) { return NULL; } root = open_ctree_fd(fp, filename, sb_bytenr, writes); close(fp); return root; } struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr, int writes) { u32 sectorsize; u32 nodesize; u32 leafsize; u32 blocksize; u32 stripesize; u64 generation; struct btrfs_root *root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *tree_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *extent_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *chunk_root = malloc(sizeof(struct btrfs_root)); struct btrfs_root *dev_root = malloc(sizeof(struct btrfs_root)); struct btrfs_fs_info *fs_info = malloc(sizeof(*fs_info)); int ret; struct btrfs_super_block *disk_super; struct btrfs_fs_devices *fs_devices = NULL; u64 total_devs; if (sb_bytenr == 0) sb_bytenr = BTRFS_SUPER_INFO_OFFSET; ret = btrfs_scan_one_device(fp, path, &fs_devices, &total_devs, sb_bytenr); if (ret) { fprintf(stderr, "No valid Btrfs found on %s\n", path); return NULL; } if (total_devs != 1) { ret = btrfs_scan_for_fsid(fs_devices, total_devs, 1); BUG_ON(ret); } memset(fs_info, 0, sizeof(*fs_info)); fs_info->fs_root = root; fs_info->tree_root = tree_root; fs_info->extent_root = extent_root; fs_info->chunk_root = chunk_root; fs_info->dev_root = dev_root; if (!writes) fs_info->readonly = 1; extent_io_tree_init(&fs_info->extent_cache); extent_io_tree_init(&fs_info->free_space_cache); extent_io_tree_init(&fs_info->block_group_cache); extent_io_tree_init(&fs_info->pinned_extents); extent_io_tree_init(&fs_info->pending_del); extent_io_tree_init(&fs_info->extent_ins); cache_tree_init(&fs_info->mapping_tree.cache_tree); mutex_init(&fs_info->fs_mutex); fs_info->fs_devices = fs_devices; INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); __setup_root(4096, 4096, 4096, 4096, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); if (writes) ret = btrfs_open_devices(fs_devices, O_RDWR); else ret = btrfs_open_devices(fs_devices, O_RDONLY); BUG_ON(ret); ret = btrfs_bootstrap_super_map(&fs_info->mapping_tree, fs_devices); BUG_ON(ret); fs_info->sb_buffer = btrfs_find_create_tree_block(tree_root, sb_bytenr, 4096); BUG_ON(!fs_info->sb_buffer); fs_info->sb_buffer->fd = fs_devices->latest_bdev; fs_info->sb_buffer->dev_bytenr = sb_bytenr; ret = read_extent_from_disk(fs_info->sb_buffer); BUG_ON(ret); btrfs_set_buffer_uptodate(fs_info->sb_buffer); read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0, sizeof(fs_info->super_copy)); read_extent_buffer(fs_info->sb_buffer, fs_info->fsid, (unsigned long)btrfs_super_fsid(fs_info->sb_buffer), BTRFS_FSID_SIZE); disk_super = &fs_info->super_copy; if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, sizeof(disk_super->magic))) { printk("No valid btrfs found\n"); BUG_ON(1); } nodesize = btrfs_super_nodesize(disk_super); leafsize = btrfs_super_leafsize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = btrfs_super_stripesize(disk_super); tree_root->nodesize = nodesize; tree_root->leafsize = leafsize; tree_root->sectorsize = sectorsize; tree_root->stripesize = stripesize; ret = btrfs_read_super_device(tree_root, fs_info->sb_buffer); BUG_ON(ret); ret = btrfs_read_sys_array(tree_root); BUG_ON(ret); blocksize = btrfs_level_size(tree_root, btrfs_super_chunk_root_level(disk_super)); generation = btrfs_super_chunk_root_generation(disk_super); __setup_root(nodesize, leafsize, sectorsize, stripesize, chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); chunk_root->node = read_tree_block(chunk_root, btrfs_super_chunk_root(disk_super), blocksize, generation); BUG_ON(!chunk_root->node); read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); if (!(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)) { ret = btrfs_read_chunk_tree(chunk_root); BUG_ON(ret); } blocksize = btrfs_level_size(tree_root, btrfs_super_root_level(disk_super)); generation = btrfs_super_generation(disk_super); tree_root->node = read_tree_block(tree_root, btrfs_super_root(disk_super), blocksize, generation); BUG_ON(!tree_root->node); ret = find_and_setup_root(tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); BUG_ON(ret); extent_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_DEV_TREE_OBJECTID, dev_root); BUG_ON(ret); dev_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_FS_TREE_OBJECTID, root); BUG_ON(ret); root->ref_cows = 1; fs_info->generation = btrfs_super_generation(disk_super) + 1; btrfs_read_block_groups(root); fs_info->data_alloc_profile = (u64)-1; fs_info->metadata_alloc_profile = (u64)-1; fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; return root; } int write_all_supers(struct btrfs_root *root) { struct list_head *cur; struct list_head *head = &root->fs_info->fs_devices->devices; struct btrfs_device *dev; struct extent_buffer *sb; struct btrfs_dev_item *dev_item; int ret; sb = root->fs_info->sb_buffer; dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, dev_item); list_for_each(cur, head) { dev = list_entry(cur, struct btrfs_device, dev_list); if (!dev->writeable) continue; btrfs_set_device_generation(sb, dev_item, 0); btrfs_set_device_type(sb, dev_item, dev->type); btrfs_set_device_id(sb, dev_item, dev->devid); btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes); btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used); btrfs_set_device_io_align(sb, dev_item, dev->io_align); btrfs_set_device_io_width(sb, dev_item, dev->io_width); btrfs_set_device_sector_size(sb, dev_item, dev->sector_size); write_extent_buffer(sb, dev->uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); write_extent_buffer(sb, dev->fs_devices->fsid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); sb->fd = dev->fd; sb->dev_bytenr = sb->start; btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN); csum_tree_block(root, sb, 0); ret = write_extent_to_disk(sb); BUG_ON(ret); } return 0; } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; struct btrfs_root *tree_root = root->fs_info->tree_root; struct btrfs_root *chunk_root = root->fs_info->chunk_root; if (root->fs_info->readonly) return 0; btrfs_set_super_generation(&root->fs_info->super_copy, trans->transid); btrfs_set_super_root(&root->fs_info->super_copy, tree_root->node->start); btrfs_set_super_root_level(&root->fs_info->super_copy, btrfs_header_level(tree_root->node)); btrfs_set_super_chunk_root(&root->fs_info->super_copy, chunk_root->node->start); btrfs_set_super_chunk_root_level(&root->fs_info->super_copy, btrfs_header_level(chunk_root->node)); btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy, btrfs_header_generation(chunk_root->node)); write_extent_buffer(root->fs_info->sb_buffer, &root->fs_info->super_copy, 0, sizeof(root->fs_info->super_copy)); ret = write_all_supers(root); if (ret) fprintf(stderr, "failed to write new super block err %d\n", ret); return ret; } static int close_all_devices(struct btrfs_fs_info *fs_info) { struct list_head *list; struct list_head *next; struct btrfs_device *device; return 0; list = &fs_info->fs_devices->devices; list_for_each(next, list) { device = list_entry(next, struct btrfs_device, dev_list); close(device->fd); } return 0; } int close_ctree(struct btrfs_root *root) { int ret; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); trans = btrfs_start_transaction(root, 1); ret = commit_tree_roots(trans, root->fs_info); BUG_ON(ret); ret = __commit_transaction(trans, root); BUG_ON(ret); write_ctree_super(trans, root); btrfs_free_transaction(root, trans); btrfs_free_block_groups(root->fs_info); if (root->node) free_extent_buffer(root->node); if (root->fs_info->extent_root->node) free_extent_buffer(root->fs_info->extent_root->node); if (root->fs_info->tree_root->node) free_extent_buffer(root->fs_info->tree_root->node); free_extent_buffer(root->commit_root); free_extent_buffer(root->fs_info->sb_buffer); if (root->fs_info->chunk_root->node); free_extent_buffer(root->fs_info->chunk_root->node); if (root->fs_info->dev_root->node); free_extent_buffer(root->fs_info->dev_root->node); close_all_devices(root->fs_info); extent_io_tree_cleanup(&fs_info->extent_cache); extent_io_tree_cleanup(&fs_info->free_space_cache); extent_io_tree_cleanup(&fs_info->block_group_cache); extent_io_tree_cleanup(&fs_info->pinned_extents); extent_io_tree_cleanup(&fs_info->pending_del); extent_io_tree_cleanup(&fs_info->extent_ins); free(fs_info->tree_root); free(fs_info->extent_root); free(fs_info->fs_root); free(fs_info->chunk_root); free(fs_info->dev_root); free(fs_info); return 0; } int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *eb) { return clear_extent_buffer_dirty(eb); } int wait_on_tree_block_writeback(struct btrfs_root *root, struct extent_buffer *eb) { return 0; } void btrfs_mark_buffer_dirty(struct extent_buffer *eb) { set_extent_buffer_dirty(eb); } int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) { int ret; ret = extent_buffer_uptodate(buf); if (!ret) return ret; ret = verify_parent_transid(buf->tree, buf, parent_transid); return !ret; } int btrfs_set_buffer_uptodate(struct extent_buffer *eb) { return set_extent_buffer_uptodate(eb); }