#ifndef _PERF_LINUX_BITOPS_H_ #define _PERF_LINUX_BITOPS_H_ #include "kerncompat.h" #include #include "common/internal.h" #ifndef DIV_ROUND_UP #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #endif #define BITS_PER_BYTE 8 #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) #define BITS_TO_U64(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(u64)) #define BITS_TO_U32(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(u32)) #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) #define BIT_WORD(nr) ((nr) / BITS_PER_LONG) #define for_each_set_bit(bit, addr, size) \ for ((bit) = find_first_bit((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit((addr), (size), (bit) + 1)) /* same as for_each_set_bit() but use bit as value to start with */ #define for_each_set_bit_from(bit, addr, size) \ for ((bit) = find_next_bit((addr), (size), (bit)); \ (bit) < (size); \ (bit) = find_next_bit((addr), (size), (bit) + 1)) static inline void set_bit(int nr, unsigned long *addr) { addr[nr / BITS_PER_LONG] |= 1UL << (nr % BITS_PER_LONG); } static inline void clear_bit(int nr, unsigned long *addr) { addr[nr / BITS_PER_LONG] &= ~(1UL << (nr % BITS_PER_LONG)); } static inline bool test_and_set_bit(unsigned long nr, unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } /** * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ static inline unsigned int hweight32(unsigned int w) { unsigned int res = w - ((w >> 1) & 0x55555555); res = (res & 0x33333333) + ((res >> 2) & 0x33333333); res = (res + (res >> 4)) & 0x0F0F0F0F; res = res + (res >> 8); return (res + (res >> 16)) & 0x000000FF; } static inline unsigned long hweight64(__u64 w) { #if BITS_PER_LONG == 32 return hweight32((unsigned int)(w >> 32)) + hweight32((unsigned int)w); #elif BITS_PER_LONG == 64 __u64 res = w - ((w >> 1) & 0x5555555555555555ul); res = (res & 0x3333333333333333ul) + ((res >> 2) & 0x3333333333333333ul); res = (res + (res >> 4)) & 0x0F0F0F0F0F0F0F0Ful; res = res + (res >> 8); res = res + (res >> 16); return (res + (res >> 32)) & 0x00000000000000FFul; #endif } static inline unsigned long hweight_long(unsigned long w) { return sizeof(w) == 4 ? hweight32(w) : hweight64(w); } #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __always_inline unsigned long __ffs(unsigned long word) { int num = 0; #if BITS_PER_LONG == 64 if ((word & 0xffffffff) == 0) { num += 32; word >>= 32; } #endif if ((word & 0xffff) == 0) { num += 16; word >>= 16; } if ((word & 0xff) == 0) { num += 8; word >>= 8; } if ((word & 0xf) == 0) { num += 4; word >>= 4; } if ((word & 0x3) == 0) { num += 2; word >>= 2; } if ((word & 0x1) == 0) num += 1; return num; } #define ffz(x) __ffs(~(x)) #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) /* * This is a common helper function for find_next_bit, find_next_zero_bit, and * find_next_and_bit. The differences are: * - The "invert" argument, which is XORed with each fetched word before * searching it for one bits. * - The optional "addr2", which is anded with "addr1" if present. */ static inline unsigned long _find_next_bit(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start, unsigned long invert) { unsigned long tmp; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; /* Handle 1st word. */ tmp &= BITMAP_FIRST_WORD_MASK(start); start = round_down(start, BITS_PER_LONG); while (!tmp) { start += BITS_PER_LONG; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; } return min(start + __ffs(tmp), nbits); } /* * Find the next set bit in a memory region. */ static inline unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, 0UL); } static inline unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { return _find_next_bit(addr, NULL, size, offset, ~0UL); } #define find_first_bit(addr, size) find_next_bit((addr), (size), 0) #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) #if __BYTE_ORDER == __BIG_ENDIAN static inline unsigned long ext2_swab(const unsigned long y) { #if BITS_PER_LONG == 64 return (unsigned long) bswap_64((u64) y); #elif BITS_PER_LONG == 32 return (unsigned long) bswap_32((u32) y); #else #error BITS_PER_LONG not defined #endif } static inline unsigned long _find_next_bit_le(const unsigned long *addr1, const unsigned long *addr2, unsigned long nbits, unsigned long start, unsigned long invert) { unsigned long tmp; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; /* Handle 1st word. */ tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start)); start = round_down(start, BITS_PER_LONG); while (!tmp) { start += BITS_PER_LONG; if (start >= nbits) return nbits; tmp = addr1[start / BITS_PER_LONG]; if (addr2) tmp &= addr2[start / BITS_PER_LONG]; tmp ^= invert; } return min(start + __ffs(ext2_swab(tmp)), nbits); } static inline unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) { return _find_next_bit_le(addr, NULL, size, offset, ~0UL); } static inline unsigned long find_next_bit_le(const void *addr, unsigned long size, unsigned long offset) { return _find_next_bit_le(addr, NULL, size, offset, 0UL); } #else static inline unsigned long find_next_zero_bit_le(const void *addr, unsigned long size, unsigned long offset) { return find_next_zero_bit(addr, size, offset); } static inline unsigned long find_next_bit_le(const void *addr, unsigned long size, unsigned long offset) { return find_next_bit(addr, size, offset); } static inline unsigned long find_first_zero_bit_le(const void *addr, unsigned long size) { return find_first_zero_bit(addr, size); } #endif #endif