/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #if BTRFSCONVERT_EXT2 #include "kerncompat.h" #include #include #include #include #include #include #include #include #include "kernel-lib/sizes.h" #include "kernel-shared/transaction.h" #include "kernel-shared/file-item.h" #include "common/extent-cache.h" #include "common/messages.h" #include "common/string-utils.h" #include "convert/common.h" #include "convert/source-fs.h" #include "convert/source-ext2.h" /* * Open Ext2fs in readonly mode, read block allocation bitmap and * inode bitmap into memory. */ static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name) { errcode_t ret; ext2_filsys ext2_fs; ext2_ino_t ino; u32 ro_feature; int open_flag = EXT2_FLAG_SOFTSUPP_FEATURES | EXT2_FLAG_64BITS; ret = ext2fs_open(name, open_flag, 0, 0, unix_io_manager, &ext2_fs); if (ret) { if (ret != EXT2_ET_BAD_MAGIC) error("ext2fs_open: %s", error_message(ret)); return -1; } if (ext2_fs->super->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) { error("source filesystem requires recovery, run e2fsck first"); goto fail; } /* * We need to know exactly the used space, some RO compat flags like * BIGALLOC will affect how used space is present. * So we need manually check any unsupported RO compat flags */ ro_feature = ext2_fs->super->s_feature_ro_compat; if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) { error( "unsupported RO features detected: %x, abort convert to avoid possible corruption", ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP); goto fail; } ret = ext2fs_read_inode_bitmap(ext2_fs); if (ret) { error("ext2fs_read_inode_bitmap: %s", error_message(ret)); goto fail; } ret = ext2fs_read_block_bitmap(ext2_fs); if (ret) { error("ext2fs_read_block_bitmap: %s", error_message(ret)); goto fail; } /* * search each block group for a free inode. this set up * uninit block/inode bitmaps appropriately. */ ino = 1; while (ino <= ext2_fs->super->s_inodes_count) { ext2_ino_t foo; ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo); ino += EXT2_INODES_PER_GROUP(ext2_fs->super); } if (!(ext2_fs->super->s_feature_incompat & EXT2_FEATURE_INCOMPAT_FILETYPE)) { error("filetype feature is missing"); goto fail; } cctx->fs_data = ext2_fs; cctx->blocksize = ext2_fs->blocksize; cctx->block_count = ext2fs_blocks_count(ext2_fs->super); cctx->total_bytes = cctx->block_count * cctx->blocksize; cctx->label = strndup((char *)ext2_fs->super->s_volume_name, 16); cctx->first_data_block = ext2_fs->super->s_first_data_block; cctx->inodes_count = ext2_fs->super->s_inodes_count; cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count; memcpy(cctx->fs_uuid, ext2_fs->super->s_uuid, SOURCE_FS_UUID_SIZE); return 0; fail: ext2fs_close(ext2_fs); ext2fs_free(ext2_fs); return -1; } static int __ext2_add_one_block(ext2_filsys fs, char *bitmap, unsigned long group_nr, struct cache_tree *used) { unsigned long offset; unsigned i; int ret = 0; offset = fs->super->s_first_data_block; offset /= EXT2FS_CLUSTER_RATIO(fs); offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super); for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) { if ((i + offset) >= ext2fs_blocks_count(fs->super)) break; if (ext2fs_test_bit(i, bitmap)) { u64 start; start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs); start *= fs->blocksize; ret = add_merge_cache_extent(used, start, fs->blocksize); if (ret < 0) break; } } return ret; } /* * Read all used ext2 space into cctx->used cache tree */ static int ext2_read_used_space(struct btrfs_convert_context *cctx) { ext2_filsys fs = (ext2_filsys)cctx->fs_data; blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block); struct cache_tree *used_tree = &cctx->used_space; char *block_bitmap = NULL; unsigned long i; int block_nbytes; int ret = 0; block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8; if (!block_nbytes) { error("EXT2_CLUSTERS_PER_GROUP too small: %llu", (unsigned long long)(EXT2_CLUSTERS_PER_GROUP(fs->super))); return -EINVAL; } block_bitmap = malloc(block_nbytes); if (!block_bitmap) return -ENOMEM; for (i = 0; i < fs->group_desc_count; i++) { ret = ext2fs_get_block_bitmap_range2(fs->block_map, blk_itr, block_nbytes * 8, block_bitmap); if (ret) { error("fail to get bitmap from ext2, %s", error_message(ret)); ret = -EINVAL; break; } ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree); if (ret < 0) { errno = -ret; error("fail to build used space tree, %m"); break; } blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super); } free(block_bitmap); return ret; } static void ext2_close_fs(struct btrfs_convert_context *cctx) { if (cctx->label) { free(cctx->label); cctx->label = NULL; } ext2fs_close(cctx->fs_data); ext2fs_free(cctx->fs_data); } static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = { [EXT2_FT_UNKNOWN] = BTRFS_FT_UNKNOWN, [EXT2_FT_REG_FILE] = BTRFS_FT_REG_FILE, [EXT2_FT_DIR] = BTRFS_FT_DIR, [EXT2_FT_CHRDEV] = BTRFS_FT_CHRDEV, [EXT2_FT_BLKDEV] = BTRFS_FT_BLKDEV, [EXT2_FT_FIFO] = BTRFS_FT_FIFO, [EXT2_FT_SOCK] = BTRFS_FT_SOCK, [EXT2_FT_SYMLINK] = BTRFS_FT_SYMLINK, }; static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry, struct ext2_dir_entry *dirent, int offset, int blocksize, char *buf,void *priv_data) { int ret; int file_type; u64 objectid; char dotdot[] = ".."; struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data; int name_len; name_len = dirent->name_len & 0xFF; objectid = dirent->inode + INO_OFFSET; if (!strncmp(dirent->name, dotdot, name_len)) { if (name_len == 2) { if (idata->parent != 0) { error("dotdot entry parent not zero: %llu", idata->parent); return BLOCK_ABORT; } idata->parent = objectid; } return 0; } if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO) return 0; file_type = dirent->name_len >> 8; if (file_type >= EXT2_FT_MAX) { error("invalid file type %d for %*s", file_type, name_len, dirent->name); return BLOCK_ABORT; } ret = convert_insert_dirent(idata->trans, idata->root, dirent->name, name_len, idata->objectid, objectid, ext2_filetype_conversion_table[file_type], idata->index_cnt, idata->inode); if (ret < 0) { idata->errcode = ret; return BLOCK_ABORT; } idata->index_cnt++; return 0; } static int ext2_create_dir_entries(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret; errcode_t err; struct dir_iterate_data data = { .trans = trans, .root = root, .inode = btrfs_inode, .objectid = objectid, .index_cnt = 2, .parent = 0, .errcode = 0, }; err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL, ext2_dir_iterate_proc, &data); if (err) goto error; ret = data.errcode; if (ret == 0 && data.parent == objectid) { ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0); } return ret; error: error("ext2fs_dir_iterate2: %s", error_message(err)); return -1; } static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr, e2_blkcnt_t blockcnt, blk_t ref_block, int ref_offset, void *priv_data) { int ret; struct blk_iterate_data *idata; idata = (struct blk_iterate_data *)priv_data; ret = block_iterate_proc(*blocknr, blockcnt, idata); if (ret) { idata->errcode = ret; return BLOCK_ABORT; } return 0; } static int iterate_one_file_extent(struct blk_iterate_data *data, u64 filepos, u64 len, u64 disk_bytenr, bool prealloced) { const int sectorsize = data->trans->fs_info->sectorsize; const int sectorbits = ilog2(sectorsize); int ret; UASSERT(len > 0); for (int i = 0; i < len; i += sectorsize) { /* * Just treat preallocated extent as hole. * * As there is no way to utilize the preallocated space, since * any file extent would also be shared by ext2 image. */ if (prealloced) ret = block_iterate_proc(0, (filepos + i) >> sectorbits, data); else ret = block_iterate_proc((disk_bytenr + i) >> sectorbits, (filepos + i) >> sectorbits, data); if (ret < 0) return ret; } return 0; } static int iterate_file_extents(struct blk_iterate_data *data, ext2_filsys ext2fs, ext2_ino_t ext2_ino, u32 convert_flags) { ext2_extent_handle_t handle = NULL; struct ext2fs_extent extent; const int sectorsize = data->trans->fs_info->sectorsize; const int sectorbits = ilog2(sectorsize); int op = EXT2_EXTENT_ROOT; errcode_t errcode; int ret = 0; errcode = ext2fs_extent_open(ext2fs, ext2_ino, &handle); if (errcode) { error("failed to open ext2 inode %u: %s", ext2_ino, error_message(errcode)); return -EIO; } while (1) { u64 disk_bytenr; u64 filepos; u64 len; errcode = ext2fs_extent_get(handle, op, &extent); if (errcode == EXT2_ET_EXTENT_NO_NEXT) break; if (errcode) { data->errcode = errcode; ret = -EIO; goto out; } op = EXT2_EXTENT_NEXT; if (extent.e_flags & EXT2_EXTENT_FLAGS_SECOND_VISIT) continue; if (!(extent.e_flags & EXT2_EXTENT_FLAGS_LEAF)) continue; filepos = extent.e_lblk << sectorbits; len = extent.e_len << sectorbits; disk_bytenr = extent.e_pblk << sectorbits; ret = iterate_one_file_extent(data, filepos, len, disk_bytenr, extent.e_flags & EXT2_EXTENT_FLAGS_UNINIT); if (ret < 0) goto out; } out: ext2fs_extent_free(handle); return ret; } /* * traverse file's data blocks, record these data blocks as file extents. */ static int ext2_create_file_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, u32 convert_flags) { int ret; char *buffer = NULL; errcode_t err; struct ext2_inode ext2_inode = { 0 }; u32 last_block; u32 sectorsize = root->fs_info->sectorsize; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); struct blk_iterate_data data; init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid, convert_flags & CONVERT_FLAG_DATACSUM); err = ext2fs_read_inode(ext2_fs, ext2_ino, &ext2_inode); if (err) { error("failed to read ext2 inode %u: %s", ext2_ino, error_message(err)); return -EIO; } /* * For inodes without extent block maps, go with the older * ext2fs_block_iterate2(). * Otherwise use ext2fs_extent_*() based solution, as that can provide * UNINIT extent flags. */ if ((ext2_inode.i_flags & EXT4_EXTENTS_FL) == 0) { err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY, NULL, ext2_block_iterate_proc, &data); if (err) { error("ext2fs_block_iterate2: %s", error_message(err)); return -EIO; } } else { ret = iterate_file_extents(&data, ext2_fs, ext2_ino, convert_flags); if (ret < 0) goto fail; } ret = data.errcode; if (ret) goto fail; if ((convert_flags & CONVERT_FLAG_INLINE_DATA) && data.first_block == 0 && data.num_blocks > 0 && inode_size < sectorsize && inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root->fs_info)) { u64 num_bytes = data.num_blocks * sectorsize; u64 disk_bytenr = data.disk_block * sectorsize; u64 nbytes; buffer = malloc(num_bytes); if (!buffer) return -ENOMEM; ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer); if (ret) goto fail; if (num_bytes > inode_size) num_bytes = inode_size; ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, num_bytes); if (ret) goto fail; nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes; btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes); } else if (data.num_blocks > 0) { ret = record_file_blocks(&data, data.first_block, data.disk_block, data.num_blocks); if (ret) goto fail; } data.first_block += data.num_blocks; last_block = (inode_size + sectorsize - 1) / sectorsize; if (last_block > data.first_block) { ret = record_file_blocks(&data, data.first_block, 0, last_block - data.first_block); } fail: free(buffer); return ret; } static int ext2_create_symlink(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode) { int ret; char *pathname; u64 inode_size = btrfs_stack_inode_size(btrfs_inode); if (ext2fs_inode_data_blocks2(ext2_fs, ext2_inode)) { btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1); ret = ext2_create_file_extents(trans, root, objectid, btrfs_inode, ext2_fs, ext2_ino, CONVERT_FLAG_DATACSUM | CONVERT_FLAG_INLINE_DATA); btrfs_set_stack_inode_size(btrfs_inode, inode_size); return ret; } pathname = (char *)&(ext2_inode->i_block[0]); BUG_ON(pathname[inode_size] != 0); ret = btrfs_insert_inline_extent(trans, root, objectid, 0, pathname, inode_size + 1); btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1); return ret; } /* * Following xattr/acl related codes are based on codes in * fs/ext3/xattr.c and fs/ext3/acl.c */ #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr)) #define EXT2_XATTR_BFIRST(ptr) \ ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1)) #define EXT2_XATTR_IHDR(inode) \ ((struct ext2_ext_attr_header *) ((void *)(inode) + \ EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize)) #define EXT2_XATTR_IFIRST(inode) \ ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \ sizeof(EXT2_XATTR_IHDR(inode)->h_magic))) static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry, const void *end) { struct ext2_ext_attr_entry *next; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { next = EXT2_EXT_ATTR_NEXT(entry); if ((void *)next >= end) return -EIO; entry = next; } return 0; } static int ext2_xattr_check_block(const char *buf, size_t size) { int error; struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf); if (header->h_magic != EXT2_EXT_ATTR_MAGIC || header->h_blocks != 1) return -EIO; error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size); return error; } static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry, size_t size) { size_t value_size = entry->e_value_size; if (value_size > size || entry->e_value_offs + value_size > size) return -EIO; return 0; } static int ext2_acl_to_xattr(void *dst, const void *src, size_t dst_size, size_t src_size) { int i, count; const void *end = src + src_size; acl_ea_header *ext_acl = (acl_ea_header *)dst; acl_ea_entry *dst_entry = ext_acl->a_entries; ext2_acl_entry *src_entry; if (src_size < sizeof(ext2_acl_header)) goto fail; if (((ext2_acl_header *)src)->a_version != cpu_to_le32(EXT2_ACL_VERSION)) goto fail; src += sizeof(ext2_acl_header); count = ext2_acl_count(src_size); if (count <= 0) goto fail; if (dst_size < acl_ea_size(count)) { error("not enough space to store ACLs"); goto fail; } ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION); for (i = 0; i < count; i++, dst_entry++) { src_entry = (ext2_acl_entry *)src; if (src + sizeof(ext2_acl_entry_short) > end) goto fail; dst_entry->e_tag = src_entry->e_tag; dst_entry->e_perm = src_entry->e_perm; switch (le16_to_cpu(src_entry->e_tag)) { case ACL_USER_OBJ: case ACL_GROUP_OBJ: case ACL_MASK: case ACL_OTHER: src += sizeof(ext2_acl_entry_short); dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID); break; case ACL_USER: case ACL_GROUP: src += sizeof(ext2_acl_entry); if (src > end) goto fail; dst_entry->e_id = src_entry->e_id; break; default: goto fail; } } if (src != end) goto fail; return 0; fail: return -EINVAL; } static char *xattr_prefix_table[] = { [1] = "user.", [2] = "system.posix_acl_access", [3] = "system.posix_acl_default", [4] = "trusted.", [6] = "security.", }; static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct ext2_ext_attr_entry *entry, const void *data, u32 datalen) { int ret = 0; int name_len; int name_index; void *databuf = NULL; char namebuf[XATTR_NAME_MAX + 1]; name_index = entry->e_name_index; if (name_index >= ARRAY_SIZE(xattr_prefix_table) || xattr_prefix_table[name_index] == NULL) return -EOPNOTSUPP; name_len = strlen(xattr_prefix_table[name_index]) + entry->e_name_len; if (name_len >= sizeof(namebuf)) return -ERANGE; if (name_index == 2 || name_index == 3) { size_t bufsize = acl_ea_size(ext2_acl_count(datalen)); databuf = malloc(bufsize); if (!databuf) return -ENOMEM; ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen); if (ret) goto out; data = databuf; datalen = bufsize; } strncpy_null(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX + 1); strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len); if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root->fs_info) - sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) { error("skip large xattr on inode %llu name %.*s", objectid - INO_OFFSET, name_len, namebuf); goto out; } ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len, data, datalen, objectid); out: free(databuf); return ret; } static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *btrfs_inode, ext2_filsys ext2_fs, ext2_ino_t ext2_ino) { int ret = 0; int inline_ea = 0; errcode_t err; u32 datalen; u32 block_size = ext2_fs->blocksize; u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super); struct ext2_inode_large *ext2_inode; struct ext2_ext_attr_entry *entry; void *data; char *buffer = NULL; char inode_buf[EXT2_GOOD_OLD_INODE_SIZE]; if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) { ext2_inode = (struct ext2_inode_large *)inode_buf; } else { ext2_inode = (struct ext2_inode_large *)malloc(inode_size); if (!ext2_inode) return -ENOMEM; } err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode, inode_size); if (err) { error("ext2fs_read_inode_full: %s", error_message(err)); ret = -1; goto out; } if (ext2_ino > ext2_fs->super->s_first_ino && inode_size > EXT2_GOOD_OLD_INODE_SIZE) { if (EXT2_GOOD_OLD_INODE_SIZE + ext2_inode->i_extra_isize > inode_size) { ret = -EIO; goto out; } if (ext2_inode->i_extra_isize != 0 && EXT2_XATTR_IHDR(ext2_inode)->h_magic == EXT2_EXT_ATTR_MAGIC) { inline_ea = 1; } } if (inline_ea) { int total; void *end = (void *)ext2_inode + inode_size; entry = EXT2_XATTR_IFIRST(ext2_inode); total = end - (void *)entry; ret = ext2_xattr_check_names(entry, end); if (ret) goto out; while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, total); if (ret) goto out; data = (void *)EXT2_XATTR_IFIRST(ext2_inode) + entry->e_value_offs; datalen = entry->e_value_size; ret = ext2_copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } } if (ext2_inode->i_file_acl == 0) goto out; buffer = malloc(block_size); if (!buffer) { ret = -ENOMEM; goto out; } err = ext2fs_read_ext_attr2(ext2_fs, ext2_inode->i_file_acl, buffer); if (err) { error("ext2fs_read_ext_attr2: %s", error_message(err)); ret = -1; goto out; } ret = ext2_xattr_check_block(buffer, block_size); if (ret) goto out; entry = EXT2_XATTR_BFIRST(buffer); while (!EXT2_EXT_IS_LAST_ENTRY(entry)) { ret = ext2_xattr_check_entry(entry, block_size); if (ret) goto out; data = buffer + entry->e_value_offs; datalen = entry->e_value_size; ret = ext2_copy_single_xattr(trans, root, objectid, entry, data, datalen); if (ret) goto out; entry = EXT2_EXT_ATTR_NEXT(entry); } out: free(buffer); if ((void *)ext2_inode != inode_buf) free(ext2_inode); return ret; } static inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static void ext2_copy_inode_item(struct btrfs_inode_item *dst, struct ext2_inode *src, u32 blocksize) { btrfs_set_stack_inode_generation(dst, 1); btrfs_set_stack_inode_sequence(dst, 0); btrfs_set_stack_inode_transid(dst, 1); btrfs_set_stack_inode_size(dst, src->i_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->i_links_count); btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16)); btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16)); btrfs_set_stack_inode_mode(dst, src->i_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->i_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->i_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 | (u64)src->i_size); } if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) && !S_ISLNK(src->i_mode)) { if (src->i_block[0]) { btrfs_set_stack_inode_rdev(dst, old_decode_dev(src->i_block[0])); } else { btrfs_set_stack_inode_rdev(dst, decode_dev(src->i_block[1])); } } memset(&dst->reserved, 0, sizeof(dst->reserved)); } #if HAVE_EXT4_EPOCH_MASK_DEFINE /* * Copied and modified from fs/ext4/ext4.h */ static inline void ext4_decode_extra_time(__le32 * tv_sec, __le32 * tv_nsec, __le32 extra) { if (extra & cpu_to_le32(EXT4_EPOCH_MASK)) *tv_sec += (u64)(le32_to_cpu(extra) & EXT4_EPOCH_MASK) << 32; *tv_nsec = (le32_to_cpu(extra) & EXT4_NSEC_MASK) >> EXT4_EPOCH_BITS; } /* * In e2fsprogs < 1.47.1 it's inode_includes, from >= on it's with ext2fs_ prefix. */ #ifndef ext2fs_inode_includes #define ext2fs_inode_includes(size, field) inode_includes(size, field) #endif #define EXT4_COPY_XTIME(xtime, dst, tv_sec, tv_nsec) \ do { \ tv_sec = src->i_ ## xtime ; \ if (ext2fs_inode_includes(inode_size, i_ ## xtime ## _extra)) { \ tv_sec = src->i_ ## xtime ; \ ext4_decode_extra_time(&tv_sec, &tv_nsec, src->i_ ## xtime ## _extra); \ btrfs_set_stack_timespec_sec(&dst->xtime , tv_sec); \ btrfs_set_stack_timespec_nsec(&dst->xtime , tv_nsec); \ } else { \ btrfs_set_stack_timespec_sec(&dst->xtime , tv_sec); \ btrfs_set_stack_timespec_nsec(&dst->xtime , 0); \ } \ } while (0); /* * Decode and copy i_[cma]time_extra and i_crtime{,_extra} field */ static int ext4_copy_inode_timespec_extra(struct btrfs_inode_item *dst, ext2_ino_t ext2_ino, u32 s_inode_size, ext2_filsys ext2_fs) { struct ext2_inode_large *src; u32 inode_size, tv_sec, tv_nsec; int ret, err; ret = 0; src = (struct ext2_inode_large *)malloc(s_inode_size); if (!src) return -ENOMEM; err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)src, s_inode_size); if (err) { error("ext2fs_read_inode_full: %s", error_message(err)); ret = -1; goto out; } inode_size = EXT2_GOOD_OLD_INODE_SIZE + src->i_extra_isize; EXT4_COPY_XTIME(atime, dst, tv_sec, tv_nsec); EXT4_COPY_XTIME(mtime, dst, tv_sec, tv_nsec); EXT4_COPY_XTIME(ctime, dst, tv_sec, tv_nsec); tv_sec = src->i_crtime; if (ext2fs_inode_includes(inode_size, i_crtime_extra)) { tv_sec = src->i_crtime; ext4_decode_extra_time(&tv_sec, &tv_nsec, src->i_crtime_extra); btrfs_set_stack_timespec_sec(&dst->otime, tv_sec); btrfs_set_stack_timespec_nsec(&dst->otime, tv_nsec); } else { btrfs_set_stack_timespec_sec(&dst->otime, tv_sec); btrfs_set_stack_timespec_nsec(&dst->otime, 0); } out: free(src); return ret; } #else /* HAVE_EXT4_EPOCH_MASK_DEFINE */ static int ext4_copy_inode_timespec_extra(struct btrfs_inode_item *dst, ext2_ino_t ext2_ino, u32 s_inode_size, ext2_filsys ext2_fs) { static int warn = 0; if (!warn) { warning( "extended inode (size %u) found but e2fsprogs don't support reading extra timespec", s_inode_size); warn = 1; } return 0; } #endif /* !HAVE_EXT4_EPOCH_MASK_DEFINE */ static int ext2_check_state(struct btrfs_convert_context *cctx) { ext2_filsys fs = cctx->fs_data; if (!(fs->super->s_state & EXT2_VALID_FS)) return 1; else if (fs->super->s_state & EXT2_ERROR_FS) return 1; else return 0; } /* EXT2_*_FL to BTRFS_INODE_FLAG_* stringification helper */ #define COPY_ONE_EXT2_FLAG(flags, ext2_inode, name) ({ \ if (ext2_inode->i_flags & EXT2_##name##_FL) \ flags |= BTRFS_INODE_##name; \ }) /* * Convert EXT2_*_FL to corresponding BTRFS_INODE_* flags * * Only a subset of EXT_*_FL is supported in btrfs. */ static void ext2_convert_inode_flags(struct btrfs_inode_item *dst, struct ext2_inode *src) { u64 flags = btrfs_stack_inode_flags(dst); COPY_ONE_EXT2_FLAG(flags, src, APPEND); COPY_ONE_EXT2_FLAG(flags, src, SYNC); COPY_ONE_EXT2_FLAG(flags, src, IMMUTABLE); COPY_ONE_EXT2_FLAG(flags, src, NODUMP); COPY_ONE_EXT2_FLAG(flags, src, NOATIME); COPY_ONE_EXT2_FLAG(flags, src, DIRSYNC); btrfs_set_stack_inode_flags(dst, flags); } /* * copy a single inode. do all the required works, such as cloning * inode item, creating file extents and creating directory entries. */ static int ext2_copy_single_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ext2_filsys ext2_fs, ext2_ino_t ext2_ino, struct ext2_inode *ext2_inode, u32 convert_flags) { int ret; int s_inode_size; struct btrfs_inode_item btrfs_inode; struct btrfs_key inode_key; struct btrfs_path path = { 0 }; inode_key.objectid = objectid; inode_key.type = BTRFS_INODE_ITEM_KEY; inode_key.offset = 0; if (ext2_inode->i_links_count == 0) return 0; ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize); s_inode_size = EXT2_INODE_SIZE(ext2_fs->super); if (s_inode_size > EXT2_GOOD_OLD_INODE_SIZE) { ret = ext4_copy_inode_timespec_extra(&btrfs_inode, ext2_ino, s_inode_size, ext2_fs); if (ret) return ret; } if (!(convert_flags & CONVERT_FLAG_DATACSUM) && S_ISREG(ext2_inode->i_mode)) { u32 flags = btrfs_stack_inode_flags(&btrfs_inode) | BTRFS_INODE_NODATASUM; btrfs_set_stack_inode_flags(&btrfs_inode, flags); } ext2_convert_inode_flags(&btrfs_inode, ext2_inode); /* * The inode may already be created (with dummy contents), in that * case we don't need to do anything yet. * The inode item would be updated at the end anyway. */ ret = btrfs_lookup_inode(trans, root, &path, &inode_key, 1); btrfs_release_path(&path); if (ret > 0) { /* * No inode item yet, the inode item must be inserted before * any file extents/dir items/xattrs, or we may trigger * tree-checker. File extents/dir items/xattrs require the * previous item to have the same key objectid. */ ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); if (ret < 0) return ret; } switch (ext2_inode->i_mode & S_IFMT) { case S_IFREG: ret = ext2_create_file_extents(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, convert_flags); break; case S_IFDIR: ret = ext2_create_dir_entries(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); break; case S_IFLNK: ret = ext2_create_symlink(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino, ext2_inode); break; default: ret = 0; break; } if (ret) return ret; if (convert_flags & CONVERT_FLAG_XATTR) { ret = ext2_copy_extended_attrs(trans, root, objectid, &btrfs_inode, ext2_fs, ext2_ino); if (ret) return ret; } /* * Update the inode item, as above insert never updates the inode's * nbytes and size. */ ret = btrfs_lookup_inode(trans, root, &path, &inode_key, 1); if (ret > 0) ret = -ENOENT; if (ret < 0) return ret; write_extent_buffer(path.nodes[0], &btrfs_inode, btrfs_item_ptr_offset(path.nodes[0], path.slots[0]), sizeof(btrfs_inode)); btrfs_release_path(&path); return 0; } static bool ext2_is_special_inode(ext2_filsys ext2_fs, ext2_ino_t ino) { if (ino < EXT2_GOOD_OLD_FIRST_INO && ino != EXT2_ROOT_INO) return 1; #ifdef EXT4_FEATURE_COMPAT_ORPHAN_FILE /* * If we have COMPAT_ORPHAN_FILE feature, we have a special inode * recording all the orphan files. We need to skip such special inode. */ if (ext2_fs->super->s_feature_compat & EXT4_FEATURE_COMPAT_ORPHAN_FILE && ino == ext2_fs->super->s_orphan_file_inum) return 1; #endif return 0; } /* * scan ext2's inode bitmap and copy all used inodes. */ static int ext2_copy_inodes(struct btrfs_convert_context *cctx, struct btrfs_root *root, u32 convert_flags, struct task_ctx *p) { ext2_filsys ext2_fs = cctx->fs_data; int ret = 0; errcode_t err; ext2_inode_scan ext2_scan; struct ext2_inode ext2_inode; ext2_ino_t ext2_ino; u64 objectid; struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan); if (err) { error("ext2fs_open_inode_scan failed: %s", error_message(err)); btrfs_commit_transaction(trans, root); return -EIO; } while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino, &ext2_inode))) { /* no more inodes */ if (ext2_ino == 0) break; if (ext2_is_special_inode(ext2_fs, ext2_ino)) continue; objectid = ext2_ino + INO_OFFSET; ret = ext2_copy_single_inode(trans, root, objectid, ext2_fs, ext2_ino, &ext2_inode, convert_flags); pthread_mutex_lock(&p->mutex); p->cur_copy_inodes++; pthread_mutex_unlock(&p->mutex); if (ret) { error("failed to copy ext2 inode %llu: %d", (unsigned long long)ext2_ino, ret); goto out; } /* * blocks_used is the number of new tree blocks allocated in * current transaction. * Use a small amount of it to workaround a bug where delayed * ref may fail to locate tree blocks in extent tree. * * 2M is the threshold to kick chunk preallocator into work, * For default (16K) nodesize it will be 128 tree blocks, * large enough to contain over 300 inlined files or * around 26k file extents. Which should be good enough. */ if (trans->blocks_used >= SZ_2M / root->fs_info->nodesize) { ret = btrfs_commit_transaction(trans, root); if (ret < 0) { errno = -ret; error_msg(ERROR_MSG_COMMIT_TRANS, "%m"); goto out; } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); errno = -ret; error_msg(ERROR_MSG_START_TRANS, "%m"); trans = NULL; goto out; } } } if (err) { error("ext2fs_get_next_inode failed: %s", error_message(err)); ret = -EIO; goto out; } out: if (ret < 0) { if (trans) btrfs_abort_transaction(trans, ret); } else { ret = btrfs_commit_transaction(trans, root); if (ret < 0) { errno = -ret; error_msg(ERROR_MSG_COMMIT_TRANS, "%m"); } } ext2fs_close_inode_scan(ext2_scan); return ret; } const struct btrfs_convert_operations ext2_convert_ops = { .name = "ext2", .open_fs = ext2_open_fs, .read_used_space = ext2_read_used_space, .copy_inodes = ext2_copy_inodes, .close_fs = ext2_close_fs, .check_state = ext2_check_state, }; #endif /* BTRFSCONVERT_EXT2 */