/* * Copyright (C) 2008 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "crc32c.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "utils.h" #include "volumes.h" #include "extent_io.h" #define HEADER_MAGIC 0xbd5c25e27295668bULL #define MAX_PENDING_SIZE (256 * 1024) #define BLOCK_SIZE 1024 #define BLOCK_MASK (BLOCK_SIZE - 1) #define COMPRESS_NONE 0 #define COMPRESS_ZLIB 1 struct meta_cluster_item { __le64 bytenr; __le32 size; } __attribute__ ((__packed__)); struct meta_cluster_header { __le64 magic; __le64 bytenr; __le32 nritems; u8 compress; } __attribute__ ((__packed__)); /* cluster header + index items + buffers */ struct meta_cluster { struct meta_cluster_header header; struct meta_cluster_item items[]; } __attribute__ ((__packed__)); #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \ sizeof(struct meta_cluster_item)) struct fs_chunk { u64 logical; u64 physical; u64 bytes; struct rb_node l; struct rb_node p; struct list_head list; }; struct async_work { struct list_head list; struct list_head ordered; u64 start; u64 size; u8 *buffer; size_t bufsize; int error; }; struct metadump_struct { struct btrfs_root *root; FILE *out; struct meta_cluster *cluster; pthread_t *threads; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; struct rb_root name_tree; struct list_head list; struct list_head ordered; size_t num_items; size_t num_ready; u64 pending_start; u64 pending_size; int compress_level; int done; int data; int sanitize_names; int error; }; struct name { struct rb_node n; char *val; char *sub; u32 len; }; struct mdrestore_struct { FILE *in; FILE *out; pthread_t *threads; size_t num_threads; pthread_mutex_t mutex; pthread_cond_t cond; struct rb_root chunk_tree; struct rb_root physical_tree; struct list_head list; struct list_head overlapping_chunks; size_t num_items; u32 leafsize; u64 devid; u64 last_physical_offset; u8 uuid[BTRFS_UUID_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; int compress_method; int done; int error; int old_restore; int fixup_offset; int multi_devices; int clear_space_cache; struct btrfs_fs_info *info; }; static void print_usage(void) __attribute__((noreturn)); static int search_for_chunk_blocks(struct mdrestore_struct *mdres, u64 search, u64 cluster_bytenr); static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size); static void csum_block(u8 *buf, size_t len) { char result[BTRFS_CRC32_SIZE]; u32 crc = ~(u32)0; crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, result); memcpy(buf, result, BTRFS_CRC32_SIZE); } static int has_name(struct btrfs_key *key) { switch (key->type) { case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_INODE_REF_KEY: case BTRFS_INODE_EXTREF_KEY: case BTRFS_XATTR_ITEM_KEY: return 1; default: break; } return 0; } static char *generate_garbage(u32 name_len) { char *buf = malloc(name_len); int i; if (!buf) return NULL; for (i = 0; i < name_len; i++) { char c = rand() % 94 + 33; if (c == '/') c++; buf[i] = c; } return buf; } static int name_cmp(struct rb_node *a, struct rb_node *b, int fuzz) { struct name *entry = rb_entry(a, struct name, n); struct name *ins = rb_entry(b, struct name, n); u32 len; len = min(ins->len, entry->len); return memcmp(ins->val, entry->val, len); } static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz) { struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l); struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l); if (fuzz && ins->logical >= entry->logical && ins->logical < entry->logical + entry->bytes) return 0; if (ins->logical < entry->logical) return -1; else if (ins->logical > entry->logical) return 1; return 0; } static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz) { struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p); struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p); if (fuzz && ins->physical >= entry->physical && ins->physical < entry->physical + entry->bytes) return 0; if (fuzz && entry->physical >= ins->physical && entry->physical < ins->physical + ins->bytes) return 0; if (ins->physical < entry->physical) return -1; else if (ins->physical > entry->physical) return 1; return 0; } static void tree_insert(struct rb_root *root, struct rb_node *ins, int (*cmp)(struct rb_node *a, struct rb_node *b, int fuzz)) { struct rb_node ** p = &root->rb_node; struct rb_node * parent = NULL; int dir; while(*p) { parent = *p; dir = cmp(*p, ins, 1); if (dir < 0) p = &(*p)->rb_left; else if (dir > 0) p = &(*p)->rb_right; else BUG(); } rb_link_node(ins, parent, p); rb_insert_color(ins, root); } static struct rb_node *tree_search(struct rb_root *root, struct rb_node *search, int (*cmp)(struct rb_node *a, struct rb_node *b, int fuzz), int fuzz) { struct rb_node *n = root->rb_node; int dir; while (n) { dir = cmp(n, search, fuzz); if (dir < 0) n = n->rb_left; else if (dir > 0) n = n->rb_right; else return n; } return NULL; } static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical, u64 *size) { struct fs_chunk *fs_chunk; struct rb_node *entry; struct fs_chunk search; u64 offset; if (logical == BTRFS_SUPER_INFO_OFFSET) return logical; search.logical = logical; entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1); if (!entry) { if (mdres->in != stdin) printf("Couldn't find a chunk, using logical\n"); return logical; } fs_chunk = rb_entry(entry, struct fs_chunk, l); if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical) BUG(); offset = search.logical - fs_chunk->logical; *size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical); return fs_chunk->physical + offset; } static char *find_collision(struct metadump_struct *md, char *name, u32 name_len) { struct name *val; struct rb_node *entry; struct name tmp; unsigned long checksum; int found = 0; int i; tmp.val = name; tmp.len = name_len; entry = tree_search(&md->name_tree, &tmp.n, name_cmp, 0); if (entry) { val = rb_entry(entry, struct name, n); free(name); return val->sub; } val = malloc(sizeof(struct name)); if (!val) { fprintf(stderr, "Couldn't sanitize name, enomem\n"); free(name); return NULL; } memset(val, 0, sizeof(*val)); val->val = name; val->len = name_len; val->sub = malloc(name_len); if (!val->sub) { fprintf(stderr, "Couldn't sanitize name, enomem\n"); free(val); free(name); return NULL; } checksum = crc32c(~1, val->val, name_len); memset(val->sub, ' ', name_len); i = 0; while (1) { if (crc32c(~1, val->sub, name_len) == checksum && memcmp(val->sub, val->val, val->len)) { found = 1; break; } if (val->sub[i] == 127) { do { i++; if (i >= name_len) break; } while (val->sub[i] == 127); if (i >= name_len) break; val->sub[i]++; if (val->sub[i] == '/') val->sub[i]++; memset(val->sub, ' ', i); i = 0; continue; } else { val->sub[i]++; if (val->sub[i] == '/') val->sub[i]++; } } if (!found) { fprintf(stderr, "Couldn't find a collision for '%.*s', " "generating normal garbage, it won't match indexes\n", val->len, val->val); for (i = 0; i < name_len; i++) { char c = rand() % 94 + 33; if (c == '/') c++; val->sub[i] = c; } } tree_insert(&md->name_tree, &val->n, name_cmp); return val->sub; } static void sanitize_dir_item(struct metadump_struct *md, struct extent_buffer *eb, int slot) { struct btrfs_dir_item *dir_item; char *buf; char *garbage; unsigned long name_ptr; u32 total_len; u32 cur = 0; u32 this_len; u32 name_len; int free_garbage = (md->sanitize_names == 1); dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); total_len = btrfs_item_size_nr(eb, slot); while (cur < total_len) { this_len = sizeof(*dir_item) + btrfs_dir_name_len(eb, dir_item) + btrfs_dir_data_len(eb, dir_item); name_ptr = (unsigned long)(dir_item + 1); name_len = btrfs_dir_name_len(eb, dir_item); if (md->sanitize_names > 1) { buf = malloc(name_len); if (!buf) { fprintf(stderr, "Couldn't sanitize name, " "enomem\n"); return; } read_extent_buffer(eb, buf, name_ptr, name_len); garbage = find_collision(md, buf, name_len); } else { garbage = generate_garbage(name_len); } if (!garbage) { fprintf(stderr, "Couldn't sanitize name, enomem\n"); return; } write_extent_buffer(eb, garbage, name_ptr, name_len); cur += this_len; dir_item = (struct btrfs_dir_item *)((char *)dir_item + this_len); if (free_garbage) free(garbage); } } static void sanitize_inode_ref(struct metadump_struct *md, struct extent_buffer *eb, int slot, int ext) { struct btrfs_inode_extref *extref; struct btrfs_inode_ref *ref; char *garbage, *buf; unsigned long ptr; unsigned long name_ptr; u32 item_size; u32 cur_offset = 0; int len; int free_garbage = (md->sanitize_names == 1); item_size = btrfs_item_size_nr(eb, slot); ptr = btrfs_item_ptr_offset(eb, slot); while (cur_offset < item_size) { if (ext) { extref = (struct btrfs_inode_extref *)(ptr + cur_offset); name_ptr = (unsigned long)(&extref->name); len = btrfs_inode_extref_name_len(eb, extref); cur_offset += sizeof(*extref); } else { ref = (struct btrfs_inode_ref *)(ptr + cur_offset); len = btrfs_inode_ref_name_len(eb, ref); name_ptr = (unsigned long)(ref + 1); cur_offset += sizeof(*ref); } cur_offset += len; if (md->sanitize_names > 1) { buf = malloc(len); if (!buf) { fprintf(stderr, "Couldn't sanitize name, " "enomem\n"); return; } read_extent_buffer(eb, buf, name_ptr, len); garbage = find_collision(md, buf, len); } else { garbage = generate_garbage(len); } if (!garbage) { fprintf(stderr, "Couldn't sanitize name, enomem\n"); return; } write_extent_buffer(eb, garbage, name_ptr, len); if (free_garbage) free(garbage); } } static void sanitize_xattr(struct metadump_struct *md, struct extent_buffer *eb, int slot) { struct btrfs_dir_item *dir_item; unsigned long data_ptr; u32 data_len; dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); data_len = btrfs_dir_data_len(eb, dir_item); data_ptr = (unsigned long)((char *)(dir_item + 1) + btrfs_dir_name_len(eb, dir_item)); memset_extent_buffer(eb, 0, data_ptr, data_len); } static void sanitize_name(struct metadump_struct *md, u8 *dst, struct extent_buffer *src, struct btrfs_key *key, int slot) { struct extent_buffer *eb; eb = alloc_dummy_eb(src->start, src->len); if (!eb) { fprintf(stderr, "Couldn't sanitize name, no memory\n"); return; } memcpy(eb->data, dst, eb->len); switch (key->type) { case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: sanitize_dir_item(md, eb, slot); break; case BTRFS_INODE_REF_KEY: sanitize_inode_ref(md, eb, slot, 0); break; case BTRFS_INODE_EXTREF_KEY: sanitize_inode_ref(md, eb, slot, 1); break; case BTRFS_XATTR_ITEM_KEY: sanitize_xattr(md, eb, slot); break; default: break; } memcpy(dst, eb->data, eb->len); free(eb); } /* * zero inline extents and csum items */ static void zero_items(struct metadump_struct *md, u8 *dst, struct extent_buffer *src) { struct btrfs_file_extent_item *fi; struct btrfs_item *item; struct btrfs_key key; u32 nritems = btrfs_header_nritems(src); size_t size; unsigned long ptr; int i, extent_type; for (i = 0; i < nritems; i++) { item = btrfs_item_nr(i); btrfs_item_key_to_cpu(src, &key, i); if (key.type == BTRFS_CSUM_ITEM_KEY) { size = btrfs_item_size_nr(src, i); memset(dst + btrfs_leaf_data(src) + btrfs_item_offset_nr(src, i), 0, size); continue; } if (md->sanitize_names && has_name(&key)) { sanitize_name(md, dst, src, &key, i); continue; } if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(src, fi); if (extent_type != BTRFS_FILE_EXTENT_INLINE) continue; ptr = btrfs_file_extent_inline_start(fi); size = btrfs_file_extent_inline_item_len(src, item); memset(dst + ptr, 0, size); } } /* * copy buffer and zero useless data in the buffer */ static void copy_buffer(struct metadump_struct *md, u8 *dst, struct extent_buffer *src) { int level; size_t size; u32 nritems; memcpy(dst, src->data, src->len); if (src->start == BTRFS_SUPER_INFO_OFFSET) return; level = btrfs_header_level(src); nritems = btrfs_header_nritems(src); if (nritems == 0) { size = sizeof(struct btrfs_header); memset(dst + size, 0, src->len - size); } else if (level == 0) { size = btrfs_leaf_data(src) + btrfs_item_offset_nr(src, nritems - 1) - btrfs_item_nr_offset(nritems); memset(dst + btrfs_item_nr_offset(nritems), 0, size); zero_items(md, dst, src); } else { size = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nritems; memset(dst + size, 0, src->len - size); } csum_block(dst, src->len); } static void *dump_worker(void *data) { struct metadump_struct *md = (struct metadump_struct *)data; struct async_work *async; int ret; while (1) { pthread_mutex_lock(&md->mutex); while (list_empty(&md->list)) { if (md->done) { pthread_mutex_unlock(&md->mutex); goto out; } pthread_cond_wait(&md->cond, &md->mutex); } async = list_entry(md->list.next, struct async_work, list); list_del_init(&async->list); pthread_mutex_unlock(&md->mutex); if (md->compress_level > 0) { u8 *orig = async->buffer; async->bufsize = compressBound(async->size); async->buffer = malloc(async->bufsize); if (!async->buffer) { fprintf(stderr, "Error allocing buffer\n"); pthread_mutex_lock(&md->mutex); if (!md->error) md->error = -ENOMEM; pthread_mutex_unlock(&md->mutex); pthread_exit(NULL); } ret = compress2(async->buffer, (unsigned long *)&async->bufsize, orig, async->size, md->compress_level); if (ret != Z_OK) async->error = 1; free(orig); } pthread_mutex_lock(&md->mutex); md->num_ready++; pthread_mutex_unlock(&md->mutex); } out: pthread_exit(NULL); } static void meta_cluster_init(struct metadump_struct *md, u64 start) { struct meta_cluster_header *header; md->num_items = 0; md->num_ready = 0; header = &md->cluster->header; header->magic = cpu_to_le64(HEADER_MAGIC); header->bytenr = cpu_to_le64(start); header->nritems = cpu_to_le32(0); header->compress = md->compress_level > 0 ? COMPRESS_ZLIB : COMPRESS_NONE; } static void metadump_destroy(struct metadump_struct *md, int num_threads) { int i; struct rb_node *n; pthread_mutex_lock(&md->mutex); md->done = 1; pthread_cond_broadcast(&md->cond); pthread_mutex_unlock(&md->mutex); for (i = 0; i < num_threads; i++) pthread_join(md->threads[i], NULL); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); while ((n = rb_first(&md->name_tree))) { struct name *name; name = rb_entry(n, struct name, n); rb_erase(n, &md->name_tree); free(name->val); free(name->sub); free(name); } free(md->threads); free(md->cluster); } static int metadump_init(struct metadump_struct *md, struct btrfs_root *root, FILE *out, int num_threads, int compress_level, int sanitize_names) { int i, ret = 0; memset(md, 0, sizeof(*md)); pthread_cond_init(&md->cond, NULL); pthread_mutex_init(&md->mutex, NULL); INIT_LIST_HEAD(&md->list); INIT_LIST_HEAD(&md->ordered); md->root = root; md->out = out; md->pending_start = (u64)-1; md->compress_level = compress_level; md->cluster = calloc(1, BLOCK_SIZE); md->sanitize_names = sanitize_names; if (sanitize_names > 1) crc32c_optimization_init(); if (!md->cluster) { pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); return -ENOMEM; } meta_cluster_init(md, 0); if (!num_threads) return 0; md->name_tree.rb_node = NULL; md->num_threads = num_threads; md->threads = calloc(num_threads, sizeof(pthread_t)); if (!md->threads) { free(md->cluster); pthread_cond_destroy(&md->cond); pthread_mutex_destroy(&md->mutex); return -ENOMEM; } for (i = 0; i < num_threads; i++) { ret = pthread_create(md->threads + i, NULL, dump_worker, md); if (ret) break; } if (ret) metadump_destroy(md, i + 1); return ret; } static int write_zero(FILE *out, size_t size) { static char zero[BLOCK_SIZE]; return fwrite(zero, size, 1, out); } static int write_buffers(struct metadump_struct *md, u64 *next) { struct meta_cluster_header *header = &md->cluster->header; struct meta_cluster_item *item; struct async_work *async; u64 bytenr = 0; u32 nritems = 0; int ret; int err = 0; if (list_empty(&md->ordered)) goto out; /* wait until all buffers are compressed */ while (!err && md->num_items > md->num_ready) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&md->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&md->mutex); err = md->error; } if (err) { fprintf(stderr, "One of the threads errored out %s\n", strerror(err)); goto out; } /* setup and write index block */ list_for_each_entry(async, &md->ordered, ordered) { item = md->cluster->items + nritems; item->bytenr = cpu_to_le64(async->start); item->size = cpu_to_le32(async->bufsize); nritems++; } header->nritems = cpu_to_le32(nritems); ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out); if (ret != 1) { fprintf(stderr, "Error writing out cluster: %d\n", errno); return -EIO; } /* write buffers */ bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE; while (!list_empty(&md->ordered)) { async = list_entry(md->ordered.next, struct async_work, ordered); list_del_init(&async->ordered); bytenr += async->bufsize; if (!err) ret = fwrite(async->buffer, async->bufsize, 1, md->out); if (ret != 1) { err = -EIO; ret = 0; fprintf(stderr, "Error writing out cluster: %d\n", errno); } free(async->buffer); free(async); } /* zero unused space in the last block */ if (!err && bytenr & BLOCK_MASK) { size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = write_zero(md->out, size); if (ret != 1) { fprintf(stderr, "Error zeroing out buffer: %d\n", errno); err = -EIO; } } out: *next = bytenr; return err; } static int read_data_extent(struct metadump_struct *md, struct async_work *async) { struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; u64 bytes_left = async->size; u64 logical = async->start; u64 offset = 0; u64 bytenr; u64 read_len; ssize_t done; int fd; int ret; while (bytes_left) { read_len = bytes_left; ret = btrfs_map_block(&md->root->fs_info->mapping_tree, READ, logical, &read_len, &multi, 0, NULL); if (ret) { fprintf(stderr, "Couldn't map data block %d\n", ret); return ret; } device = multi->stripes[0].dev; if (device->fd == 0) { fprintf(stderr, "Device we need to read from is not open\n"); free(multi); return -EIO; } fd = device->fd; bytenr = multi->stripes[0].physical; free(multi); read_len = min(read_len, bytes_left); done = pread64(fd, async->buffer+offset, read_len, bytenr); if (done < read_len) { if (done < 0) fprintf(stderr, "Error reading extent %d\n", errno); else fprintf(stderr, "Short read\n"); return -EIO; } bytes_left -= done; offset += done; logical += done; } return 0; } static int get_dev_fd(struct btrfs_root *root) { struct btrfs_device *dev; dev = list_first_entry(&root->fs_info->fs_devices->devices, struct btrfs_device, dev_list); return dev->fd; } static int flush_pending(struct metadump_struct *md, int done) { struct async_work *async = NULL; struct extent_buffer *eb; u64 blocksize = md->root->nodesize; u64 start; u64 size; size_t offset; int ret = 0; if (md->pending_size) { async = calloc(1, sizeof(*async)); if (!async) return -ENOMEM; async->start = md->pending_start; async->size = md->pending_size; async->bufsize = async->size; async->buffer = malloc(async->bufsize); if (!async->buffer) { free(async); return -ENOMEM; } offset = 0; start = async->start; size = async->size; if (md->data) { ret = read_data_extent(md, async); if (ret) { free(async->buffer); free(async); return ret; } } /* * Balance can make the mapping not cover the super block, so * just copy directly from one of the devices. */ if (start == BTRFS_SUPER_INFO_OFFSET) { int fd = get_dev_fd(md->root); ret = pread64(fd, async->buffer, size, start); if (ret < size) { free(async->buffer); free(async); fprintf(stderr, "Error reading superblock\n"); return -EIO; } size = 0; ret = 0; } while (!md->data && size > 0) { u64 this_read = min(blocksize, size); eb = read_tree_block(md->root, start, this_read, 0); if (!extent_buffer_uptodate(eb)) { free(async->buffer); free(async); fprintf(stderr, "Error reading metadata block\n"); return -EIO; } copy_buffer(md, async->buffer + offset, eb); free_extent_buffer(eb); start += this_read; offset += this_read; size -= this_read; } md->pending_start = (u64)-1; md->pending_size = 0; } else if (!done) { return 0; } pthread_mutex_lock(&md->mutex); if (async) { list_add_tail(&async->ordered, &md->ordered); md->num_items++; if (md->compress_level > 0) { list_add_tail(&async->list, &md->list); pthread_cond_signal(&md->cond); } else { md->num_ready++; } } if (md->num_items >= ITEMS_PER_CLUSTER || done) { ret = write_buffers(md, &start); if (ret) fprintf(stderr, "Error writing buffers %d\n", errno); else meta_cluster_init(md, start); } pthread_mutex_unlock(&md->mutex); return ret; } static int add_extent(u64 start, u64 size, struct metadump_struct *md, int data) { int ret; if (md->data != data || md->pending_size + size > MAX_PENDING_SIZE || md->pending_start + md->pending_size != start) { ret = flush_pending(md, 0); if (ret) return ret; md->pending_start = start; } readahead_tree_block(md->root, start, size, 0); md->pending_size += size; md->data = data; return 0; } #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 static int is_tree_block(struct btrfs_root *extent_root, struct btrfs_path *path, u64 bytenr) { struct extent_buffer *leaf; struct btrfs_key key; u64 ref_objectid; int ret; leaf = path->nodes[0]; while (1) { struct btrfs_extent_ref_v0 *ref_item; path->slots[0]++; if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, path); if (ret < 0) return ret; if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != bytenr) break; if (key.type != BTRFS_EXTENT_REF_V0_KEY) continue; ref_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref_v0); ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item); if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) return 1; break; } return 0; } #endif static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb, struct metadump_struct *metadump, int root_tree) { struct extent_buffer *tmp; struct btrfs_root_item *ri; struct btrfs_key key; u64 bytenr; int level; int nritems = 0; int i = 0; int ret; ret = add_extent(btrfs_header_bytenr(eb), root->leafsize, metadump, 0); if (ret) { fprintf(stderr, "Error adding metadata block\n"); return ret; } if (btrfs_header_level(eb) == 0 && !root_tree) return 0; level = btrfs_header_level(eb); nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { if (level == 0) { btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_ROOT_ITEM_KEY) continue; ri = btrfs_item_ptr(eb, i, struct btrfs_root_item); bytenr = btrfs_disk_root_bytenr(eb, ri); tmp = read_tree_block(root, bytenr, root->leafsize, 0); if (!extent_buffer_uptodate(tmp)) { fprintf(stderr, "Error reading log root block\n"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, 0); free_extent_buffer(tmp); if (ret) return ret; } else { bytenr = btrfs_node_blockptr(eb, i); tmp = read_tree_block(root, bytenr, root->leafsize, 0); if (!extent_buffer_uptodate(tmp)) { fprintf(stderr, "Error reading log block\n"); return -EIO; } ret = copy_tree_blocks(root, tmp, metadump, root_tree); free_extent_buffer(tmp); if (ret) return ret; } } return 0; } static int copy_log_trees(struct btrfs_root *root, struct metadump_struct *metadump, struct btrfs_path *path) { u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy); if (blocknr == 0) return 0; if (!root->fs_info->log_root_tree || !root->fs_info->log_root_tree->node) { fprintf(stderr, "Error copying tree log, it wasn't setup\n"); return -EIO; } return copy_tree_blocks(root, root->fs_info->log_root_tree->node, metadump, 1); } static int copy_space_cache(struct btrfs_root *root, struct metadump_struct *metadump, struct btrfs_path *path) { struct extent_buffer *leaf; struct btrfs_file_extent_item *fi; struct btrfs_key key; u64 bytenr, num_bytes; int ret; root = root->fs_info->tree_root; key.objectid = 0; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching for free space inode %d\n", ret); return ret; } leaf = path->nodes[0]; while (1) { if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); return ret; } if (ret > 0) break; leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_EXTENT_DATA_KEY) { path->slots[0]++; continue; } fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) { path->slots[0]++; continue; } bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); ret = add_extent(bytenr, num_bytes, metadump, 1); if (ret) { fprintf(stderr, "Error adding space cache blocks %d\n", ret); btrfs_release_path(path); return ret; } path->slots[0]++; } return 0; } static int copy_from_extent_tree(struct metadump_struct *metadump, struct btrfs_path *path) { struct btrfs_root *extent_root; struct extent_buffer *leaf; struct btrfs_extent_item *ei; struct btrfs_key key; u64 bytenr; u64 num_bytes; int ret; extent_root = metadump->root->fs_info->extent_root; bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE; key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching extent root %d\n", ret); return ret; } ret = 0; leaf = path->nodes[0]; while (1) { if (path->slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(extent_root, path); if (ret < 0) { fprintf(stderr, "Error going to next leaf %d" "\n", ret); break; } if (ret > 0) { ret = 0; break; } leaf = path->nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid < bytenr || (key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY)) { path->slots[0]++; continue; } bytenr = key.objectid; if (key.type == BTRFS_METADATA_ITEM_KEY) num_bytes = extent_root->leafsize; else num_bytes = key.offset; if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) { ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); if (btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK) { ret = add_extent(bytenr, num_bytes, metadump, 0); if (ret) { fprintf(stderr, "Error adding block " "%d\n", ret); break; } } } else { #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 ret = is_tree_block(extent_root, path, bytenr); if (ret < 0) { fprintf(stderr, "Error checking tree block " "%d\n", ret); break; } if (ret) { ret = add_extent(bytenr, num_bytes, metadump, 0); if (ret) { fprintf(stderr, "Error adding block " "%d\n", ret); break; } } ret = 0; #else fprintf(stderr, "Either extent tree corruption or " "you haven't built with V0 support\n"); ret = -EIO; break; #endif } bytenr += num_bytes; } btrfs_release_path(path); return ret; } static int create_metadump(const char *input, FILE *out, int num_threads, int compress_level, int sanitize, int walk_trees) { struct btrfs_root *root; struct btrfs_path *path = NULL; struct metadump_struct metadump; int ret; int err = 0; root = open_ctree(input, 0, 0); if (!root) { fprintf(stderr, "Open ctree failed\n"); return -EIO; } BUG_ON(root->nodesize != root->leafsize); ret = metadump_init(&metadump, root, out, num_threads, compress_level, sanitize); if (ret) { fprintf(stderr, "Error initing metadump %d\n", ret); close_ctree(root); return ret; } ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE, &metadump, 0); if (ret) { fprintf(stderr, "Error adding metadata %d\n", ret); err = ret; goto out; } path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Out of memory allocing path\n"); err = -ENOMEM; goto out; } if (walk_trees) { ret = copy_tree_blocks(root, root->fs_info->chunk_root->node, &metadump, 1); if (ret) { err = ret; goto out; } ret = copy_tree_blocks(root, root->fs_info->tree_root->node, &metadump, 1); if (ret) { err = ret; goto out; } } else { ret = copy_from_extent_tree(&metadump, path); if (ret) { err = ret; goto out; } } ret = copy_log_trees(root, &metadump, path); if (ret) { err = ret; goto out; } ret = copy_space_cache(root, &metadump, path); out: ret = flush_pending(&metadump, 1); if (ret) { if (!err) err = ret; fprintf(stderr, "Error flushing pending %d\n", ret); } metadump_destroy(&metadump, num_threads); btrfs_free_path(path); ret = close_ctree(root); return err ? err : ret; } static void update_super_old(u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *key; u32 sectorsize = btrfs_super_sectorsize(super); u64 flags = btrfs_super_flags(super); flags |= BTRFS_SUPER_FLAG_METADUMP; btrfs_set_super_flags(super, flags); key = (struct btrfs_disk_key *)(super->sys_chunk_array); chunk = (struct btrfs_chunk *)(super->sys_chunk_array + sizeof(struct btrfs_disk_key)); btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_disk_key_offset(key, 0); btrfs_set_stack_chunk_length(chunk, (u64)-1); btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_chunk_io_align(chunk, sectorsize); btrfs_set_stack_chunk_io_width(chunk, sectorsize); btrfs_set_stack_chunk_sector_size(chunk, sectorsize); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); chunk->stripe.devid = super->dev_item.devid; btrfs_set_stack_stripe_offset(&chunk->stripe, 0); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk)); csum_block(buffer, BTRFS_SUPER_INFO_SIZE); } static int update_super(struct mdrestore_struct *mdres, u8 *buffer) { struct btrfs_super_block *super = (struct btrfs_super_block *)buffer; struct btrfs_chunk *chunk; struct btrfs_disk_key *disk_key; struct btrfs_key key; u64 flags = btrfs_super_flags(super); u32 new_array_size = 0; u32 array_size; u32 cur = 0; u8 *ptr, *write_ptr; int old_num_stripes; write_ptr = ptr = super->sys_chunk_array; array_size = btrfs_super_sys_array_size(super); while (cur < array_size) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); new_array_size += sizeof(*disk_key); memmove(write_ptr, ptr, sizeof(*disk_key)); write_ptr += sizeof(*disk_key); ptr += sizeof(*disk_key); cur += sizeof(*disk_key); if (key.type == BTRFS_CHUNK_ITEM_KEY) { u64 physical, size = 0; chunk = (struct btrfs_chunk *)ptr; old_num_stripes = btrfs_stack_chunk_num_stripes(chunk); chunk = (struct btrfs_chunk *)write_ptr; memmove(write_ptr, ptr, sizeof(*chunk)); btrfs_set_stack_chunk_num_stripes(chunk, 1); btrfs_set_stack_chunk_sub_stripes(chunk, 0); btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_stack_stripe_devid(&chunk->stripe, super->dev_item.devid); physical = logical_to_physical(mdres, key.offset, &size); if (size != (u64)-1) btrfs_set_stack_stripe_offset(&chunk->stripe, physical); memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); new_array_size += sizeof(*chunk); } else { fprintf(stderr, "Bogus key in the sys chunk array " "%d\n", key.type); return -EIO; } write_ptr += sizeof(*chunk); ptr += btrfs_chunk_item_size(old_num_stripes); cur += btrfs_chunk_item_size(old_num_stripes); } if (mdres->clear_space_cache) btrfs_set_super_cache_generation(super, 0); flags |= BTRFS_SUPER_FLAG_METADUMP_V2; btrfs_set_super_flags(super, flags); btrfs_set_super_sys_array_size(super, new_array_size); csum_block(buffer, BTRFS_SUPER_INFO_SIZE); return 0; } static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size) { struct extent_buffer *eb; eb = malloc(sizeof(struct extent_buffer) + size); if (!eb) return NULL; memset(eb, 0, sizeof(struct extent_buffer) + size); eb->start = bytenr; eb->len = size; return eb; } static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size) { struct btrfs_item *item; u32 nritems; u32 old_size; u32 old_data_start; u32 size_diff; u32 data_end; int i; old_size = btrfs_item_size_nr(eb, slot); if (old_size == new_size) return; nritems = btrfs_header_nritems(eb); data_end = btrfs_item_offset_nr(eb, nritems - 1); old_data_start = btrfs_item_offset_nr(eb, slot); size_diff = old_size - new_size; for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(i); ioff = btrfs_item_offset(eb, item); btrfs_set_item_offset(eb, item, ioff + size_diff); } memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff, btrfs_leaf_data(eb) + data_end, old_data_start + new_size - data_end); item = btrfs_item_nr(slot); btrfs_set_item_size(eb, item, new_size); } static int fixup_chunk_tree_block(struct mdrestore_struct *mdres, struct async_work *async, u8 *buffer, size_t size) { struct extent_buffer *eb; size_t size_left = size; u64 bytenr = async->start; int i; if (size_left % mdres->leafsize) return 0; eb = alloc_dummy_eb(bytenr, mdres->leafsize); if (!eb) return -ENOMEM; while (size_left) { eb->start = bytenr; memcpy(eb->data, buffer, mdres->leafsize); if (btrfs_header_bytenr(eb) != bytenr) break; if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE)) break; if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) goto next; if (btrfs_header_level(eb) != 0) goto next; for (i = 0; i < btrfs_header_nritems(eb); i++) { struct btrfs_chunk chunk; struct btrfs_key key; u64 type, physical, size = (u64)-1; btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_CHUNK_ITEM_KEY) continue; truncate_item(eb, i, sizeof(chunk)); read_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i), sizeof(chunk)); size = 0; physical = logical_to_physical(mdres, key.offset, &size); /* Zero out the RAID profile */ type = btrfs_stack_chunk_type(&chunk); type &= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DUP); btrfs_set_stack_chunk_type(&chunk, type); btrfs_set_stack_chunk_num_stripes(&chunk, 1); btrfs_set_stack_chunk_sub_stripes(&chunk, 0); btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid); if (size != (u64)-1) btrfs_set_stack_stripe_offset(&chunk.stripe, physical); memcpy(chunk.stripe.dev_uuid, mdres->uuid, BTRFS_UUID_SIZE); write_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i), sizeof(chunk)); } memcpy(buffer, eb->data, eb->len); csum_block(buffer, eb->len); next: size_left -= mdres->leafsize; buffer += mdres->leafsize; bytenr += mdres->leafsize; } free(eb); return 0; } static void write_backup_supers(int fd, u8 *buf) { struct btrfs_super_block *super = (struct btrfs_super_block *)buf; struct stat st; u64 size; u64 bytenr; int i; int ret; if (fstat(fd, &st)) { fprintf(stderr, "Couldn't stat restore point, won't be able " "to write backup supers: %d\n", errno); return; } size = btrfs_device_size(fd, &st); for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE > size) break; btrfs_set_super_bytenr(super, bytenr); csum_block(buf, BTRFS_SUPER_INFO_SIZE); ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr); if (ret < BTRFS_SUPER_INFO_SIZE) { if (ret < 0) fprintf(stderr, "Problem writing out backup " "super block %d, err %d\n", i, errno); else fprintf(stderr, "Short write writing out " "backup super block\n"); break; } } } static void *restore_worker(void *data) { struct mdrestore_struct *mdres = (struct mdrestore_struct *)data; struct async_work *async; size_t size; u8 *buffer; u8 *outbuf; int outfd; int ret; int compress_size = MAX_PENDING_SIZE * 4; outfd = fileno(mdres->out); buffer = malloc(compress_size); if (!buffer) { fprintf(stderr, "Error allocing buffer\n"); pthread_mutex_lock(&mdres->mutex); if (!mdres->error) mdres->error = -ENOMEM; pthread_mutex_unlock(&mdres->mutex); pthread_exit(NULL); } while (1) { u64 bytenr; off_t offset = 0; int err = 0; pthread_mutex_lock(&mdres->mutex); while (!mdres->leafsize || list_empty(&mdres->list)) { if (mdres->done) { pthread_mutex_unlock(&mdres->mutex); goto out; } pthread_cond_wait(&mdres->cond, &mdres->mutex); } async = list_entry(mdres->list.next, struct async_work, list); list_del_init(&async->list); pthread_mutex_unlock(&mdres->mutex); if (mdres->compress_method == COMPRESS_ZLIB) { size = compress_size; ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); if (ret != Z_OK) { fprintf(stderr, "Error decompressing %d\n", ret); err = -EIO; } outbuf = buffer; } else { outbuf = async->buffer; size = async->bufsize; } if (!mdres->multi_devices) { if (async->start == BTRFS_SUPER_INFO_OFFSET) { if (mdres->old_restore) { update_super_old(outbuf); } else { ret = update_super(mdres, outbuf); if (ret) err = ret; } } else if (!mdres->old_restore) { ret = fixup_chunk_tree_block(mdres, async, outbuf, size); if (ret) err = ret; } } if (!mdres->fixup_offset) { while (size) { u64 chunk_size = size; if (!mdres->multi_devices && !mdres->old_restore) bytenr = logical_to_physical(mdres, async->start + offset, &chunk_size); else bytenr = async->start + offset; ret = pwrite64(outfd, outbuf+offset, chunk_size, bytenr); if (ret != chunk_size) { if (ret < 0) { fprintf(stderr, "Error writing to " "device %d\n", errno); err = errno; break; } else { fprintf(stderr, "Short write\n"); err = -EIO; break; } } size -= chunk_size; offset += chunk_size; } } else if (async->start != BTRFS_SUPER_INFO_OFFSET) { ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0); if (ret) { printk("Error write data\n"); exit(1); } } /* backup super blocks are already there at fixup_offset stage */ if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET) write_backup_supers(outfd, outbuf); pthread_mutex_lock(&mdres->mutex); if (err && !mdres->error) mdres->error = err; mdres->num_items--; pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); } out: free(buffer); pthread_exit(NULL); } static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads) { struct rb_node *n; int i; while ((n = rb_first(&mdres->chunk_tree))) { struct fs_chunk *entry; entry = rb_entry(n, struct fs_chunk, l); rb_erase(n, &mdres->chunk_tree); rb_erase(&entry->p, &mdres->physical_tree); free(entry); } pthread_mutex_lock(&mdres->mutex); mdres->done = 1; pthread_cond_broadcast(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); for (i = 0; i < num_threads; i++) pthread_join(mdres->threads[i], NULL); pthread_cond_destroy(&mdres->cond); pthread_mutex_destroy(&mdres->mutex); free(mdres->threads); } static int mdrestore_init(struct mdrestore_struct *mdres, FILE *in, FILE *out, int old_restore, int num_threads, int fixup_offset, struct btrfs_fs_info *info, int multi_devices) { int i, ret = 0; memset(mdres, 0, sizeof(*mdres)); pthread_cond_init(&mdres->cond, NULL); pthread_mutex_init(&mdres->mutex, NULL); INIT_LIST_HEAD(&mdres->list); INIT_LIST_HEAD(&mdres->overlapping_chunks); mdres->in = in; mdres->out = out; mdres->old_restore = old_restore; mdres->chunk_tree.rb_node = NULL; mdres->fixup_offset = fixup_offset; mdres->info = info; mdres->multi_devices = multi_devices; mdres->clear_space_cache = 0; mdres->last_physical_offset = 0; if (!num_threads) return 0; mdres->num_threads = num_threads; mdres->threads = calloc(num_threads, sizeof(pthread_t)); if (!mdres->threads) return -ENOMEM; for (i = 0; i < num_threads; i++) { ret = pthread_create(mdres->threads + i, NULL, restore_worker, mdres); if (ret) break; } if (ret) mdrestore_destroy(mdres, i + 1); return ret; } static int fill_mdres_info(struct mdrestore_struct *mdres, struct async_work *async) { struct btrfs_super_block *super; u8 *buffer = NULL; u8 *outbuf; int ret; /* We've already been initialized */ if (mdres->leafsize) return 0; if (mdres->compress_method == COMPRESS_ZLIB) { size_t size = MAX_PENDING_SIZE * 2; buffer = malloc(MAX_PENDING_SIZE * 2); if (!buffer) return -ENOMEM; ret = uncompress(buffer, (unsigned long *)&size, async->buffer, async->bufsize); if (ret != Z_OK) { fprintf(stderr, "Error decompressing %d\n", ret); free(buffer); return -EIO; } outbuf = buffer; } else { outbuf = async->buffer; } super = (struct btrfs_super_block *)outbuf; mdres->leafsize = btrfs_super_leafsize(super); memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE); memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); mdres->devid = le64_to_cpu(super->dev_item.devid); free(buffer); return 0; } static int add_cluster(struct meta_cluster *cluster, struct mdrestore_struct *mdres, u64 *next) { struct meta_cluster_item *item; struct meta_cluster_header *header = &cluster->header; struct async_work *async; u64 bytenr; u32 i, nritems; int ret; mdres->compress_method = header->compress; bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { item = &cluster->items[i]; async = calloc(1, sizeof(*async)); if (!async) { fprintf(stderr, "Error allocating async\n"); return -ENOMEM; } async->start = le64_to_cpu(item->bytenr); async->bufsize = le32_to_cpu(item->size); async->buffer = malloc(async->bufsize); if (!async->buffer) { fprintf(stderr, "Error allocing async buffer\n"); free(async); return -ENOMEM; } ret = fread(async->buffer, async->bufsize, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading buffer %d\n", errno); free(async->buffer); free(async); return -EIO; } bytenr += async->bufsize; pthread_mutex_lock(&mdres->mutex); if (async->start == BTRFS_SUPER_INFO_OFFSET) { ret = fill_mdres_info(mdres, async); if (ret) { fprintf(stderr, "Error setting up restore\n"); pthread_mutex_unlock(&mdres->mutex); free(async->buffer); free(async); return ret; } } list_add_tail(&async->list, &mdres->list); mdres->num_items++; pthread_cond_signal(&mdres->cond); pthread_mutex_unlock(&mdres->mutex); } if (bytenr & BLOCK_MASK) { char buffer[BLOCK_MASK]; size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK); bytenr += size; ret = fread(buffer, size, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading in buffer %d\n", errno); return -EIO; } } *next = bytenr; return 0; } static int wait_for_worker(struct mdrestore_struct *mdres) { int ret = 0; pthread_mutex_lock(&mdres->mutex); ret = mdres->error; while (!ret && mdres->num_items > 0) { struct timespec ts = { .tv_sec = 0, .tv_nsec = 10000000, }; pthread_mutex_unlock(&mdres->mutex); nanosleep(&ts, NULL); pthread_mutex_lock(&mdres->mutex); ret = mdres->error; } pthread_mutex_unlock(&mdres->mutex); return ret; } static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer, u64 bytenr, u64 item_bytenr, u32 bufsize, u64 cluster_bytenr) { struct extent_buffer *eb; int ret = 0; int i; eb = alloc_dummy_eb(bytenr, mdres->leafsize); if (!eb) { ret = -ENOMEM; goto out; } while (item_bytenr != bytenr) { buffer += mdres->leafsize; item_bytenr += mdres->leafsize; } memcpy(eb->data, buffer, mdres->leafsize); if (btrfs_header_bytenr(eb) != bytenr) { fprintf(stderr, "Eb bytenr doesn't match found bytenr\n"); ret = -EIO; goto out; } if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid), BTRFS_FSID_SIZE)) { fprintf(stderr, "Fsid doesn't match\n"); ret = -EIO; goto out; } if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) { fprintf(stderr, "Does not belong to the chunk tree\n"); ret = -EIO; goto out; } for (i = 0; i < btrfs_header_nritems(eb); i++) { struct btrfs_chunk chunk; struct fs_chunk *fs_chunk; struct btrfs_key key; if (btrfs_header_level(eb)) { u64 blockptr = btrfs_node_blockptr(eb, i); ret = search_for_chunk_blocks(mdres, blockptr, cluster_bytenr); if (ret) break; continue; } /* Yay a leaf! We loves leafs! */ btrfs_item_key_to_cpu(eb, &key, i); if (key.type != BTRFS_CHUNK_ITEM_KEY) continue; fs_chunk = malloc(sizeof(struct fs_chunk)); if (!fs_chunk) { fprintf(stderr, "Erorr allocating chunk\n"); ret = -ENOMEM; break; } memset(fs_chunk, 0, sizeof(*fs_chunk)); read_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i), sizeof(chunk)); fs_chunk->logical = key.offset; fs_chunk->physical = btrfs_stack_stripe_offset(&chunk.stripe); fs_chunk->bytes = btrfs_stack_chunk_length(&chunk); INIT_LIST_HEAD(&fs_chunk->list); if (tree_search(&mdres->physical_tree, &fs_chunk->p, physical_cmp, 1) != NULL) list_add(&fs_chunk->list, &mdres->overlapping_chunks); else tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp); if (fs_chunk->physical + fs_chunk->bytes > mdres->last_physical_offset) mdres->last_physical_offset = fs_chunk->physical + fs_chunk->bytes; tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp); } out: free(eb); return ret; } /* If you have to ask you aren't worthy */ static int search_for_chunk_blocks(struct mdrestore_struct *mdres, u64 search, u64 cluster_bytenr) { struct meta_cluster *cluster; struct meta_cluster_header *header; struct meta_cluster_item *item; u64 current_cluster = cluster_bytenr, bytenr; u64 item_bytenr; u32 bufsize, nritems, i; u32 max_size = MAX_PENDING_SIZE * 2; u8 *buffer, *tmp = NULL; int ret = 0; cluster = malloc(BLOCK_SIZE); if (!cluster) { fprintf(stderr, "Error allocating cluster\n"); return -ENOMEM; } buffer = malloc(max_size); if (!buffer) { fprintf(stderr, "Error allocing buffer\n"); free(cluster); return -ENOMEM; } if (mdres->compress_method == COMPRESS_ZLIB) { tmp = malloc(max_size); if (!tmp) { fprintf(stderr, "Error allocing tmp buffer\n"); free(cluster); free(buffer); return -ENOMEM; } } bytenr = current_cluster; while (1) { if (fseek(mdres->in, current_cluster, SEEK_SET)) { fprintf(stderr, "Error seeking: %d\n", errno); ret = -EIO; break; } ret = fread(cluster, BLOCK_SIZE, 1, mdres->in); if (ret == 0) { if (cluster_bytenr != 0) { cluster_bytenr = 0; current_cluster = 0; bytenr = 0; continue; } printf("ok this is where we screwed up?\n"); ret = -EIO; break; } else if (ret < 0) { fprintf(stderr, "Error reading image\n"); break; } ret = 0; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != current_cluster) { fprintf(stderr, "bad header in metadump image\n"); ret = -EIO; break; } bytenr += BLOCK_SIZE; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { size_t size; item = &cluster->items[i]; bufsize = le32_to_cpu(item->size); item_bytenr = le64_to_cpu(item->bytenr); if (bufsize > max_size) { fprintf(stderr, "item %u size %u too big\n", i, bufsize); ret = -EIO; break; } if (mdres->compress_method == COMPRESS_ZLIB) { ret = fread(tmp, bufsize, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading: %d\n", errno); ret = -EIO; break; } size = max_size; ret = uncompress(buffer, (unsigned long *)&size, tmp, bufsize); if (ret != Z_OK) { fprintf(stderr, "Error decompressing " "%d\n", ret); ret = -EIO; break; } } else { ret = fread(buffer, bufsize, 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading: %d\n", errno); ret = -EIO; break; } size = bufsize; } ret = 0; if (item_bytenr <= search && item_bytenr + size > search) { ret = read_chunk_block(mdres, buffer, search, item_bytenr, size, current_cluster); if (!ret) ret = 1; break; } bytenr += bufsize; } if (ret) { if (ret > 0) ret = 0; break; } if (bytenr & BLOCK_MASK) bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK); current_cluster = bytenr; } free(tmp); free(buffer); free(cluster); return ret; } static int build_chunk_tree(struct mdrestore_struct *mdres, struct meta_cluster *cluster) { struct btrfs_super_block *super; struct meta_cluster_header *header; struct meta_cluster_item *item = NULL; u64 chunk_root_bytenr = 0; u32 i, nritems; u64 bytenr = 0; u8 *buffer; int ret; /* We can't seek with stdin so don't bother doing this */ if (mdres->in == stdin) return 0; ret = fread(cluster, BLOCK_SIZE, 1, mdres->in); if (ret <= 0) { fprintf(stderr, "Error reading in cluster: %d\n", errno); return -EIO; } ret = 0; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != 0) { fprintf(stderr, "bad header in metadump image\n"); return -EIO; } bytenr += BLOCK_SIZE; mdres->compress_method = header->compress; nritems = le32_to_cpu(header->nritems); for (i = 0; i < nritems; i++) { item = &cluster->items[i]; if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET) break; bytenr += le32_to_cpu(item->size); if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) { fprintf(stderr, "Error seeking: %d\n", errno); return -EIO; } } if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) { fprintf(stderr, "Huh, didn't find the super?\n"); return -EINVAL; } buffer = malloc(le32_to_cpu(item->size)); if (!buffer) { fprintf(stderr, "Error allocing buffer\n"); return -ENOMEM; } ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in); if (ret != 1) { fprintf(stderr, "Error reading buffer: %d\n", errno); free(buffer); return -EIO; } if (mdres->compress_method == COMPRESS_ZLIB) { size_t size = MAX_PENDING_SIZE * 2; u8 *tmp; tmp = malloc(MAX_PENDING_SIZE * 2); if (!tmp) { free(buffer); return -ENOMEM; } ret = uncompress(tmp, (unsigned long *)&size, buffer, le32_to_cpu(item->size)); if (ret != Z_OK) { fprintf(stderr, "Error decompressing %d\n", ret); free(buffer); free(tmp); return -EIO; } free(buffer); buffer = tmp; } pthread_mutex_lock(&mdres->mutex); super = (struct btrfs_super_block *)buffer; chunk_root_bytenr = btrfs_super_chunk_root(super); mdres->leafsize = btrfs_super_leafsize(super); memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE); memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE); mdres->devid = le64_to_cpu(super->dev_item.devid); free(buffer); pthread_mutex_unlock(&mdres->mutex); return search_for_chunk_blocks(mdres, chunk_root_bytenr, 0); } static int range_contains_super(u64 physical, u64 bytes) { u64 super_bytenr; int i; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { super_bytenr = btrfs_sb_offset(i); if (super_bytenr >= physical && super_bytenr < physical + bytes) return 1; } return 0; } static void remap_overlapping_chunks(struct mdrestore_struct *mdres) { struct fs_chunk *fs_chunk; while (!list_empty(&mdres->overlapping_chunks)) { fs_chunk = list_first_entry(&mdres->overlapping_chunks, struct fs_chunk, list); list_del_init(&fs_chunk->list); if (range_contains_super(fs_chunk->physical, fs_chunk->bytes)) { fprintf(stderr, "Remapping a chunk that had a super " "mirror inside of it, clearing space cache " "so we don't end up with corruption\n"); mdres->clear_space_cache = 1; } fs_chunk->physical = mdres->last_physical_offset; tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp); mdres->last_physical_offset += fs_chunk->bytes; } } static int __restore_metadump(const char *input, FILE *out, int old_restore, int num_threads, int fixup_offset, const char *target, int multi_devices) { struct meta_cluster *cluster = NULL; struct meta_cluster_header *header; struct mdrestore_struct mdrestore; struct btrfs_fs_info *info = NULL; u64 bytenr = 0; FILE *in = NULL; int ret = 0; if (!strcmp(input, "-")) { in = stdin; } else { in = fopen(input, "r"); if (!in) { perror("unable to open metadump image"); return 1; } } /* NOTE: open with write mode */ if (fixup_offset) { BUG_ON(!target); info = open_ctree_fs_info(target, 0, 0, OPEN_CTREE_WRITES | OPEN_CTREE_RESTORE | OPEN_CTREE_PARTIAL); if (!info) { fprintf(stderr, "%s: open ctree failed\n", __func__); ret = -EIO; goto failed_open; } } cluster = malloc(BLOCK_SIZE); if (!cluster) { fprintf(stderr, "Error allocating cluster\n"); ret = -ENOMEM; goto failed_info; } ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads, fixup_offset, info, multi_devices); if (ret) { fprintf(stderr, "Error initing mdrestore %d\n", ret); goto failed_cluster; } if (!multi_devices && !old_restore) { ret = build_chunk_tree(&mdrestore, cluster); if (ret) goto out; if (!list_empty(&mdrestore.overlapping_chunks)) remap_overlapping_chunks(&mdrestore); } if (in != stdin && fseek(in, 0, SEEK_SET)) { fprintf(stderr, "Error seeking %d\n", errno); goto out; } while (!mdrestore.error) { ret = fread(cluster, BLOCK_SIZE, 1, in); if (!ret) break; header = &cluster->header; if (le64_to_cpu(header->magic) != HEADER_MAGIC || le64_to_cpu(header->bytenr) != bytenr) { fprintf(stderr, "bad header in metadump image\n"); ret = -EIO; break; } ret = add_cluster(cluster, &mdrestore, &bytenr); if (ret) { fprintf(stderr, "Error adding cluster\n"); break; } } ret = wait_for_worker(&mdrestore); out: mdrestore_destroy(&mdrestore, num_threads); failed_cluster: free(cluster); failed_info: if (fixup_offset && info) close_ctree(info->chunk_root); failed_open: if (in != stdin) fclose(in); return ret; } static int restore_metadump(const char *input, FILE *out, int old_restore, int num_threads, int multi_devices) { return __restore_metadump(input, out, old_restore, num_threads, 0, NULL, multi_devices); } static int fixup_metadump(const char *input, FILE *out, int num_threads, const char *target) { return __restore_metadump(input, out, 0, num_threads, 1, target, 1); } static int update_disk_super_on_device(struct btrfs_fs_info *info, const char *other_dev, u64 cur_devid) { struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_path path; struct btrfs_dev_item *dev_item; struct btrfs_super_block *disk_super; char dev_uuid[BTRFS_UUID_SIZE]; char fs_uuid[BTRFS_UUID_SIZE]; u64 devid, type, io_align, io_width; u64 sector_size, total_bytes, bytes_used; char *buf; int fp; int ret; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = cur_devid; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0); if (ret) { fprintf(stderr, "search key fails\n"); exit(1); } leaf = path.nodes[0]; dev_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_dev_item); devid = btrfs_device_id(leaf, dev_item); if (devid != cur_devid) { printk("devid %llu mismatch with %llu\n", devid, cur_devid); exit(1); } type = btrfs_device_type(leaf, dev_item); io_align = btrfs_device_io_align(leaf, dev_item); io_width = btrfs_device_io_width(leaf, dev_item); sector_size = btrfs_device_sector_size(leaf, dev_item); total_bytes = btrfs_device_total_bytes(leaf, dev_item); bytes_used = btrfs_device_bytes_used(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); btrfs_release_path(&path); printk("update disk super on %s devid=%llu\n", other_dev, devid); /* update other devices' super block */ fp = open(other_dev, O_CREAT | O_RDWR, 0600); if (fp < 0) { fprintf(stderr, "could not open %s\n", other_dev); exit(1); } buf = malloc(BTRFS_SUPER_INFO_SIZE); if (!buf) { ret = -ENOMEM; close(fp); return ret; } memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE); disk_super = (struct btrfs_super_block *)buf; dev_item = &disk_super->dev_item; btrfs_set_stack_device_type(dev_item, type); btrfs_set_stack_device_id(dev_item, devid); btrfs_set_stack_device_total_bytes(dev_item, total_bytes); btrfs_set_stack_device_bytes_used(dev_item, bytes_used); btrfs_set_stack_device_io_align(dev_item, io_align); btrfs_set_stack_device_io_width(dev_item, io_width); btrfs_set_stack_device_sector_size(dev_item, sector_size); memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE); csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE); ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET); if (ret != BTRFS_SUPER_INFO_SIZE) { ret = -EIO; goto out; } write_backup_supers(fp, (u8 *)buf); out: free(buf); close(fp); return 0; } static void print_usage(void) { fprintf(stderr, "usage: btrfs-image [options] source target\n"); fprintf(stderr, "\t-r \trestore metadump image\n"); fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n"); fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n"); fprintf(stderr, "\t-o \tdon't mess with the chunk tree when restoring\n"); fprintf(stderr, "\t-s \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n"); fprintf(stderr, "\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n"); fprintf(stderr, "\t-m \trestore for multiple devices\n"); fprintf(stderr, "\n"); fprintf(stderr, "\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n"); fprintf(stderr, "\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n"); exit(1); } int main(int argc, char *argv[]) { char *source; char *target; u64 num_threads = 1; u64 compress_level = 0; int create = 1; int old_restore = 0; int walk_trees = 0; int multi_devices = 0; int ret; int sanitize = 0; int dev_cnt = 0; int usage_error = 0; FILE *out; while (1) { int c = getopt(argc, argv, "rc:t:oswm"); if (c < 0) break; switch (c) { case 'r': create = 0; break; case 't': num_threads = arg_strtou64(optarg); if (num_threads > 32) print_usage(); break; case 'c': compress_level = arg_strtou64(optarg); if (compress_level > 9) print_usage(); break; case 'o': old_restore = 1; break; case 's': sanitize++; break; case 'w': walk_trees = 1; break; case 'm': create = 0; multi_devices = 1; break; default: print_usage(); } } argc = argc - optind; set_argv0(argv); if (check_argc_min(argc, 2)) print_usage(); dev_cnt = argc - 1; if (create) { if (old_restore) { fprintf(stderr, "Usage error: create and restore cannot be used at the same time\n"); usage_error++; } } else { if (walk_trees || sanitize || compress_level) { fprintf(stderr, "Usage error: use -w, -s, -c options for restore makes no sense\n"); usage_error++; } if (multi_devices && dev_cnt < 2) { fprintf(stderr, "Usage error: not enough devices specified for -m option\n"); usage_error++; } if (!multi_devices && dev_cnt != 1) { fprintf(stderr, "Usage error: accepts only 1 device without -m option\n"); usage_error++; } } if (usage_error) print_usage(); source = argv[optind]; target = argv[optind + 1]; if (create && !strcmp(target, "-")) { out = stdout; } else { out = fopen(target, "w+"); if (!out) { perror("unable to create target file"); exit(1); } } if (num_threads == 1 && compress_level > 0) { num_threads = sysconf(_SC_NPROCESSORS_ONLN); if (num_threads <= 0) num_threads = 1; } if (create) { ret = check_mounted(source); if (ret < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); exit(1); } else if (ret) fprintf(stderr, "WARNING: The device is mounted. Make sure the filesystem is quiescent.\n"); ret = create_metadump(source, out, num_threads, compress_level, sanitize, walk_trees); } else { ret = restore_metadump(source, out, old_restore, num_threads, multi_devices); } if (ret) { printk("%s failed (%s)\n", (create) ? "create" : "restore", strerror(errno)); goto out; } /* extended support for multiple devices */ if (!create && multi_devices) { struct btrfs_fs_info *info; u64 total_devs; int i; info = open_ctree_fs_info(target, 0, 0, OPEN_CTREE_PARTIAL | OPEN_CTREE_RESTORE); if (!info) { int e = errno; fprintf(stderr, "unable to open %s error = %s\n", target, strerror(e)); return 1; } total_devs = btrfs_super_num_devices(info->super_copy); if (total_devs != dev_cnt) { printk("it needs %llu devices but has only %d\n", total_devs, dev_cnt); close_ctree(info->chunk_root); goto out; } /* update super block on other disks */ for (i = 2; i <= dev_cnt; i++) { ret = update_disk_super_on_device(info, argv[optind + i], (u64)i); if (ret) { printk("update disk super failed devid=%d (error=%d)\n", i, ret); close_ctree(info->chunk_root); exit(1); } } close_ctree(info->chunk_root); /* fix metadata block to map correct chunk */ ret = fixup_metadump(source, out, 1, target); if (ret) { fprintf(stderr, "fix metadump failed (error=%d)\n", ret); exit(1); } } out: if (out == stdout) { fflush(out); } else { fclose(out); if (ret && create) { int unlink_ret; unlink_ret = unlink(target); if (unlink_ret) fprintf(stderr, "unlink output file failed : %s\n", strerror(errno)); } } return !!ret; }