/* * Copyright (C) 2015 Facebook. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include "kernel-lib/bitops.h" #include "kernel-shared/ctree.h" #include "kernel-shared/disk-io.h" #include "kernel-shared/free-space-tree.h" #include "kernel-shared/transaction.h" #include "kernel-shared/messages.h" #include "kernel-shared/accessors.h" #include "kernel-shared/extent_io.h" #include "kernel-shared/uapi/btrfs.h" #include "kernel-shared/uapi/btrfs_tree.h" #include "common/internal.h" static struct btrfs_root *btrfs_free_space_root(struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group) { struct btrfs_key key = { .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, .type = BTRFS_ROOT_ITEM_KEY, .offset = 0, }; if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) key.offset = block_group->global_root_id; return btrfs_global_root(fs_info, &key); } void set_free_space_tree_thresholds(struct btrfs_fs_info *fs_info, struct btrfs_block_group *cache) { u32 bitmap_range; size_t bitmap_size; u64 num_bitmaps, total_bitmap_size; /* * We convert to bitmaps when the disk space required for using extents * exceeds that required for using bitmaps. */ bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS; num_bitmaps = div_u64(cache->start + bitmap_range - 1, bitmap_range); bitmap_size = sizeof(struct btrfs_item) + BTRFS_FREE_SPACE_BITMAP_SIZE; total_bitmap_size = num_bitmaps * bitmap_size; cache->bitmap_high_thresh = div_u64(total_bitmap_size, sizeof(struct btrfs_item)); /* * We allow for a small buffer between the high threshold and low * threshold to avoid thrashing back and forth between the two formats. */ if (cache->bitmap_high_thresh > 100) cache->bitmap_low_thresh = cache->bitmap_high_thresh - 100; else cache->bitmap_low_thresh = 0; } static struct btrfs_free_space_info * search_free_space_info(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group, struct btrfs_path *path, int cow) { struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key; int ret; key.objectid = block_group->start; key.type = BTRFS_FREE_SPACE_INFO_KEY; key.offset = block_group->length; ret = btrfs_search_slot(trans, root, &key, path, 0, cow); if (ret < 0) return ERR_PTR(ret); if (ret != 0) return ERR_PTR(-ENOENT); return btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_free_space_info); } static int free_space_test_bit(struct btrfs_block_group *block_group, struct btrfs_path *path, u64 offset) { struct extent_buffer *leaf; struct btrfs_key key; u64 found_start, found_end; unsigned long ptr, i; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY); found_start = key.objectid; found_end = key.objectid + key.offset; ASSERT(offset >= found_start && offset < found_end); ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); i = (offset - found_start) / leaf->fs_info->sectorsize; return !!extent_buffer_test_bit(leaf, ptr, i); } /* * btrfs_search_slot() but we're looking for the greatest key less than the * passed key. */ static int btrfs_search_prev_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow) { int ret; ret = btrfs_search_slot(trans, root, key, p, ins_len, cow); if (ret < 0) return ret; if (ret == 0) { ASSERT(0); return -EIO; } if (p->slots[0] == 0) { ASSERT(0); return -EIO; } p->slots[0]--; return 0; } static int add_new_free_space_info(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_free_space_info *info; struct btrfs_key key; struct extent_buffer *leaf; int ret; key.objectid = block_group->start; key.type = BTRFS_FREE_SPACE_INFO_KEY; key.offset = block_group->length; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*info)); if (ret) goto out; leaf = path->nodes[0]; info = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_info); btrfs_set_free_space_extent_count(leaf, info, 0); btrfs_set_free_space_flags(leaf, info, 0); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_release_path(path); return ret; } static inline u32 free_space_bitmap_size(const struct btrfs_fs_info *fs_info, u64 size) { return DIV_ROUND_UP((u32)div_u64(size, fs_info->sectorsize), BITS_PER_BYTE); } static unsigned long *alloc_bitmap(u32 bitmap_size) { unsigned long *ret; unsigned int nofs_flag; u32 bitmap_rounded_size = round_up(bitmap_size, sizeof(unsigned long)); /* * GFP_NOFS doesn't work with kvmalloc(), but we really can't recurse * into the filesystem as the free space bitmap can be modified in the * critical section of a transaction commit. * * TODO: push the memalloc_nofs_{save,restore}() to the caller where we * know that recursion is unsafe. */ nofs_flag = memalloc_nofs_save(); ret = kvzalloc(bitmap_rounded_size, GFP_KERNEL); memalloc_nofs_restore(nofs_flag); return ret; } static void le_bitmap_set(unsigned long *map, unsigned int start, int len) { u8 *p = ((u8 *)map) + BIT_BYTE(start); const unsigned int size = start + len; int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); while (len - bits_to_set >= 0) { *p |= mask_to_set; len -= bits_to_set; bits_to_set = BITS_PER_BYTE; mask_to_set = ~0; p++; } if (len) { mask_to_set &= BITMAP_LAST_BYTE_MASK(size); *p |= mask_to_set; } } static int convert_free_space_to_bitmaps(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_free_space_info *info; struct btrfs_key key, found_key; struct extent_buffer *leaf; unsigned long *bitmap; char *bitmap_cursor; u64 start, end; u64 bitmap_range, i; u32 bitmap_size, flags, expected_extent_count; u32 extent_count = 0; int done = 0, nr; int ret; bitmap_size = free_space_bitmap_size(fs_info, block_group->length); bitmap = alloc_bitmap(bitmap_size); if (!bitmap) { ret = -ENOMEM; goto out; } start = block_group->start; end = block_group->start + block_group->length; key.objectid = end - 1; key.type = (u8)-1; key.offset = (u64)-1; while (!done) { ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; leaf = path->nodes[0]; nr = 0; path->slots[0]++; while (path->slots[0] > 0) { btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { ASSERT(found_key.objectid == block_group->start); ASSERT(found_key.offset == block_group->length); done = 1; break; } else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY) { u64 first, last; ASSERT(found_key.objectid >= start); ASSERT(found_key.objectid < end); ASSERT(found_key.objectid + found_key.offset <= end); first = div_u64(found_key.objectid - start, fs_info->sectorsize); last = div_u64(found_key.objectid + found_key.offset - start, fs_info->sectorsize); le_bitmap_set(bitmap, first, last - first); extent_count++; nr++; path->slots[0]--; } else { ASSERT(0); } } ret = btrfs_del_items(trans, root, path, path->slots[0], nr); if (ret) goto out; btrfs_release_path(path); } info = search_free_space_info(trans, fs_info, block_group, path, 1); if (IS_ERR(info)) { ret = PTR_ERR(info); goto out; } leaf = path->nodes[0]; flags = btrfs_free_space_flags(leaf, info); flags |= BTRFS_FREE_SPACE_USING_BITMAPS; btrfs_set_free_space_flags(leaf, info, flags); expected_extent_count = btrfs_free_space_extent_count(leaf, info); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); if (extent_count != expected_extent_count) { fprintf(stderr, "incorrect extent count for %llu; counted %u, expected %u", block_group->start, extent_count, expected_extent_count); ASSERT(0); ret = -EIO; goto out; } bitmap_cursor = (char *)bitmap; bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS; i = start; while (i < end) { unsigned long ptr; u64 extent_size; u32 data_size; extent_size = min(end - i, bitmap_range); data_size = free_space_bitmap_size(fs_info, extent_size); key.objectid = i; key.type = BTRFS_FREE_SPACE_BITMAP_KEY; key.offset = extent_size; ret = btrfs_insert_empty_item(trans, root, path, &key, data_size); if (ret) goto out; leaf = path->nodes[0]; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); write_extent_buffer(leaf, bitmap_cursor, ptr, data_size); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); i += extent_size; bitmap_cursor += data_size; } ret = 0; out: kvfree(bitmap); if (ret) btrfs_abort_transaction(trans, ret); return ret; } static int convert_free_space_to_extents(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_free_space_info *info; struct btrfs_key key, found_key; struct extent_buffer *leaf; unsigned long *bitmap; u64 start, end; u32 bitmap_size, flags, expected_extent_count; unsigned long nrbits, start_bit, end_bit; u32 extent_count = 0; int done = 0, nr; int ret; bitmap_size = free_space_bitmap_size(fs_info, block_group->length); bitmap = alloc_bitmap(bitmap_size); if (!bitmap) { ret = -ENOMEM; goto out; } start = block_group->start; end = block_group->start + block_group->length; key.objectid = end - 1; key.type = (u8)-1; key.offset = (u64)-1; while (!done) { ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; leaf = path->nodes[0]; nr = 0; path->slots[0]++; while (path->slots[0] > 0) { btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { ASSERT(found_key.objectid == block_group->start); ASSERT(found_key.offset == block_group->length); done = 1; break; } else if (found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) { unsigned long ptr; char *bitmap_cursor; u32 bitmap_pos, data_size; ASSERT(found_key.objectid >= start); ASSERT(found_key.objectid < end); ASSERT(found_key.objectid + found_key.offset <= end); bitmap_pos = div_u64(found_key.objectid - start, fs_info->sectorsize * BITS_PER_BYTE); bitmap_cursor = ((char *)bitmap) + bitmap_pos; data_size = free_space_bitmap_size(fs_info, found_key.offset); ptr = btrfs_item_ptr_offset(leaf, path->slots[0] - 1); read_extent_buffer(leaf, bitmap_cursor, ptr, data_size); nr++; path->slots[0]--; } else { ASSERT(0); } } ret = btrfs_del_items(trans, root, path, path->slots[0], nr); if (ret) goto out; btrfs_release_path(path); } info = search_free_space_info(trans, fs_info, block_group, path, 1); if (IS_ERR(info)) { ret = PTR_ERR(info); goto out; } leaf = path->nodes[0]; flags = btrfs_free_space_flags(leaf, info); flags &= ~BTRFS_FREE_SPACE_USING_BITMAPS; btrfs_set_free_space_flags(leaf, info, flags); expected_extent_count = btrfs_free_space_extent_count(leaf, info); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); nrbits = div_u64(block_group->length, fs_info->sectorsize); start_bit = find_next_bit_le(bitmap, nrbits, 0); while (start_bit < nrbits) { end_bit = find_next_zero_bit_le(bitmap, nrbits, start_bit); ASSERT(start_bit < end_bit); key.objectid = start + start_bit * fs_info->sectorsize; key.type = BTRFS_FREE_SPACE_EXTENT_KEY; key.offset = (end_bit - start_bit) * fs_info->sectorsize; ret = btrfs_insert_empty_item(trans, root, path, &key, 0); if (ret) goto out; btrfs_release_path(path); extent_count++; start_bit = find_next_bit_le(bitmap, nrbits, end_bit); } if (extent_count != expected_extent_count) { fprintf(stderr, "incorrect extent count for %llu; counted %u, expected %u", block_group->start, extent_count, expected_extent_count); ASSERT(0); ret = -EIO; goto out; } ret = 0; out: kvfree(bitmap); if (ret) btrfs_abort_transaction(trans, ret); return ret; } static int update_free_space_extent_count(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, int new_extents) { struct btrfs_free_space_info *info; u32 flags; u32 extent_count; int ret = 0; if (new_extents == 0) return 0; info = search_free_space_info(trans, trans->fs_info, block_group, path, 1); if (IS_ERR(info)) { ret = PTR_ERR(info); goto out; } flags = btrfs_free_space_flags(path->nodes[0], info); extent_count = btrfs_free_space_extent_count(path->nodes[0], info); extent_count += new_extents; btrfs_set_free_space_extent_count(path->nodes[0], info, extent_count); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_release_path(path); if (!(flags & BTRFS_FREE_SPACE_USING_BITMAPS) && extent_count > block_group->bitmap_high_thresh) { ret = convert_free_space_to_bitmaps(trans, block_group, path); } else if ((flags & BTRFS_FREE_SPACE_USING_BITMAPS) && extent_count < block_group->bitmap_low_thresh) { ret = convert_free_space_to_extents(trans, block_group, path); } out: return ret; } static void free_space_set_bits(struct btrfs_block_group *block_group, struct btrfs_path *path, u64 *start, u64 *size, int bit) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_key key; u64 end = *start + *size; u64 found_start, found_end; unsigned long ptr, first, last; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY); found_start = key.objectid; found_end = key.objectid + key.offset; ASSERT(*start >= found_start && *start < found_end); ASSERT(end > found_start); if (end > found_end) end = found_end; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); first = (*start - found_start) / fs_info->sectorsize; last = (end - found_start) / fs_info->sectorsize; if (bit) extent_buffer_bitmap_set(leaf, ptr, first, last - first); else extent_buffer_bitmap_clear(leaf, ptr, first, last - first); btrfs_mark_buffer_dirty(leaf); *size -= end - *start; *start = end; } /* * We can't use btrfs_next_item() in modify_free_space_bitmap() because * btrfs_next_leaf() doesn't get the path for writing. We can forgo the fancy * tree walking in btrfs_next_leaf() anyways because we know exactly what we're * looking for. */ static int free_space_next_bitmap(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *p) { struct btrfs_key key; if (p->slots[0] + 1 < btrfs_header_nritems(p->nodes[0])) { p->slots[0]++; return 0; } btrfs_item_key_to_cpu(p->nodes[0], &key, p->slots[0]); btrfs_release_path(p); key.objectid += key.offset; key.type = (u8)-1; key.offset = (u64)-1; return btrfs_search_prev_slot(trans, root, &key, p, 0, 1); } /* * If remove is 1, then we are removing free space, thus clearing bits in the * bitmap. If remove is 0, then we are adding free space, thus setting bits in * the bitmap. */ static int modify_free_space_bitmap(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, u64 start, u64 size, int remove) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key; u64 end = start + size; u64 cur_start, cur_size; int prev_bit, next_bit; int new_extents; int ret; /* * Read the bit for the block immediately before the extent of space if * that block is within the block group. */ if (start > block_group->start) { u64 prev_block = start - trans->fs_info->sectorsize; key.objectid = prev_block; key.type = (u8)-1; key.offset = (u64)-1; ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1); if (ret) goto out; prev_bit = free_space_test_bit(block_group, path, prev_block); /* The previous block may have been in the previous bitmap. */ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (start >= key.objectid + key.offset) { ret = free_space_next_bitmap(trans, root, path); if (ret) goto out; } } else { key.objectid = start; key.type = (u8)-1; key.offset = (u64)-1; ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1); if (ret) goto out; prev_bit = -1; } /* * Iterate over all of the bitmaps overlapped by the extent of space, * clearing/setting bits as required. */ cur_start = start; cur_size = size; while (1) { free_space_set_bits(block_group, path, &cur_start, &cur_size, !remove); if (cur_size == 0) break; ret = free_space_next_bitmap(trans, root, path); if (ret) goto out; } /* * Read the bit for the block immediately after the extent of space if * that block is within the block group. */ if (end < block_group->start + block_group->length) { /* The next block may be in the next bitmap. */ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (end >= key.objectid + key.offset) { ret = free_space_next_bitmap(trans, root, path); if (ret) goto out; } next_bit = free_space_test_bit(block_group, path, end); } else { next_bit = -1; } if (remove) { new_extents = -1; if (prev_bit == 1) { /* Leftover on the left. */ new_extents++; } if (next_bit == 1) { /* Leftover on the right. */ new_extents++; } } else { new_extents = 1; if (prev_bit == 1) { /* Merging with neighbor on the left. */ new_extents--; } if (next_bit == 1) { /* Merging with neighbor on the right. */ new_extents--; } } btrfs_release_path(path); ret = update_free_space_extent_count(trans, block_group, path, new_extents); out: return ret; } static int remove_free_space_extent(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, u64 start, u64 size) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key; u64 found_start, found_end; u64 end = start + size; int new_extents = -1; int ret; key.objectid = start; key.type = (u8)-1; key.offset = (u64)-1; ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY); found_start = key.objectid; found_end = key.objectid + key.offset; ASSERT(start >= found_start && end <= found_end); /* * Okay, now that we've found the free space extent which contains the * free space that we are removing, there are four cases: * * 1. We're using the whole extent: delete the key we found and * decrement the free space extent count. * 2. We are using part of the extent starting at the beginning: delete * the key we found and insert a new key representing the leftover at * the end. There is no net change in the number of extents. * 3. We are using part of the extent ending at the end: delete the key * we found and insert a new key representing the leftover at the * beginning. There is no net change in the number of extents. * 4. We are using part of the extent in the middle: delete the key we * found and insert two new keys representing the leftovers on each * side. Where we used to have one extent, we now have two, so increment * the extent count. We may need to convert the block group to bitmaps * as a result. */ /* Delete the existing key (cases 1-4). */ ret = btrfs_del_item(trans, root, path); if (ret) goto out; /* Add a key for leftovers at the beginning (cases 3 and 4). */ if (start > found_start) { key.objectid = found_start; key.type = BTRFS_FREE_SPACE_EXTENT_KEY; key.offset = start - found_start; btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, root, path, &key, 0); if (ret) goto out; new_extents++; } /* Add a key for leftovers at the end (cases 2 and 4). */ if (end < found_end) { key.objectid = end; key.type = BTRFS_FREE_SPACE_EXTENT_KEY; key.offset = found_end - end; btrfs_release_path(path); ret = btrfs_insert_empty_item(trans, root, path, &key, 0); if (ret) goto out; new_extents++; } btrfs_release_path(path); ret = update_free_space_extent_count(trans, block_group, path, new_extents); out: return ret; } static int __remove_from_free_space_tree(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, u64 start, u64 size) { struct btrfs_free_space_info *info; u32 flags; info = search_free_space_info(NULL, trans->fs_info, block_group, path, 0); if (IS_ERR(info)) return PTR_ERR(info); flags = btrfs_free_space_flags(path->nodes[0], info); btrfs_release_path(path); if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) { return modify_free_space_bitmap(trans, block_group, path, start, size, 1); } else { return remove_free_space_extent(trans, block_group, path, start, size); } } int remove_from_free_space_tree(struct btrfs_trans_handle *trans, u64 start, u64 size) { struct btrfs_block_group *block_group; struct btrfs_path *path; int ret; if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) return 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } block_group = btrfs_lookup_block_group(trans->fs_info, start); if (!block_group) { ASSERT(0); ret = -ENOENT; goto out; } ret = __remove_from_free_space_tree(trans, block_group, path, start, size); out: btrfs_free_path(path); if (ret) btrfs_abort_transaction(trans, ret); return ret; } static int add_free_space_extent(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, u64 start, u64 size) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key, new_key; u64 found_start, found_end; u64 end = start + size; int new_extents = 1; int ret; /* * We are adding a new extent of free space, but we need to merge * extents. There are four cases here: * * 1. The new extent does not have any immediate neighbors to merge * with: add the new key and increment the free space extent count. We * may need to convert the block group to bitmaps as a result. * 2. The new extent has an immediate neighbor before it: remove the * previous key and insert a new key combining both of them. There is no * net change in the number of extents. * 3. The new extent has an immediate neighbor after it: remove the next * key and insert a new key combining both of them. There is no net * change in the number of extents. * 4. The new extent has immediate neighbors on both sides: remove both * of the keys and insert a new key combining all of them. Where we used * to have two extents, we now have one, so decrement the extent count. */ new_key.objectid = start; new_key.type = BTRFS_FREE_SPACE_EXTENT_KEY; new_key.offset = size; /* Search for a neighbor on the left. */ if (start == block_group->start) goto right; key.objectid = start - 1; key.type = (u8)-1; key.offset = (u64)-1; ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) { ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY); btrfs_release_path(path); goto right; } found_start = key.objectid; found_end = key.objectid + key.offset; ASSERT(found_start >= block_group->start && found_end > block_group->start); ASSERT(found_start < start && found_end <= start); /* * Delete the neighbor on the left and absorb it into the new key (cases * 2 and 4). */ if (found_end == start) { ret = btrfs_del_item(trans, root, path); if (ret) goto out; new_key.objectid = found_start; new_key.offset += key.offset; new_extents--; } btrfs_release_path(path); right: /* Search for a neighbor on the right. */ if (end == block_group->start + block_group->length) goto insert; key.objectid = end; key.type = (u8)-1; key.offset = (u64)-1; ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) { ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY); btrfs_release_path(path); goto insert; } found_start = key.objectid; found_end = key.objectid + key.offset; ASSERT(found_start >= block_group->start && found_end > block_group->start); ASSERT((found_start < start && found_end <= start) || (found_start >= end && found_end > end)); /* * Delete the neighbor on the right and absorb it into the new key * (cases 3 and 4). */ if (found_start == end) { ret = btrfs_del_item(trans, root, path); if (ret) goto out; new_key.offset += key.offset; new_extents--; } btrfs_release_path(path); insert: /* Insert the new key (cases 1-4). */ ret = btrfs_insert_empty_item(trans, root, path, &new_key, 0); if (ret) goto out; btrfs_release_path(path); ret = update_free_space_extent_count(trans, block_group, path, new_extents); out: return ret; } static int __add_to_free_space_tree(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group, struct btrfs_path *path, u64 start, u64 size) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_free_space_info *info; u32 flags; info = search_free_space_info(NULL, fs_info, block_group, path, 0); if (IS_ERR(info)) return PTR_ERR(info); flags = btrfs_free_space_flags(path->nodes[0], info); btrfs_release_path(path); if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) { return modify_free_space_bitmap(trans, block_group, path, start, size, 0); } else { return add_free_space_extent(trans, block_group, path, start, size); } } int add_to_free_space_tree(struct btrfs_trans_handle *trans, u64 start, u64 size) { struct btrfs_block_group *block_group; struct btrfs_path *path; int ret; if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) return 0; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } block_group = btrfs_lookup_block_group(trans->fs_info, start); if (!block_group) { ASSERT(0); ret = -ENOENT; goto out; } ret = __add_to_free_space_tree(trans, block_group, path, start, size); out: btrfs_free_path(path); if (ret) btrfs_abort_transaction(trans, ret); return ret; } int add_block_group_free_space(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group) { struct btrfs_path *path; int ret; if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = add_new_free_space_info(trans, block_group, path); if (ret) goto out; ret = __add_to_free_space_tree(trans, block_group, path, block_group->start, block_group->length); out: btrfs_free_path(path); if (ret) btrfs_abort_transaction(trans, ret); return ret; } int populate_free_space_tree(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *extent_root; struct btrfs_path *path, *path2; struct btrfs_key key; u64 start, end; int ret; if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) return -EINVAL; extent_root = btrfs_extent_root(fs_info, 0); path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = READA_FORWARD; path2 = btrfs_alloc_path(); if (!path2) { btrfs_free_path(path); return -ENOMEM; } ret = add_new_free_space_info(trans, block_group, path2); if (ret) goto out; start = block_group->start; end = block_group->start + block_group->length; /* * Iterate through all of the extent and metadata items in this block * group, adding the free space between them and the free space at the * end. Note that EXTENT_ITEM and METADATA_ITEM are less than * BLOCK_GROUP_ITEM, so an extent may precede the block group that it's * contained in. */ key.objectid = block_group->start; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot_for_read(extent_root, &key, path, 1, 0); if (ret < 0) goto out; if (ret > 0) { ASSERT(btrfs_fs_incompat(trans->fs_info, EXTENT_TREE_V2)); goto done; } while (1) { btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type == BTRFS_EXTENT_ITEM_KEY || key.type == BTRFS_METADATA_ITEM_KEY) { if (key.objectid >= end) break; if (start < key.objectid) { ret = __add_to_free_space_tree(trans, block_group, path2, start, key.objectid - start); if (ret) goto out; } start = key.objectid; if (key.type == BTRFS_METADATA_ITEM_KEY) start += trans->fs_info->nodesize; else start += key.offset; } else if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { if (key.objectid != block_group->start) break; } ret = btrfs_next_item(extent_root, path); if (ret < 0) goto out; if (ret) break; } done: if (start < end) { ret = __add_to_free_space_tree(trans, block_group, path2, start, end - start); if (ret) goto out; } ret = 0; out: btrfs_free_path(path2); btrfs_free_path(path); return ret; } int remove_block_group_free_space(struct btrfs_trans_handle *trans, struct btrfs_block_group *block_group) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_path *path; struct btrfs_key key, found_key; struct extent_buffer *leaf; u64 start, end; int done = 0, nr; int ret; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } start = block_group->start; end = block_group->start + block_group->length; key.objectid = end - 1; key.type = (u8)-1; key.offset = (u64)-1; while (!done) { ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); if (ret) goto out; leaf = path->nodes[0]; nr = 0; path->slots[0]++; while (path->slots[0] > 0) { btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { ASSERT(found_key.objectid == block_group->start); ASSERT(found_key.offset == block_group->length); done = 1; nr++; path->slots[0]--; break; } else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY || found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) { ASSERT(found_key.objectid >= start); ASSERT(found_key.objectid < end); ASSERT(found_key.objectid + found_key.offset <= end); nr++; path->slots[0]--; } else { ASSERT(0); } } ret = btrfs_del_items(trans, root, path, path->slots[0], nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: btrfs_free_path(path); if (ret) btrfs_abort_transaction(trans, ret); return ret; } static int clear_free_space_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; int nr; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = 0; key.offset = 0; while (1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; nr = btrfs_header_nritems(path->nodes[0]); if (!nr) break; path->slots[0] = 0; ret = btrfs_del_items(trans, root, path, 0, nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_clear_free_space_tree(struct btrfs_fs_info *fs_info) { struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *free_space_root = btrfs_free_space_root(fs_info, NULL); int ret; u64 features; trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) return PTR_ERR(trans); if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { struct btrfs_key key = { .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, .type = BTRFS_ROOT_ITEM_KEY, .offset = 0, }; while (key.offset < fs_info->nr_global_roots) { free_space_root = btrfs_global_root(fs_info, &key); ret = clear_free_space_tree(trans, free_space_root); if (ret) goto abort; key.offset++; } } else { features = btrfs_super_compat_ro_flags(fs_info->super_copy); features &= ~(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE); btrfs_set_super_compat_ro_flags(fs_info->super_copy, features); ret = clear_free_space_tree(trans, free_space_root); if (ret) goto abort; ret = btrfs_delete_and_free_root(trans, free_space_root); if (ret) goto abort; } ret = btrfs_commit_transaction(trans, tree_root); abort: return ret; } static int load_free_space_bitmaps(struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group, struct btrfs_path *path, u32 expected_extent_count, int *errors) { struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key; int prev_bit = 0, bit; u64 extent_start = 0; u64 start, end, offset; u32 extent_count = 0; int ret; start = block_group->start; end = block_group->start + block_group->length; while (1) { ret = btrfs_next_item(root, path); if (ret < 0) goto out; if (ret) break; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type == BTRFS_FREE_SPACE_INFO_KEY) break; if (key.type != BTRFS_FREE_SPACE_BITMAP_KEY) { fprintf(stderr, "unexpected key of type %u\n", key.type); (*errors)++; break; } if (key.objectid >= end) { fprintf(stderr, "free space bitmap starts at %llu, beyond end of block group %llu-%llu\n", key.objectid, start, end); (*errors)++; break; } if (key.objectid + key.offset > end) { fprintf(stderr, "free space bitmap ends at %llu, beyond end of block group %llu-%llu\n", key.objectid, start, end); (*errors)++; break; } offset = key.objectid; while (offset < key.objectid + key.offset) { bit = free_space_test_bit(block_group, path, offset); if (prev_bit == 0 && bit == 1) { extent_start = offset; } else if (prev_bit == 1 && bit == 0) { add_new_free_space(block_group, fs_info, extent_start, offset); extent_count++; } prev_bit = bit; offset += fs_info->sectorsize; } } if (prev_bit == 1) { add_new_free_space(block_group, fs_info, extent_start, end); extent_count++; } if (extent_count != expected_extent_count) { fprintf(stderr, "free space info recorded %u extents, counted %u\n", expected_extent_count, extent_count); (*errors)++; } ret = 0; out: return ret; } static int load_free_space_extents(struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group, struct btrfs_path *path, u32 expected_extent_count, int *errors) { struct btrfs_root *root = btrfs_free_space_root(fs_info, block_group); struct btrfs_key key, prev_key = { 0 }; int have_prev = 0; u64 start, end; u32 extent_count = 0; int ret; start = block_group->start; end = block_group->start + block_group->length; while (1) { ret = btrfs_next_item(root, path); if (ret < 0) goto out; if (ret) break; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type == BTRFS_FREE_SPACE_INFO_KEY) break; if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) { fprintf(stderr, "unexpected key of type %u\n", key.type); (*errors)++; break; } if (key.objectid >= end) { fprintf(stderr, "free space extent starts at %llu, beyond end of block group %llu-%llu\n", key.objectid, start, end); (*errors)++; break; } if (key.objectid + key.offset > end) { fprintf(stderr, "free space extent ends at %llu, beyond end of block group %llu-%llu\n", key.objectid + key.offset, start, end); (*errors)++; break; } if (have_prev) { u64 cur_start = key.objectid; u64 cur_end = cur_start + key.offset; u64 prev_start = prev_key.objectid; u64 prev_end = prev_start + prev_key.offset; if (cur_start < prev_end) { fprintf(stderr, "free space extent %llu-%llu overlaps with previous %llu-%llu\n", cur_start, cur_end, prev_start, prev_end); (*errors)++; } else if (cur_start == prev_end) { fprintf(stderr, "free space extent %llu-%llu is unmerged with previous %llu-%llu\n", cur_start, cur_end, prev_start, prev_end); (*errors)++; } } add_new_free_space(block_group, fs_info, key.objectid, key.objectid + key.offset); extent_count++; prev_key = key; have_prev = 1; } if (extent_count != expected_extent_count) { fprintf(stderr, "free space info recorded %u extents, counted %u\n", expected_extent_count, extent_count); (*errors)++; } ret = 0; out: return ret; } #define btrfs_set_fs_compat_ro(__fs_info, opt) \ __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_compat_ro_flags(disk_super, features); } } } int btrfs_create_free_space_tree(struct btrfs_fs_info *fs_info) { struct btrfs_trans_handle *trans; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *free_space_root; struct btrfs_block_group *block_group; u64 start = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE; struct btrfs_key root_key = { .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, .type = BTRFS_ROOT_ITEM_KEY, }; int ret; trans = btrfs_start_transaction(tree_root, 0); if (IS_ERR(trans)) return PTR_ERR(trans); free_space_root = btrfs_create_tree(trans, fs_info, &root_key); if (IS_ERR(free_space_root)) { ret = PTR_ERR(free_space_root); goto abort; } ret = btrfs_global_root_insert(fs_info, free_space_root); if (ret) goto abort; add_root_to_dirty_list(free_space_root); do { block_group = btrfs_lookup_first_block_group(fs_info, start); if (!block_group) break; start = block_group->start + block_group->length; ret = populate_free_space_tree(trans, block_group); if (ret) goto abort; } while (block_group); btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE); btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID); btrfs_set_super_cache_generation(fs_info->super_copy, 0); ret = btrfs_commit_transaction(trans, tree_root); if (ret) return ret; return 0; abort: btrfs_abort_transaction(trans, ret); return ret; } int load_free_space_tree(struct btrfs_fs_info *fs_info, struct btrfs_block_group *block_group) { struct btrfs_free_space_info *info; struct btrfs_path *path; u32 extent_count, flags; int errors = 0; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = READA_BACK; info = search_free_space_info(NULL, fs_info, block_group, path, 0); if (IS_ERR(info)) { ret = PTR_ERR(info); goto out; } extent_count = btrfs_free_space_extent_count(path->nodes[0], info); flags = btrfs_free_space_flags(path->nodes[0], info); if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) { ret = load_free_space_bitmaps(fs_info, block_group, path, extent_count, &errors); } else { ret = load_free_space_extents(fs_info, block_group, path, extent_count, &errors); } if (ret) goto out; ret = 0; out: btrfs_free_path(path); return ret ? ret : errors; }