// SPDX-License-Identifier: GPL-2.0 #include "kerncompat.h" #include "kernel-lib/trace.h" #include "kernel-shared/messages.h" #include "kernel-shared/ctree.h" #include "kernel-shared/async-thread.h" #include "kernel-shared/extent-io-tree.h" #include "kernel-shared/misc.h" #include "kernel-shared/ulist.h" #include "common/internal.h" /* * MODIFIED: * - temporarily define this until we can sync everything. */ struct extent_changeset { u64 bytes_changed; struct ulist range_changed; }; /* * MODIFIED: * - Need to set this to NULL so we init this when we init an extent_io_tree * for the first time. */ static struct kmem_cache *extent_state_cache = NULL; static inline bool extent_state_in_tree(const struct extent_state *state) { return !RB_EMPTY_NODE(&state->rb_node); } #ifdef CONFIG_BTRFS_DEBUG static LIST_HEAD(states); static DEFINE_SPINLOCK(leak_lock); static inline void btrfs_leak_debug_add_state(struct extent_state *state) { unsigned long flags; spin_lock_irqsave(&leak_lock, flags); list_add(&state->leak_list, &states); spin_unlock_irqrestore(&leak_lock, flags); } static inline void btrfs_leak_debug_del_state(struct extent_state *state) { unsigned long flags; spin_lock_irqsave(&leak_lock, flags); list_del(&state->leak_list); spin_unlock_irqrestore(&leak_lock, flags); } static inline void btrfs_extent_state_leak_debug_check(void) { struct extent_state *state; while (!list_empty(&states)) { state = list_entry(states.next, struct extent_state, leak_list); pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", state->start, state->end, state->state, extent_state_in_tree(state), refcount_read(&state->refs)); list_del(&state->leak_list); kmem_cache_free(extent_state_cache, state); } } #define btrfs_debug_check_extent_io_range(tree, start, end) \ __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) static inline void __btrfs_debug_check_extent_io_range(const char *caller, struct extent_io_tree *tree, u64 start, u64 end) { struct btrfs_inode *inode = tree->inode; u64 isize; if (!inode) return; isize = i_size_read(&inode->vfs_inode); if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { btrfs_debug_rl(inode->root->fs_info, "%s: ino %llu isize %llu odd range [%llu,%llu]", caller, btrfs_ino(inode), isize, start, end); } } #else #define btrfs_leak_debug_add_state(state) do {} while (0) #define btrfs_leak_debug_del_state(state) do {} while (0) #define btrfs_extent_state_leak_debug_check() do {} while (0) #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) #endif /* * For the file_extent_tree, we want to hold the inode lock when we lookup and * update the disk_i_size, but lockdep will complain because our io_tree we hold * the tree lock and get the inode lock when setting delalloc. These two things * are unrelated, so make a class for the file_extent_tree so we don't get the * two locking patterns mixed up. */ static struct lock_class_key file_extent_tree_class; struct tree_entry { u64 start; u64 end; struct rb_node rb_node; }; /* * MODIFIED: * - We use this as an entry point for initializing the kmem_cache. */ void extent_io_tree_init(struct btrfs_fs_info *fs_info, struct extent_io_tree *tree, unsigned int owner) { extent_state_init_cachep(); tree->fs_info = fs_info; tree->state = RB_ROOT; spin_lock_init(&tree->lock); tree->inode = NULL; tree->owner = owner; if (owner == IO_TREE_INODE_FILE_EXTENT) lockdep_set_class(&tree->lock, &file_extent_tree_class); } void extent_io_tree_release(struct extent_io_tree *tree) { spin_lock(&tree->lock); /* * Do a single barrier for the waitqueue_active check here, the state * of the waitqueue should not change once extent_io_tree_release is * called. */ smp_mb(); while (!RB_EMPTY_ROOT(&tree->state)) { struct rb_node *node; struct extent_state *state; node = rb_first(&tree->state); state = rb_entry(node, struct extent_state, rb_node); rb_erase(&state->rb_node, &tree->state); RB_CLEAR_NODE(&state->rb_node); /* * btree io trees aren't supposed to have tasks waiting for * changes in the flags of extent states ever. */ ASSERT(!waitqueue_active(&state->wq)); free_extent_state(state); cond_resched_lock(&tree->lock); } spin_unlock(&tree->lock); } static struct extent_state *alloc_extent_state(gfp_t mask) { struct extent_state *state; /* * The given mask might be not appropriate for the slab allocator, * drop the unsupported bits */ mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); state = kmem_cache_alloc(extent_state_cache, mask); if (!state) return state; state->state = 0; RB_CLEAR_NODE(&state->rb_node); btrfs_leak_debug_add_state(state); refcount_set(&state->refs, 1); init_waitqueue_head(&state->wq); trace_alloc_extent_state(state, mask, _RET_IP_); return state; } static struct extent_state *alloc_extent_state_atomic(struct extent_state *prealloc) { if (!prealloc) prealloc = alloc_extent_state(GFP_ATOMIC); return prealloc; } void free_extent_state(struct extent_state *state) { if (!state) return; if (refcount_dec_and_test(&state->refs)) { WARN_ON(extent_state_in_tree(state)); btrfs_leak_debug_del_state(state); trace_free_extent_state(state, _RET_IP_); kmem_cache_free(extent_state_cache, state); } } static int add_extent_changeset(struct extent_state *state, u32 bits, struct extent_changeset *changeset, int set) { int ret; if (!changeset) return 0; if (set && (state->state & bits) == bits) return 0; if (!set && (state->state & bits) == 0) return 0; changeset->bytes_changed += state->end - state->start + 1; ret = ulist_add(&changeset->range_changed, state->start, state->end, GFP_ATOMIC); return ret; } static inline struct extent_state *next_state(struct extent_state *state) { struct rb_node *next = rb_next(&state->rb_node); if (next) return rb_entry(next, struct extent_state, rb_node); else return NULL; } static inline struct extent_state *prev_state(struct extent_state *state) { struct rb_node *next = rb_prev(&state->rb_node); if (next) return rb_entry(next, struct extent_state, rb_node); else return NULL; } /* * Search @tree for an entry that contains @offset. Such entry would have * entry->start <= offset && entry->end >= offset. * * @tree: the tree to search * @offset: offset that should fall within an entry in @tree * @node_ret: pointer where new node should be anchored (used when inserting an * entry in the tree) * @parent_ret: points to entry which would have been the parent of the entry, * containing @offset * * Return a pointer to the entry that contains @offset byte address and don't change * @node_ret and @parent_ret. * * If no such entry exists, return pointer to entry that ends before @offset * and fill parameters @node_ret and @parent_ret, ie. does not return NULL. */ static inline struct extent_state *tree_search_for_insert(struct extent_io_tree *tree, u64 offset, struct rb_node ***node_ret, struct rb_node **parent_ret) { struct rb_root *root = &tree->state; struct rb_node **node = &root->rb_node; struct rb_node *prev = NULL; struct extent_state *entry = NULL; while (*node) { prev = *node; entry = rb_entry(prev, struct extent_state, rb_node); if (offset < entry->start) node = &(*node)->rb_left; else if (offset > entry->end) node = &(*node)->rb_right; else return entry; } if (node_ret) *node_ret = node; if (parent_ret) *parent_ret = prev; /* Search neighbors until we find the first one past the end */ while (entry && offset > entry->end) entry = next_state(entry); return entry; } /* * Search offset in the tree or fill neighbor rbtree node pointers. * * @tree: the tree to search * @offset: offset that should fall within an entry in @tree * @next_ret: pointer to the first entry whose range ends after @offset * @prev_ret: pointer to the first entry whose range begins before @offset * * Return a pointer to the entry that contains @offset byte address. If no * such entry exists, then return NULL and fill @prev_ret and @next_ret. * Otherwise return the found entry and other pointers are left untouched. */ static struct extent_state *tree_search_prev_next(struct extent_io_tree *tree, u64 offset, struct extent_state **prev_ret, struct extent_state **next_ret) { struct rb_root *root = &tree->state; struct rb_node **node = &root->rb_node; struct extent_state *orig_prev; struct extent_state *entry = NULL; ASSERT(prev_ret); ASSERT(next_ret); while (*node) { entry = rb_entry(*node, struct extent_state, rb_node); if (offset < entry->start) node = &(*node)->rb_left; else if (offset > entry->end) node = &(*node)->rb_right; else return entry; } orig_prev = entry; while (entry && offset > entry->end) entry = next_state(entry); *next_ret = entry; entry = orig_prev; while (entry && offset < entry->start) entry = prev_state(entry); *prev_ret = entry; return NULL; } /* * Inexact rb-tree search, return the next entry if @offset is not found */ static inline struct extent_state *tree_search(struct extent_io_tree *tree, u64 offset) { return tree_search_for_insert(tree, offset, NULL, NULL); } static void extent_io_tree_panic(struct extent_io_tree *tree, int err) { btrfs_panic(tree->fs_info, err, "locking error: extent tree was modified by another thread while locked"); } /* * Utility function to look for merge candidates inside a given range. Any * extents with matching state are merged together into a single extent in the * tree. Extents with EXTENT_IO in their state field are not merged because * the end_io handlers need to be able to do operations on them without * sleeping (or doing allocations/splits). * * This should be called with the tree lock held. */ static void merge_state(struct extent_io_tree *tree, struct extent_state *state) { struct extent_state *other; if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) return; other = prev_state(state); if (other && other->end == state->start - 1 && other->state == state->state) { if (tree->inode) btrfs_merge_delalloc_extent(tree->inode, state, other); state->start = other->start; rb_erase(&other->rb_node, &tree->state); RB_CLEAR_NODE(&other->rb_node); free_extent_state(other); } other = next_state(state); if (other && other->start == state->end + 1 && other->state == state->state) { if (tree->inode) btrfs_merge_delalloc_extent(tree->inode, state, other); state->end = other->end; rb_erase(&other->rb_node, &tree->state); RB_CLEAR_NODE(&other->rb_node); free_extent_state(other); } } static void set_state_bits(struct extent_io_tree *tree, struct extent_state *state, u32 bits, struct extent_changeset *changeset) { u32 bits_to_set = bits & ~EXTENT_CTLBITS; int ret; if (tree->inode) btrfs_set_delalloc_extent(tree->inode, state, bits); ret = add_extent_changeset(state, bits_to_set, changeset, 1); BUG_ON(ret < 0); state->state |= bits_to_set; } /* * Insert an extent_state struct into the tree. 'bits' are set on the * struct before it is inserted. * * This may return -EEXIST if the extent is already there, in which case the * state struct is freed. * * The tree lock is not taken internally. This is a utility function and * probably isn't what you want to call (see set/clear_extent_bit). */ static int insert_state(struct extent_io_tree *tree, struct extent_state *state, u32 bits, struct extent_changeset *changeset) { struct rb_node **node; struct rb_node *parent = NULL; const u64 end = state->end; set_state_bits(tree, state, bits, changeset); node = &tree->state.rb_node; while (*node) { struct extent_state *entry; parent = *node; entry = rb_entry(parent, struct extent_state, rb_node); if (end < entry->start) { node = &(*node)->rb_left; } else if (end > entry->end) { node = &(*node)->rb_right; } else { btrfs_err(tree->fs_info, "found node %llu %llu on insert of %llu %llu", entry->start, entry->end, state->start, end); return -EEXIST; } } rb_link_node(&state->rb_node, parent, node); rb_insert_color(&state->rb_node, &tree->state); merge_state(tree, state); return 0; } /* * Insert state to @tree to the location given by @node and @parent. */ static void insert_state_fast(struct extent_io_tree *tree, struct extent_state *state, struct rb_node **node, struct rb_node *parent, unsigned bits, struct extent_changeset *changeset) { set_state_bits(tree, state, bits, changeset); rb_link_node(&state->rb_node, parent, node); rb_insert_color(&state->rb_node, &tree->state); merge_state(tree, state); } /* * Split a given extent state struct in two, inserting the preallocated * struct 'prealloc' as the newly created second half. 'split' indicates an * offset inside 'orig' where it should be split. * * Before calling, * the tree has 'orig' at [orig->start, orig->end]. After calling, there * are two extent state structs in the tree: * prealloc: [orig->start, split - 1] * orig: [ split, orig->end ] * * The tree locks are not taken by this function. They need to be held * by the caller. */ static int split_state(struct extent_io_tree *tree, struct extent_state *orig, struct extent_state *prealloc, u64 split) { struct rb_node *parent = NULL; struct rb_node **node; if (tree->inode) btrfs_split_delalloc_extent(tree->inode, orig, split); prealloc->start = orig->start; prealloc->end = split - 1; prealloc->state = orig->state; orig->start = split; parent = &orig->rb_node; node = &parent; while (*node) { struct extent_state *entry; parent = *node; entry = rb_entry(parent, struct extent_state, rb_node); if (prealloc->end < entry->start) { node = &(*node)->rb_left; } else if (prealloc->end > entry->end) { node = &(*node)->rb_right; } else { free_extent_state(prealloc); return -EEXIST; } } rb_link_node(&prealloc->rb_node, parent, node); rb_insert_color(&prealloc->rb_node, &tree->state); return 0; } /* * Utility function to clear some bits in an extent state struct. It will * optionally wake up anyone waiting on this state (wake == 1). * * If no bits are set on the state struct after clearing things, the * struct is freed and removed from the tree */ static struct extent_state *clear_state_bit(struct extent_io_tree *tree, struct extent_state *state, u32 bits, int wake, struct extent_changeset *changeset) { struct extent_state *next; u32 bits_to_clear = bits & ~EXTENT_CTLBITS; int ret; if (tree->inode) btrfs_clear_delalloc_extent(tree->inode, state, bits); ret = add_extent_changeset(state, bits_to_clear, changeset, 0); BUG_ON(ret < 0); state->state &= ~bits_to_clear; if (wake) wake_up(&state->wq); if (state->state == 0) { next = next_state(state); if (extent_state_in_tree(state)) { rb_erase(&state->rb_node, &tree->state); RB_CLEAR_NODE(&state->rb_node); free_extent_state(state); } else { WARN_ON(1); } } else { merge_state(tree, state); next = next_state(state); } return next; } /* * Clear some bits on a range in the tree. This may require splitting or * inserting elements in the tree, so the gfp mask is used to indicate which * allocations or sleeping are allowed. * * Pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove the given * range from the tree regardless of state (ie for truncate). * * The range [start, end] is inclusive. * * This takes the tree lock, and returns 0 on success and < 0 on error. */ int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state, gfp_t mask, struct extent_changeset *changeset) { struct extent_state *state; struct extent_state *cached; struct extent_state *prealloc = NULL; u64 last_end; int err; int clear = 0; int wake; int delete = (bits & EXTENT_CLEAR_ALL_BITS); btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); if (delete) bits |= ~EXTENT_CTLBITS; if (bits & EXTENT_DELALLOC) bits |= EXTENT_NORESERVE; wake = (bits & EXTENT_LOCKED) ? 1 : 0; if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) clear = 1; again: if (!prealloc) { /* * Don't care for allocation failure here because we might end * up not needing the pre-allocated extent state at all, which * is the case if we only have in the tree extent states that * cover our input range and don't cover too any other range. * If we end up needing a new extent state we allocate it later. */ prealloc = alloc_extent_state(mask); } spin_lock(&tree->lock); if (cached_state) { cached = *cached_state; if (clear) { *cached_state = NULL; cached_state = NULL; } if (cached && extent_state_in_tree(cached) && cached->start <= start && cached->end > start) { if (clear) refcount_dec(&cached->refs); state = cached; goto hit_next; } if (clear) free_extent_state(cached); } /* This search will find the extents that end after our range starts. */ state = tree_search(tree, start); if (!state) goto out; hit_next: if (state->start > end) goto out; WARN_ON(state->end < start); last_end = state->end; /* The state doesn't have the wanted bits, go ahead. */ if (!(state->state & bits)) { state = next_state(state); goto next; } /* * | ---- desired range ---- | * | state | or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we clear the desired bit * on it. */ if (state->start < start) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, start); if (err) extent_io_tree_panic(tree, err); prealloc = NULL; if (err) goto out; if (state->end <= end) { state = clear_state_bit(tree, state, bits, wake, changeset); goto next; } goto search_again; } /* * | ---- desired range ---- | * | state | * We need to split the extent, and clear the bit on the first half. */ if (state->start <= end && state->end > end) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, end + 1); if (err) extent_io_tree_panic(tree, err); if (wake) wake_up(&state->wq); clear_state_bit(tree, prealloc, bits, wake, changeset); prealloc = NULL; goto out; } state = clear_state_bit(tree, state, bits, wake, changeset); next: if (last_end == (u64)-1) goto out; start = last_end + 1; if (start <= end && state && !need_resched()) goto hit_next; search_again: if (start > end) goto out; spin_unlock(&tree->lock); if (gfpflags_allow_blocking(mask)) cond_resched(); goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return 0; } static void wait_on_state(struct extent_io_tree *tree, struct extent_state *state) __releases(tree->lock) __acquires(tree->lock) { DEFINE_WAIT(wait); prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&tree->lock); schedule(); spin_lock(&tree->lock); finish_wait(&state->wq, &wait); } /* * Wait for one or more bits to clear on a range in the state tree. * The range [start, end] is inclusive. * The tree lock is taken by this function */ void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state) { struct extent_state *state; btrfs_debug_check_extent_io_range(tree, start, end); spin_lock(&tree->lock); again: /* * Maintain cached_state, as we may not remove it from the tree if there * are more bits than the bits we're waiting on set on this state. */ if (cached_state && *cached_state) { state = *cached_state; if (extent_state_in_tree(state) && state->start <= start && start < state->end) goto process_node; } while (1) { /* * This search will find all the extents that end after our * range starts. */ state = tree_search(tree, start); process_node: if (!state) break; if (state->start > end) goto out; if (state->state & bits) { start = state->start; refcount_inc(&state->refs); wait_on_state(tree, state); free_extent_state(state); goto again; } start = state->end + 1; if (start > end) break; if (!cond_resched_lock(&tree->lock)) { state = next_state(state); goto process_node; } } out: /* This state is no longer useful, clear it and free it up. */ if (cached_state && *cached_state) { state = *cached_state; *cached_state = NULL; free_extent_state(state); } spin_unlock(&tree->lock); } static void cache_state_if_flags(struct extent_state *state, struct extent_state **cached_ptr, unsigned flags) { if (cached_ptr && !(*cached_ptr)) { if (!flags || (state->state & flags)) { *cached_ptr = state; refcount_inc(&state->refs); } } } static void cache_state(struct extent_state *state, struct extent_state **cached_ptr) { return cache_state_if_flags(state, cached_ptr, EXTENT_LOCKED | EXTENT_BOUNDARY); } /* * Find the first state struct with 'bits' set after 'start', and return it. * tree->lock must be held. NULL will returned if nothing was found after * 'start'. */ static struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) { struct extent_state *state; /* * This search will find all the extents that end after our range * starts. */ state = tree_search(tree, start); while (state) { if (state->end >= start && (state->state & bits)) return state; state = next_state(state); } return NULL; } /* * Find the first offset in the io tree with one or more @bits set. * * Note: If there are multiple bits set in @bits, any of them will match. * * Return 0 if we find something, and update @start_ret and @end_ret. * Return 1 if we found nothing. */ int find_first_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits, struct extent_state **cached_state) { struct extent_state *state; int ret = 1; spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->end == start - 1 && extent_state_in_tree(state)) { while ((state = next_state(state)) != NULL) { if (state->state & bits) goto got_it; } free_extent_state(*cached_state); *cached_state = NULL; goto out; } free_extent_state(*cached_state); *cached_state = NULL; } state = find_first_extent_bit_state(tree, start, bits); got_it: if (state) { cache_state_if_flags(state, cached_state, 0); *start_ret = state->start; *end_ret = state->end; ret = 0; } out: spin_unlock(&tree->lock); return ret; } /* * Find a contiguous area of bits * * @tree: io tree to check * @start: offset to start the search from * @start_ret: the first offset we found with the bits set * @end_ret: the final contiguous range of the bits that were set * @bits: bits to look for * * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges * to set bits appropriately, and then merge them again. During this time it * will drop the tree->lock, so use this helper if you want to find the actual * contiguous area for given bits. We will search to the first bit we find, and * then walk down the tree until we find a non-contiguous area. The area * returned will be the full contiguous area with the bits set. */ int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits) { struct extent_state *state; int ret = 1; spin_lock(&tree->lock); state = find_first_extent_bit_state(tree, start, bits); if (state) { *start_ret = state->start; *end_ret = state->end; while ((state = next_state(state)) != NULL) { if (state->start > (*end_ret + 1)) break; *end_ret = state->end; } ret = 0; } spin_unlock(&tree->lock); return ret; } /* * Find a contiguous range of bytes in the file marked as delalloc, not more * than 'max_bytes'. start and end are used to return the range, * * True is returned if we find something, false if nothing was in the tree. */ bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, u64 *end, u64 max_bytes, struct extent_state **cached_state) { struct extent_state *state; u64 cur_start = *start; bool found = false; u64 total_bytes = 0; spin_lock(&tree->lock); /* * This search will find all the extents that end after our range * starts. */ state = tree_search(tree, cur_start); if (!state) { *end = (u64)-1; goto out; } while (state) { if (found && (state->start != cur_start || (state->state & EXTENT_BOUNDARY))) { goto out; } if (!(state->state & EXTENT_DELALLOC)) { if (!found) *end = state->end; goto out; } if (!found) { *start = state->start; *cached_state = state; refcount_inc(&state->refs); } found = true; *end = state->end; cur_start = state->end + 1; total_bytes += state->end - state->start + 1; if (total_bytes >= max_bytes) break; state = next_state(state); } out: spin_unlock(&tree->lock); return found; } /* * Set some bits on a range in the tree. This may require allocations or * sleeping, so the gfp mask is used to indicate what is allowed. * * If any of the exclusive bits are set, this will fail with -EEXIST if some * part of the range already has the desired bits set. The extent_state of the * existing range is returned in failed_state in this case, and the start of the * existing range is returned in failed_start. failed_state is used as an * optimization for wait_extent_bit, failed_start must be used as the source of * truth as failed_state may have changed since we returned. * * [start, end] is inclusive This takes the tree lock. */ static int __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, u64 *failed_start, struct extent_state **failed_state, struct extent_state **cached_state, struct extent_changeset *changeset, gfp_t mask) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node **p = NULL; struct rb_node *parent = NULL; int err = 0; u64 last_start; u64 last_end; u32 exclusive_bits = (bits & EXTENT_LOCKED); btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); if (exclusive_bits) ASSERT(failed_start); else ASSERT(failed_start == NULL && failed_state == NULL); again: if (!prealloc) { /* * Don't care for allocation failure here because we might end * up not needing the pre-allocated extent state at all, which * is the case if we only have in the tree extent states that * cover our input range and don't cover too any other range. * If we end up needing a new extent state we allocate it later. */ prealloc = alloc_extent_state(mask); } spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->start <= start && state->end > start && extent_state_in_tree(state)) goto hit_next; } /* * This search will find all the extents that end after our range * starts. */ state = tree_search_for_insert(tree, start, &p, &parent); if (!state) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; prealloc->start = start; prealloc->end = end; insert_state_fast(tree, prealloc, p, parent, bits, changeset); cache_state(prealloc, cached_state); prealloc = NULL; goto out; } hit_next: last_start = state->start; last_end = state->end; /* * | ---- desired range ---- | * | state | * * Just lock what we found and keep going */ if (state->start == start && state->end <= end) { if (state->state & exclusive_bits) { *failed_start = state->start; cache_state(state, failed_state); err = -EEXIST; goto out; } set_state_bits(tree, state, bits, changeset); cache_state(state, cached_state); merge_state(tree, state); if (last_end == (u64)-1) goto out; start = last_end + 1; state = next_state(state); if (start < end && state && state->start == start && !need_resched()) goto hit_next; goto search_again; } /* * | ---- desired range ---- | * | state | * or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we set the desired bit * on it. */ if (state->start < start) { if (state->state & exclusive_bits) { *failed_start = start; cache_state(state, failed_state); err = -EEXIST; goto out; } /* * If this extent already has all the bits we want set, then * skip it, not necessary to split it or do anything with it. */ if ((state->state & bits) == bits) { start = state->end + 1; cache_state(state, cached_state); goto search_again; } prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, start); if (err) extent_io_tree_panic(tree, err); prealloc = NULL; if (err) goto out; if (state->end <= end) { set_state_bits(tree, state, bits, changeset); cache_state(state, cached_state); merge_state(tree, state); if (last_end == (u64)-1) goto out; start = last_end + 1; state = next_state(state); if (start < end && state && state->start == start && !need_resched()) goto hit_next; } goto search_again; } /* * | ---- desired range ---- | * | state | or | state | * * There's a hole, we need to insert something in it and ignore the * extent we found. */ if (state->start > start) { u64 this_end; if (end < last_start) this_end = end; else this_end = last_start - 1; prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; /* * Avoid to free 'prealloc' if it can be merged with the later * extent. */ prealloc->start = start; prealloc->end = this_end; err = insert_state(tree, prealloc, bits, changeset); if (err) extent_io_tree_panic(tree, err); cache_state(prealloc, cached_state); prealloc = NULL; start = this_end + 1; goto search_again; } /* * | ---- desired range ---- | * | state | * * We need to split the extent, and set the bit on the first half */ if (state->start <= end && state->end > end) { if (state->state & exclusive_bits) { *failed_start = start; cache_state(state, failed_state); err = -EEXIST; goto out; } prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) goto search_again; err = split_state(tree, state, prealloc, end + 1); if (err) extent_io_tree_panic(tree, err); set_state_bits(tree, prealloc, bits, changeset); cache_state(prealloc, cached_state); merge_state(tree, prealloc); prealloc = NULL; goto out; } search_again: if (start > end) goto out; spin_unlock(&tree->lock); if (gfpflags_allow_blocking(mask)) cond_resched(); goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return err; } int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_state **cached_state, gfp_t mask) { return __set_extent_bit(tree, start, end, bits, NULL, NULL, cached_state, NULL, mask); } /* * Convert all bits in a given range from one bit to another * * @tree: the io tree to search * @start: the start offset in bytes * @end: the end offset in bytes (inclusive) * @bits: the bits to set in this range * @clear_bits: the bits to clear in this range * @cached_state: state that we're going to cache * * This will go through and set bits for the given range. If any states exist * already in this range they are set with the given bit and cleared of the * clear_bits. This is only meant to be used by things that are mergeable, ie. * converting from say DELALLOC to DIRTY. This is not meant to be used with * boundary bits like LOCK. * * All allocations are done with GFP_NOFS. */ int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, u32 clear_bits, struct extent_state **cached_state) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node **p = NULL; struct rb_node *parent = NULL; int err = 0; u64 last_start; u64 last_end; bool first_iteration = true; btrfs_debug_check_extent_io_range(tree, start, end); trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, clear_bits); again: if (!prealloc) { /* * Best effort, don't worry if extent state allocation fails * here for the first iteration. We might have a cached state * that matches exactly the target range, in which case no * extent state allocations are needed. We'll only know this * after locking the tree. */ prealloc = alloc_extent_state(GFP_NOFS); if (!prealloc && !first_iteration) return -ENOMEM; } spin_lock(&tree->lock); if (cached_state && *cached_state) { state = *cached_state; if (state->start <= start && state->end > start && extent_state_in_tree(state)) goto hit_next; } /* * This search will find all the extents that end after our range * starts. */ state = tree_search_for_insert(tree, start, &p, &parent); if (!state) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { err = -ENOMEM; goto out; } prealloc->start = start; prealloc->end = end; insert_state_fast(tree, prealloc, p, parent, bits, NULL); cache_state(prealloc, cached_state); prealloc = NULL; goto out; } hit_next: last_start = state->start; last_end = state->end; /* * | ---- desired range ---- | * | state | * * Just lock what we found and keep going. */ if (state->start == start && state->end <= end) { set_state_bits(tree, state, bits, NULL); cache_state(state, cached_state); state = clear_state_bit(tree, state, clear_bits, 0, NULL); if (last_end == (u64)-1) goto out; start = last_end + 1; if (start < end && state && state->start == start && !need_resched()) goto hit_next; goto search_again; } /* * | ---- desired range ---- | * | state | * or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on second * half. * * If the extent we found extends past our range, we just split and * search again. It'll get split again the next time though. * * If the extent we found is inside our range, we set the desired bit * on it. */ if (state->start < start) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { err = -ENOMEM; goto out; } err = split_state(tree, state, prealloc, start); if (err) extent_io_tree_panic(tree, err); prealloc = NULL; if (err) goto out; if (state->end <= end) { set_state_bits(tree, state, bits, NULL); cache_state(state, cached_state); state = clear_state_bit(tree, state, clear_bits, 0, NULL); if (last_end == (u64)-1) goto out; start = last_end + 1; if (start < end && state && state->start == start && !need_resched()) goto hit_next; } goto search_again; } /* * | ---- desired range ---- | * | state | or | state | * * There's a hole, we need to insert something in it and ignore the * extent we found. */ if (state->start > start) { u64 this_end; if (end < last_start) this_end = end; else this_end = last_start - 1; prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { err = -ENOMEM; goto out; } /* * Avoid to free 'prealloc' if it can be merged with the later * extent. */ prealloc->start = start; prealloc->end = this_end; err = insert_state(tree, prealloc, bits, NULL); if (err) extent_io_tree_panic(tree, err); cache_state(prealloc, cached_state); prealloc = NULL; start = this_end + 1; goto search_again; } /* * | ---- desired range ---- | * | state | * * We need to split the extent, and set the bit on the first half. */ if (state->start <= end && state->end > end) { prealloc = alloc_extent_state_atomic(prealloc); if (!prealloc) { err = -ENOMEM; goto out; } err = split_state(tree, state, prealloc, end + 1); if (err) extent_io_tree_panic(tree, err); set_state_bits(tree, prealloc, bits, NULL); cache_state(prealloc, cached_state); clear_state_bit(tree, prealloc, clear_bits, 0, NULL); prealloc = NULL; goto out; } search_again: if (start > end) goto out; spin_unlock(&tree->lock); cond_resched(); first_iteration = false; goto again; out: spin_unlock(&tree->lock); if (prealloc) free_extent_state(prealloc); return err; } /* * Find the first range that has @bits not set. This range could start before * @start. * * @tree: the tree to search * @start: offset at/after which the found extent should start * @start_ret: records the beginning of the range * @end_ret: records the end of the range (inclusive) * @bits: the set of bits which must be unset * * Since unallocated range is also considered one which doesn't have the bits * set it's possible that @end_ret contains -1, this happens in case the range * spans (last_range_end, end of device]. In this case it's up to the caller to * trim @end_ret to the appropriate size. */ void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, u32 bits) { struct extent_state *state; struct extent_state *prev = NULL, *next = NULL; spin_lock(&tree->lock); /* Find first extent with bits cleared */ while (1) { state = tree_search_prev_next(tree, start, &prev, &next); if (!state && !next && !prev) { /* * Tree is completely empty, send full range and let * caller deal with it */ *start_ret = 0; *end_ret = -1; goto out; } else if (!state && !next) { /* * We are past the last allocated chunk, set start at * the end of the last extent. */ *start_ret = prev->end + 1; *end_ret = -1; goto out; } else if (!state) { state = next; } /* * At this point 'state' either contains 'start' or start is * before 'state' */ if (in_range(start, state->start, state->end - state->start + 1)) { if (state->state & bits) { /* * |--range with bits sets--| * | * start */ start = state->end + 1; } else { /* * 'start' falls within a range that doesn't * have the bits set, so take its start as the * beginning of the desired range * * |--range with bits cleared----| * | * start */ *start_ret = state->start; break; } } else { /* * |---prev range---|---hole/unset---|---node range---| * | * start * * or * * |---hole/unset--||--first node--| * 0 | * start */ if (prev) *start_ret = prev->end + 1; else *start_ret = 0; break; } } /* * Find the longest stretch from start until an entry which has the * bits set */ while (state) { if (state->end >= start && !(state->state & bits)) { *end_ret = state->end; } else { *end_ret = state->start - 1; break; } state = next_state(state); } out: spin_unlock(&tree->lock); } /* * Count the number of bytes in the tree that have a given bit(s) set for a * given range. * * @tree: The io tree to search. * @start: The start offset of the range. This value is updated to the * offset of the first byte found with the given bit(s), so it * can end up being bigger than the initial value. * @search_end: The end offset (inclusive value) of the search range. * @max_bytes: The maximum byte count we are interested. The search stops * once it reaches this count. * @bits: The bits the range must have in order to be accounted for. * If multiple bits are set, then only subranges that have all * the bits set are accounted for. * @contig: Indicate if we should ignore holes in the range or not. If * this is true, then stop once we find a hole. * @cached_state: A cached state to be used across multiple calls to this * function in order to speedup searches. Use NULL if this is * called only once or if each call does not start where the * previous one ended. * * Returns the total number of bytes found within the given range that have * all given bits set. If the returned number of bytes is greater than zero * then @start is updated with the offset of the first byte with the bits set. */ u64 count_range_bits(struct extent_io_tree *tree, u64 *start, u64 search_end, u64 max_bytes, u32 bits, int contig, struct extent_state **cached_state) { struct extent_state *state = NULL; struct extent_state *cached; u64 cur_start = *start; u64 total_bytes = 0; u64 last = 0; int found = 0; if (WARN_ON(search_end < cur_start)) return 0; spin_lock(&tree->lock); if (!cached_state || !*cached_state) goto search; cached = *cached_state; if (!extent_state_in_tree(cached)) goto search; if (cached->start <= cur_start && cur_start <= cached->end) { state = cached; } else if (cached->start > cur_start) { struct extent_state *prev; /* * The cached state starts after our search range's start. Check * if the previous state record starts at or before the range we * are looking for, and if so, use it - this is a common case * when there are holes between records in the tree. If there is * no previous state record, we can start from our cached state. */ prev = prev_state(cached); if (!prev) state = cached; else if (prev->start <= cur_start && cur_start <= prev->end) state = prev; } /* * This search will find all the extents that end after our range * starts. */ search: if (!state) state = tree_search(tree, cur_start); while (state) { if (state->start > search_end) break; if (contig && found && state->start > last + 1) break; if (state->end >= cur_start && (state->state & bits) == bits) { total_bytes += min(search_end, state->end) + 1 - max(cur_start, state->start); if (total_bytes >= max_bytes) break; if (!found) { *start = max(cur_start, state->start); found = 1; } last = state->end; } else if (contig && found) { break; } state = next_state(state); } if (cached_state) { free_extent_state(*cached_state); *cached_state = state; if (state) refcount_inc(&state->refs); } spin_unlock(&tree->lock); return total_bytes; } /* * Search a range in the state tree for a given mask. If 'filled' == 1, this * returns 1 only if every extent in the tree has the bits set. Otherwise, 1 * is returned if any bit in the range is found set. */ int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, int filled, struct extent_state *cached) { struct extent_state *state = NULL; int bitset = 0; spin_lock(&tree->lock); if (cached && extent_state_in_tree(cached) && cached->start <= start && cached->end > start) state = cached; else state = tree_search(tree, start); while (state && start <= end) { if (filled && state->start > start) { bitset = 0; break; } if (state->start > end) break; if (state->state & bits) { bitset = 1; if (!filled) break; } else if (filled) { bitset = 0; break; } if (state->end == (u64)-1) break; start = state->end + 1; if (start > end) break; state = next_state(state); } /* We ran out of states and were still inside of our range. */ if (filled && !state) bitset = 0; spin_unlock(&tree->lock); return bitset; } /* Wrappers around set/clear extent bit */ int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_changeset *changeset) { /* * We don't support EXTENT_LOCKED yet, as current changeset will * record any bits changed, so for EXTENT_LOCKED case, it will * either fail with -EEXIST or changeset will record the whole * range. */ ASSERT(!(bits & EXTENT_LOCKED)); return __set_extent_bit(tree, start, end, bits, NULL, NULL, NULL, changeset, GFP_NOFS); } int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, struct extent_changeset *changeset) { /* * Don't support EXTENT_LOCKED case, same reason as * set_record_extent_bits(). */ ASSERT(!(bits & EXTENT_LOCKED)); return __clear_extent_bit(tree, start, end, bits, NULL, GFP_NOFS, changeset); } int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, struct extent_state **cached) { int err; u64 failed_start; err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, NULL, cached, NULL, GFP_NOFS); if (err == -EEXIST) { if (failed_start > start) clear_extent_bit(tree, start, failed_start - 1, EXTENT_LOCKED, cached); return 0; } return 1; } /* * Either insert or lock state struct between start and end use mask to tell * us if waiting is desired. */ int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, struct extent_state **cached_state) { struct extent_state *failed_state = NULL; int err; u64 failed_start; err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, &failed_state, cached_state, NULL, GFP_NOFS); while (err == -EEXIST) { if (failed_start != start) clear_extent_bit(tree, start, failed_start - 1, EXTENT_LOCKED, cached_state); wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED, &failed_state); err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start, &failed_state, cached_state, NULL, GFP_NOFS); } return err; } void __cold extent_state_free_cachep(void) { btrfs_extent_state_leak_debug_check(); kmem_cache_destroy(extent_state_cache); } /* * MODIFIED: * - This gets called by extent_io_tree_init, so only init if the cache isn't * NULL. */ int __init extent_state_init_cachep(void) { if (extent_state_cache) return 0; extent_state_cache = kmem_cache_create("btrfs_extent_state", sizeof(struct extent_state), 0, SLAB_MEM_SPREAD, NULL); if (!extent_state_cache) return -ENOMEM; return 0; }