/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_CTREE_H__ #define __BTRFS_CTREE_H__ #include "kerncompat.h" #include #include #include "kernel-lib/list.h" #include "kernel-lib/bitops.h" #include "kernel-lib/rbtree_types.h" #include "kernel-shared/uapi/btrfs.h" #include "kernel-shared/uapi/btrfs_tree.h" #include "kernel-shared/extent_io.h" #include "kernel-shared/accessors.h" #include "kernel-shared/extent-io-tree.h" #include "kernel-shared/locking.h" #include "crypto/crc32c.h" #include "common/extent-cache.h" struct btrfs_root; struct btrfs_trans_handle; struct btrfs_free_space_ctl; /* * Fake signature for an unfinalized filesystem, which only has barebone tree * structures (normally 6 near empty trees, on SINGLE meta/sys temporary chunks) * * ascii !BHRfS_M, no null */ #define BTRFS_MAGIC_TEMPORARY 0x4D5F536652484221ULL #define BTRFS_MAX_MIRRORS 3 struct btrfs_mapping_tree { struct cache_tree cache_tree; }; static inline unsigned long btrfs_chunk_item_size(int num_stripes) { BUG_ON(num_stripes == 0); return sizeof(struct btrfs_chunk) + sizeof(struct btrfs_stripe) * (num_stripes - 1); } static inline u32 __BTRFS_LEAF_DATA_SIZE(u32 nodesize) { return nodesize - sizeof(struct btrfs_header); } #define BTRFS_LEAF_DATA_SIZE(fs_info) (fs_info->leaf_data_size) #define BTRFS_SUPER_INFO_OFFSET (65536) #define BTRFS_SUPER_INFO_SIZE (4096) /* * The FREE_SPACE_TREE and FREE_SPACE_TREE_VALID compat_ro bits must not be * added here until read-write support for the free space tree is implemented in * btrfs-progs. */ #define BTRFS_FEATURE_COMPAT_RO_SUPP \ (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ BTRFS_FEATURE_COMPAT_RO_VERITY | \ BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE) #if EXPERIMENTAL #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ BTRFS_FEATURE_INCOMPAT_ZONED | \ BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2 | \ BTRFS_FEATURE_INCOMPAT_RAID_STRIPE_TREE | \ BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA) #else #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ BTRFS_FEATURE_INCOMPAT_ZONED | \ BTRFS_FEATURE_INCOMPAT_RAID_STRIPE_TREE | \ BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA) #endif /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ enum { READA_NONE, READA_BACK, READA_FORWARD, /* * Similar to READA_FORWARD but unlike it: * * 1) It will trigger readahead even for leaves that are not close to * each other on disk; * 2) It also triggers readahead for nodes; * 3) During a search, even when a node or leaf is already in memory, it * will still trigger readahead for other nodes and leaves that follow * it. * * This is meant to be used only when we know we are iterating over the * entire tree or a very large part of it. */ READA_FORWARD_ALWAYS, }; /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; /* The kernel locking scheme is not done in userspace. */ u8 locks[BTRFS_MAX_LEVEL]; u8 reada; /* keep some upper locks as we walk down */ u8 lowest_level; /* * set by btrfs_split_item, tells search_slot to keep all locks * and to force calls to keep space in the nodes */ unsigned int search_for_split:1; unsigned int keep_locks:1; unsigned int skip_locking:1; unsigned int search_commit_root:1; unsigned int need_commit_sem:1; unsigned int skip_release_on_error:1; /* * Indicate that new item (btrfs_search_slot) is extending already * existing item and ins_len contains only the data size and not item * header (ie. sizeof(struct btrfs_item) is not included). */ unsigned int search_for_extension:1; /* Stop search if any locks need to be taken (for read) */ unsigned int nowait:1; unsigned int skip_check_block:1; }; #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) \ ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ sizeof(struct btrfs_item)) #define BTRFS_MAX_EXTENT_SIZE 128UL * 1024 * 1024 /* * We don't want to overwrite 1M at the beginning of device, even though * there is our 1st superblock at 64k. Some possible reasons: * - the first 64k blank is useful for some boot loader/manager * - the first 1M could be scratched by buggy partitioner or somesuch */ #define BTRFS_BLOCK_RESERVED_1M_FOR_SUPER ((u64)1 * 1024 * 1024) enum btrfs_raid_types { BTRFS_RAID_RAID10, BTRFS_RAID_RAID1, BTRFS_RAID_DUP, BTRFS_RAID_RAID0, BTRFS_RAID_SINGLE, BTRFS_RAID_RAID5, BTRFS_RAID_RAID6, BTRFS_RAID_RAID1C3, BTRFS_RAID_RAID1C4, BTRFS_NR_RAID_TYPES }; /* * GLOBAL_RSV does not exist as a on-disk block group type and is used * internally for exporting info about global block reserve from space infos */ #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) #define BTRFS_QGROUP_LEVEL_SHIFT 48 static inline u64 btrfs_qgroup_subvolid(u64 qgroupid) { return qgroupid & ((1ULL << BTRFS_QGROUP_LEVEL_SHIFT) - 1); } struct btrfs_space_info { u64 flags; u64 total_bytes; /* * Space already used. * Only accounting space in current extent tree, thus delayed ref * won't be accounted here. */ u64 bytes_used; /* * Space being pinned down. * So extent allocator will not try to allocate space from them. * * For cases like extents being freed in current transaction, or * manually pinned bytes for re-initializing certain trees. */ u64 bytes_pinned; /* * Space being reserved. * Space has already being reserved but not yet reach extent tree. * * New tree blocks allocated in current transaction goes here. */ u64 bytes_reserved; int full; struct list_head list; }; struct btrfs_block_group { struct btrfs_space_info *space_info; struct btrfs_free_space_ctl *free_space_ctl; u64 start; u64 length; u64 used; u64 bytes_super; u64 pinned; u64 flags; int cached; int ro; /* * If the free space extent count exceeds this number, convert the block * group to bitmaps. */ u32 bitmap_high_thresh; /* * If the free space extent count drops below this number, convert the * block group back to extents. */ u32 bitmap_low_thresh; /* Block group cache stuff */ struct rb_node cache_node; /* For dirty block groups */ struct list_head dirty_list; /* * Allocation offset for the block group to implement sequential * allocation. This is used only with ZONED mode enabled. */ u64 alloc_offset; u64 write_offset; u64 global_root_id; }; struct btrfs_device; struct btrfs_fs_devices; struct btrfs_fs_info { u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; u8 *new_chunk_tree_uuid; struct btrfs_root *fs_root; struct btrfs_root *tree_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *quota_root; struct btrfs_root *uuid_root; struct btrfs_root *block_group_root; struct btrfs_root *stripe_root; struct rb_root global_roots_tree; struct rb_root fs_root_tree; /* the log root tree is a directory of all the other log roots */ struct btrfs_root *log_root_tree; struct cache_tree extent_cache; u64 max_cache_size; u64 cache_size; struct list_head lru; struct extent_io_tree dirty_buffers; struct extent_io_tree free_space_cache; struct extent_io_tree pinned_extents; struct extent_io_tree extent_ins; struct extent_io_tree *excluded_extents; spinlock_t trans_lock; struct rw_semaphore commit_root_sem; struct rb_root block_group_cache_tree; /* logical->physical extent mapping */ struct btrfs_mapping_tree mapping_tree; u64 generation; u64 last_trans_committed; u64 avail_data_alloc_bits; u64 avail_metadata_alloc_bits; u64 avail_system_alloc_bits; u64 data_alloc_profile; u64 metadata_alloc_profile; u64 system_alloc_profile; struct btrfs_trans_handle *running_transaction; struct btrfs_super_block *super_copy; u64 super_bytenr; u64 total_pinned; u64 nr_global_roots; struct list_head dirty_cowonly_roots; struct list_head recow_ebs; struct btrfs_fs_devices *fs_devices; struct list_head space_info; unsigned int system_allocs:1; unsigned int readonly:1; unsigned int on_restoring:1; unsigned int is_chunk_recover:1; unsigned int quota_enabled:1; unsigned int suppress_check_block_errors:1; unsigned int ignore_fsid_mismatch:1; /* Don't verify checksums at all */ unsigned int skip_csum_check:1; unsigned int ignore_chunk_tree_error:1; unsigned int avoid_meta_chunk_alloc:1; unsigned int avoid_sys_chunk_alloc:1; unsigned int finalize_on_close:1; unsigned int hide_names:1; unsigned int allow_transid_mismatch:1; unsigned int skip_leaf_item_checks:1; unsigned int rebuilding_extent_tree:1; int transaction_aborted; int (*free_extent_hook)(u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_drop); struct cache_tree *fsck_extent_cache; struct cache_tree *corrupt_blocks; /* * For converting to/from bg tree feature, this records the bytenr * of the last processed block group item. * * Any new block group item after this bytenr is using the target * block group item format. (e.g. if converting to bg tree, bg item * after this bytenr should go into block group tree). * * Thus the number should decrease as our convert progress goes. */ u64 last_converted_bg_bytenr; /* Cached block sizes */ u32 nodesize; u32 sectorsize; u32 stripesize; u32 leaf_data_size; /* * For open_ctree_fs_info() to hold the initial fd until close. * * For writeable open_ctree_fs_info() call, we should not close * the fd until the fs_info is properly closed, or it will trigger * udev scan while our fs is not properly initialized. */ int initial_fd; u16 csum_type; u16 csum_size; /* * Zone size > 0 when in ZONED mode, otherwise it's used for a check * if the mode is enabled */ union { u64 zone_size; u64 zoned; }; struct super_block *sb; }; static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) { return fs_info->zoned != 0; } static inline bool btrfs_is_testing(const struct btrfs_fs_info *fs_info) { return false; } /* * The state of btrfs root */ enum { /* * btrfs_record_root_in_trans is a multi-step process, and it can race * with the balancing code. But the race is very small, and only the * first time the root is added to each transaction. So IN_TRANS_SETUP * is used to tell us when more checks are required */ BTRFS_ROOT_IN_TRANS_SETUP, /* * Set if tree blocks of this root can be shared by other roots. * Only subvolume trees and their reloc trees have this bit set. * Conflicts with TRACK_DIRTY bit. * * This affects two things: * * - How balance works * For shareable roots, we need to use reloc tree and do path * replacement for balance, and need various pre/post hooks for * snapshot creation to handle them. * * While for non-shareable trees, we just simply do a tree search * with COW. * * - How dirty roots are tracked * For shareable roots, btrfs_record_root_in_trans() is needed to * track them, while non-subvolume roots have TRACK_DIRTY bit, they * don't need to set this manually. */ BTRFS_ROOT_SHAREABLE, BTRFS_ROOT_TRACK_DIRTY, BTRFS_ROOT_IN_RADIX, BTRFS_ROOT_ORPHAN_ITEM_INSERTED, BTRFS_ROOT_DEFRAG_RUNNING, BTRFS_ROOT_FORCE_COW, BTRFS_ROOT_MULTI_LOG_TASKS, BTRFS_ROOT_DIRTY, BTRFS_ROOT_DELETING, /* * Reloc tree is orphan, only kept here for qgroup delayed subtree scan * * Set for the subvolume tree owning the reloc tree. */ BTRFS_ROOT_DEAD_RELOC_TREE, /* Mark dead root stored on device whose cleanup needs to be resumed */ BTRFS_ROOT_DEAD_TREE, /* The root has a log tree. Used for subvolume roots and the tree root. */ BTRFS_ROOT_HAS_LOG_TREE, /* Qgroup flushing is in progress */ BTRFS_ROOT_QGROUP_FLUSHING, /* We started the orphan cleanup for this root. */ BTRFS_ROOT_ORPHAN_CLEANUP, /* This root has a drop operation that was started previously. */ BTRFS_ROOT_UNFINISHED_DROP, /* This reloc root needs to have its buffers lockdep class reset. */ BTRFS_ROOT_RESET_LOCKDEP_CLASS, }; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. */ struct btrfs_root { struct rb_node rb_node; struct extent_buffer *node; struct extent_buffer *commit_root; struct btrfs_root *log_root; struct btrfs_root *reloc_root; unsigned long state; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; u64 objectid; u64 last_trans; u32 type; u64 last_inode_alloc; struct list_head unaligned_extent_recs; /* the dirty list is only used by non-reference counted roots */ struct list_head dirty_list; spinlock_t accounting_lock; }; static inline u64 btrfs_root_id(const struct btrfs_root *root) { return root->root_key.objectid; } static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) { return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); } static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) { return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); } static inline u32 BTRFS_NODEPTRS_PER_EXTENT_BUFFER(const struct extent_buffer *eb) { BUG_ON(!eb->fs_info); BUG_ON(eb->fs_info->nodesize != eb->len); return BTRFS_LEAF_DATA_SIZE(eb->fs_info) / sizeof(struct btrfs_key_ptr); } static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) { return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); } /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 12 #define BTRFS_INODE_EXTREF_KEY 13 #define BTRFS_XATTR_ITEM_KEY 24 #define BTRFS_VERITY_DESC_ITEM_KEY 36 #define BTRFS_VERITY_MERKLE_ITEM_KEY 37 #define BTRFS_ORPHAN_ITEM_KEY 48 #define BTRFS_DIR_LOG_ITEM_KEY 60 #define BTRFS_DIR_LOG_INDEX_KEY 72 /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_ITEM_KEY 84 #define BTRFS_DIR_INDEX_KEY 96 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 108 /* * csum items have the checksums for data in the extents */ #define BTRFS_CSUM_ITEM_KEY 120 /* * extent csums are stored in a separate tree and hold csums for * an entire extent on disk. */ #define BTRFS_EXTENT_CSUM_KEY 128 /* * root items point to tree roots. There are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 132 /* * root backrefs tie subvols and snapshots to the directory entries that * reference them */ #define BTRFS_ROOT_BACKREF_KEY 144 /* * root refs make a fast index for listing all of the snapshots and * subvolumes referenced by a given root. They point directly to the * directory item in the root that references the subvol */ #define BTRFS_ROOT_REF_KEY 156 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 168 /* * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know * the length, so we save the level in key->offset instead of the length. */ #define BTRFS_METADATA_ITEM_KEY 169 #define BTRFS_TREE_BLOCK_REF_KEY 176 #define BTRFS_EXTENT_DATA_REF_KEY 178 /* old style extent backrefs */ #define BTRFS_EXTENT_REF_V0_KEY 180 #define BTRFS_SHARED_BLOCK_REF_KEY 182 #define BTRFS_SHARED_DATA_REF_KEY 184 /* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 /* * Every block group is represented in the free space tree by a free space info * item, which stores some accounting information. It is keyed on * (block_group_start, FREE_SPACE_INFO, block_group_length). */ #define BTRFS_FREE_SPACE_INFO_KEY 198 /* * A free space extent tracks an extent of space that is free in a block group. * It is keyed on (start, FREE_SPACE_EXTENT, length). */ #define BTRFS_FREE_SPACE_EXTENT_KEY 199 /* * When a block group becomes very fragmented, we convert it to use bitmaps * instead of extents. A free space bitmap is keyed on * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with * (length / sectorsize) bits. */ #define BTRFS_FREE_SPACE_BITMAP_KEY 200 #define BTRFS_DEV_EXTENT_KEY 204 #define BTRFS_DEV_ITEM_KEY 216 #define BTRFS_CHUNK_ITEM_KEY 228 #define BTRFS_RAID_STRIPE_KEY 230 #define BTRFS_BALANCE_ITEM_KEY 248 /* * quota groups */ #define BTRFS_QGROUP_STATUS_KEY 240 #define BTRFS_QGROUP_INFO_KEY 242 #define BTRFS_QGROUP_LIMIT_KEY 244 #define BTRFS_QGROUP_RELATION_KEY 246 /* * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */ #define BTRFS_BALANCE_ITEM_KEY 248 /* * The key type for tree items that are stored persistently, but do not need to * exist for extended period of time. The items can exist in any tree. * * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] * * Existing items: * * - balance status item (objectid -4) * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) * * - second csum tree for conversion (objecitd -13) * (BTRFS_CSUM_CHANGE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, ) */ #define BTRFS_TEMPORARY_ITEM_KEY 248 /* * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */ #define BTRFS_DEV_STATS_KEY 249 /* * The key type for tree items that are stored persistently and usually exist * for a long period, eg. filesystem lifetime. The item kinds can be status * information, stats or preference values. The item can exist in any tree. * * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] * * Existing items: * * - device statistics, store IO stats in the device tree, one key for all * stats * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) */ #define BTRFS_PERSISTENT_ITEM_KEY 249 /* * Persistently stores the device replace state in the device tree. * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). */ #define BTRFS_DEV_REPLACE_KEY 250 /* * Stores items that allow to quickly map UUIDs to something else. * These items are part of the filesystem UUID tree. * The key is built like this: * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). */ #if BTRFS_UUID_SIZE != 16 #error "UUID items require BTRFS_UUID_SIZE == 16!" #endif #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to * received subvols */ /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 static inline unsigned long btrfs_header_fsid(void) { return offsetof(struct btrfs_header, fsid); } static inline unsigned long btrfs_header_chunk_tree_uuid(const struct extent_buffer *eb) { return offsetof(struct btrfs_header, chunk_tree_uuid); } static inline struct btrfs_timespec * btrfs_inode_atime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, atime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_mtime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, mtime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_ctime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, ctime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_otime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, otime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec* btrfs_root_ctime( struct btrfs_root_item *root_item) { unsigned long ptr = (unsigned long)root_item; ptr += offsetof(struct btrfs_root_item, ctime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec* btrfs_root_otime( struct btrfs_root_item *root_item) { unsigned long ptr = (unsigned long)root_item; ptr += offsetof(struct btrfs_root_item, otime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec* btrfs_root_stime( struct btrfs_root_item *root_item) { unsigned long ptr = (unsigned long)root_item; ptr += offsetof(struct btrfs_root_item, stime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec* btrfs_root_rtime( struct btrfs_root_item *root_item) { unsigned long ptr = (unsigned long)root_item; ptr += offsetof(struct btrfs_root_item, rtime); return (struct btrfs_timespec *)ptr; } static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) { unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); return (u8 *)((unsigned long)dev + ptr); } static inline u64 btrfs_dev_stats_value(const struct extent_buffer *eb, const struct btrfs_dev_stats_item *ptr, int index) { u64 val; read_extent_buffer(eb, &val, offsetof(struct btrfs_dev_stats_item, values) + ((unsigned long)ptr) + (index * sizeof(u64)), sizeof(val)); return val; } /* struct btrfs_ioctl_search_header */ static inline u64 btrfs_search_header_transid(struct btrfs_ioctl_search_header *sh) { return get_unaligned_64(&sh->transid); } static inline u64 btrfs_search_header_objectid(struct btrfs_ioctl_search_header *sh) { return get_unaligned_64(&sh->objectid); } static inline u64 btrfs_search_header_offset(struct btrfs_ioctl_search_header *sh) { return get_unaligned_64(&sh->offset); } static inline u32 btrfs_search_header_type(struct btrfs_ioctl_search_header *sh) { return get_unaligned_32(&sh->type); } static inline u32 btrfs_search_header_len(struct btrfs_ioctl_search_header *sh) { return get_unaligned_32(&sh->len); } #define btrfs_fs_incompat(fs_info, opt) \ __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; disk_super = fs_info->super_copy; return !!(btrfs_super_incompat_flags(disk_super) & flag); } #define btrfs_fs_compat_ro(fs_info, opt) \ __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) { struct btrfs_super_block *disk_super; disk_super = fs_info->super_copy; return !!(btrfs_super_compat_ro_flags(disk_super) & flag); } static inline u64 btrfs_name_hash(const char *name, int len) { return crc32c((u32)~1, name, len); } /* * Figure the key offset of an extended inode ref */ static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, int len) { return (u64)crc32c(parent_objectid, name, len); } /* extent-tree.c */ int btrfs_reserve_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_bytes, u64 empty_size, u64 hint_byte, u64 search_end, struct btrfs_key *ins, bool is_data); int btrfs_fix_block_accounting(struct btrfs_trans_handle *trans); void btrfs_pin_extent(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes); void btrfs_unpin_extent(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes); struct btrfs_block_group *btrfs_lookup_block_group(struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group *btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr); struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 parent, u64 root_objectid, struct btrfs_disk_key *key, int level, u64 hint, u64 empty_size, enum btrfs_lock_nesting nest); int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 offset, int metadata, u64 *refs, u64 *flags); int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, struct extent_buffer *eb, u64 flags); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int record_parent); int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int record_parent); int btrfs_free_tree_block(struct btrfs_trans_handle *trans, u64 root_id, struct extent_buffer *buf, u64 parent, int last_ref); int btrfs_free_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset); void btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset); int btrfs_update_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 orig_parent, u64 parent, u64 root_objectid, u64 ref_generation, u64 owner_objectid); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, u64 flags); int update_space_info(struct btrfs_fs_info *info, u64 flags, u64 total_bytes, u64 bytes_used, struct btrfs_space_info **space_info); int btrfs_free_block_groups(struct btrfs_fs_info *info); int btrfs_read_block_groups(struct btrfs_fs_info *info); int btrfs_try_chunk_alloc(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 alloc_bytes, u64 flags); struct btrfs_block_group * btrfs_add_block_group(struct btrfs_fs_info *fs_info, u64 bytes_used, u64 type, u64 chunk_offset, u64 size); int btrfs_make_block_group(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytes_used, u64 type, u64 chunk_offset, u64 size); int btrfs_make_block_groups(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info); int btrfs_update_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, int alloc, int mark_free); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 len); void free_excluded_extents(struct btrfs_fs_info *fs_info, struct btrfs_block_group *cache); int exclude_super_stripes(struct btrfs_fs_info *fs_info, struct btrfs_block_group *cache); u64 add_new_free_space(struct btrfs_block_group *block_group, struct btrfs_fs_info *info, u64 start, u64 end); u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); int btrfs_convert_one_bg(struct btrfs_trans_handle *trans, u64 bytenr); /* ctree.c */ int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot); struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, int slot); int btrfs_previous_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid, int type); int btrfs_previous_extent_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid); int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret, enum btrfs_lock_nesting nest); int btrfs_copy_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer **cow_ret, u64 new_root_objectid); int btrfs_create_root(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 objectid); void btrfs_extend_item(struct btrfs_path *path, u32 data_size); void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); int btrfs_split_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *new_key, unsigned long split_offset); int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); int btrfs_search_slot_for_read(struct btrfs_root *root, const struct btrfs_key *key, struct btrfs_path *p, int find_higher, int return_any); int btrfs_bin_search(struct extent_buffer *eb, int first_slot, const struct btrfs_key *key, int *slot); int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, u64 iobjectid, u64 ioff, u8 key_type, struct btrfs_key *found_key); void btrfs_release_path(struct btrfs_path *p); void add_root_to_dirty_list(struct btrfs_root *root); struct btrfs_path *btrfs_alloc_path(void); void btrfs_free_path(struct btrfs_path *p); int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int slot, int nr); static inline int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { return btrfs_del_items(trans, root, path, path->slots[0], 1); } /* * Describes a batch of items to insert in a btree. This is used by * btrfs_insert_empty_items(). */ struct btrfs_item_batch { /* * Pointer to an array containing the keys of the items to insert (in * sorted order). */ const struct btrfs_key *keys; /* Pointer to an array containing the data size for each item to insert. */ const u32 *data_sizes; /* * The sum of data sizes for all items. The caller can compute this while * setting up the data_sizes array, so it ends up being more efficient * than having btrfs_insert_empty_items() or setup_item_for_insert() * doing it, as it would avoid an extra loop over a potentially large * array, and in the case of setup_item_for_insert(), we would be doing * it while holding a write lock on a leaf and often on upper level nodes * too, unnecessarily increasing the size of a critical section. */ u32 total_data_size; /* Size of the keys and data_sizes arrays (number of items in the batch). */ int nr; }; int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_item_batch *batch); static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const struct btrfs_key *key, u32 data_size) { struct btrfs_item_batch batch; batch.keys = key; batch.data_sizes = &data_size; batch.total_data_size = data_size; batch.nr = 1; return btrfs_insert_empty_items(trans, root, path, &batch); } int btrfs_next_sibling_tree_block(struct btrfs_fs_info *fs_info, struct btrfs_path *path); /* * Walk up the tree as far as necessary to find the next leaf. * * returns 0 if it found something or 1 if there are no greater leaves. * returns < 0 on io errors. */ static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) { path->lowest_level = 0; return btrfs_next_sibling_tree_block(root->fs_info, path); } static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) { ++p->slots[0]; if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) { int ret; ret = btrfs_next_leaf(root, p); /* * Revert the increased slot, or the path may point to * an invalid item. */ if (ret) p->slots[0]--; return ret; } return 0; } int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_leaf_free_space(const struct extent_buffer *leaf); void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, struct btrfs_path *path, const struct btrfs_key *new_key); int btrfs_super_csum_size(const struct btrfs_super_block *sb); const char *btrfs_super_csum_name(u16 csum_type); const char *btrfs_super_csum_driver(u16 csum_type); u16 btrfs_csum_type_size(u16 csum_type); size_t __attribute_const__ btrfs_get_num_csums(void); /* root-item.c */ int btrfs_add_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *tree_root, u64 root_id, u8 type, u64 ref_id, u64 dirid, u64 sequence, const char *name, int name_len); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key); int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct btrfs_root_item *item, struct btrfs_key *key); /* dir-item.c */ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 dir, struct btrfs_key *location, u8 type, u64 index); struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, int name_len, int mod); struct btrfs_dir_item *btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, u64 objectid, const char *name, int name_len, int mod); int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_dir_item *di); int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, u16 name_len, const void *data, u16 data_len, u64 dir); struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len); /* inode-item.c */ int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 index); int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode_item); int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *location, int mod); struct btrfs_inode_extref *btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, struct btrfs_path *path, struct btrfs_root *root, u64 ino, u64 parent_ino, u64 index, const char *name, int namelen, int ins_len); int btrfs_del_inode_extref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 *index); int btrfs_insert_inode_extref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 index); struct btrfs_inode_ref *btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, const char *name, int namelen, u64 ino, u64 parent_ino, int ins_len); int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 ino, u64 parent_ino, u64 *index); /* uuid-tree.c, interface for mounted mounted filesystem */ int btrfs_lookup_uuid_subvol_item(int fd, const u8 *uuid, u64 *subvol_id); int btrfs_lookup_uuid_received_subvol_item(int fd, const u8 *uuid, u64 *subvol_id); /* uuid-tree.c, interface for unmounte filesystem */ int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, u64 subid); static inline int is_fstree(u64 rootid) { if (rootid == BTRFS_FS_TREE_OBJECTID || (signed long long)rootid >= (signed long long)BTRFS_FIRST_FREE_OBJECTID) return 1; return 0; } void btrfs_uuid_to_key(const u8 *uuid, u8 type, struct btrfs_key *key); /* inode.c */ int check_dir_conflict(struct btrfs_root *root, char *name, int namelen, u64 dir, u64 index); int btrfs_new_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 ino, u32 mode); int btrfs_change_inode_flags(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 ino, u64 flags); int btrfs_add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 ino, u64 parent_ino, char *name, int namelen, u8 type, u64 *index, int add_backref, int ignore_existed); int btrfs_unlink(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 ino, u64 parent_ino, u64 index, const char *name, int namelen, int add_orphan); int btrfs_add_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 ino); int btrfs_mkdir(struct btrfs_trans_handle *trans, struct btrfs_root *root, char *name, int namelen, u64 parent_ino, u64 *ino, int mode); struct btrfs_root *btrfs_mksubvol(struct btrfs_root *root, const char *base, u64 root_objectid, bool convert); int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, struct btrfs_root *fs_root, u64 dirid, u64 *objectid); /* file.c */ int btrfs_get_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 ino, u64 offset, u64 len, int ins_len); int btrfs_punch_hole(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 ino, u64 offset, u64 len); int btrfs_read_file(struct btrfs_root *root, u64 ino, u64 start, int len, char *dest); /* extent-tree.c */ int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, unsigned long nr); #endif