/* * Copyright (C) 2010 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "transaction.h" #include "utils.h" #include "ioctl.h" #include #include "btrfs-list.h" #include "rbtree-utils.h" #define BTRFS_LIST_NFILTERS_INCREASE (2 * BTRFS_LIST_FILTER_MAX) #define BTRFS_LIST_NCOMPS_INCREASE (2 * BTRFS_LIST_COMP_MAX) /* we store all the roots we find in an rbtree so that we can * search for them later. */ struct root_lookup { struct rb_root root; }; static struct { char *name; char *column_name; int need_print; } btrfs_list_columns[] = { { .name = "ID", .column_name = "ID", .need_print = 0, }, { .name = "gen", .column_name = "Gen", .need_print = 0, }, { .name = "cgen", .column_name = "CGen", .need_print = 0, }, { .name = "parent", .column_name = "Parent", .need_print = 0, }, { .name = "top level", .column_name = "Top Level", .need_print = 0, }, { .name = "otime", .column_name = "OTime", .need_print = 0, }, { .name = "parent_uuid", .column_name = "Parent UUID", .need_print = 0, }, { .name = "received_uuid", .column_name = "Received UUID", .need_print = 0, }, { .name = "uuid", .column_name = "UUID", .need_print = 0, }, { .name = "path", .column_name = "Path", .need_print = 0, }, { .name = NULL, .column_name = NULL, .need_print = 0, }, }; static btrfs_list_filter_func all_filter_funcs[]; static btrfs_list_comp_func all_comp_funcs[]; void btrfs_list_setup_print_column(enum btrfs_list_column_enum column) { int i; ASSERT(0 <= column && column <= BTRFS_LIST_ALL); if (column < BTRFS_LIST_ALL) { btrfs_list_columns[column].need_print = 1; return; } for (i = 0; i < BTRFS_LIST_ALL; i++) btrfs_list_columns[i].need_print = 1; } static void root_lookup_init(struct root_lookup *tree) { tree->root.rb_node = NULL; } static int comp_entry_with_rootid(struct root_info *entry1, struct root_info *entry2, int is_descending) { int ret; if (entry1->root_id > entry2->root_id) ret = 1; else if (entry1->root_id < entry2->root_id) ret = -1; else ret = 0; return is_descending ? -ret : ret; } static int comp_entry_with_gen(struct root_info *entry1, struct root_info *entry2, int is_descending) { int ret; if (entry1->gen > entry2->gen) ret = 1; else if (entry1->gen < entry2->gen) ret = -1; else ret = 0; return is_descending ? -ret : ret; } static int comp_entry_with_ogen(struct root_info *entry1, struct root_info *entry2, int is_descending) { int ret; if (entry1->ogen > entry2->ogen) ret = 1; else if (entry1->ogen < entry2->ogen) ret = -1; else ret = 0; return is_descending ? -ret : ret; } static int comp_entry_with_path(struct root_info *entry1, struct root_info *entry2, int is_descending) { int ret; if (strcmp(entry1->full_path, entry2->full_path) > 0) ret = 1; else if (strcmp(entry1->full_path, entry2->full_path) < 0) ret = -1; else ret = 0; return is_descending ? -ret : ret; } static btrfs_list_comp_func all_comp_funcs[] = { [BTRFS_LIST_COMP_ROOTID] = comp_entry_with_rootid, [BTRFS_LIST_COMP_OGEN] = comp_entry_with_ogen, [BTRFS_LIST_COMP_GEN] = comp_entry_with_gen, [BTRFS_LIST_COMP_PATH] = comp_entry_with_path, }; static char *all_sort_items[] = { [BTRFS_LIST_COMP_ROOTID] = "rootid", [BTRFS_LIST_COMP_OGEN] = "ogen", [BTRFS_LIST_COMP_GEN] = "gen", [BTRFS_LIST_COMP_PATH] = "path", [BTRFS_LIST_COMP_MAX] = NULL, }; static int btrfs_list_get_sort_item(char *sort_name) { int i; for (i = 0; i < BTRFS_LIST_COMP_MAX; i++) { if (strcmp(sort_name, all_sort_items[i]) == 0) return i; } return -1; } struct btrfs_list_comparer_set *btrfs_list_alloc_comparer_set(void) { struct btrfs_list_comparer_set *set; int size; size = sizeof(struct btrfs_list_comparer_set) + BTRFS_LIST_NCOMPS_INCREASE * sizeof(struct btrfs_list_comparer); set = calloc(1, size); if (!set) { fprintf(stderr, "memory allocation failed\n"); exit(1); } set->total = BTRFS_LIST_NCOMPS_INCREASE; return set; } static int btrfs_list_setup_comparer(struct btrfs_list_comparer_set **comp_set, enum btrfs_list_comp_enum comparer, int is_descending) { struct btrfs_list_comparer_set *set = *comp_set; int size; ASSERT(set != NULL); ASSERT(comparer < BTRFS_LIST_COMP_MAX); ASSERT(set->ncomps <= set->total); if (set->ncomps == set->total) { void *tmp; size = set->total + BTRFS_LIST_NCOMPS_INCREASE; size = sizeof(*set) + size * sizeof(struct btrfs_list_comparer); tmp = set; set = realloc(set, size); if (!set) { fprintf(stderr, "memory allocation failed\n"); free(tmp); exit(1); } memset(&set->comps[set->total], 0, BTRFS_LIST_NCOMPS_INCREASE * sizeof(struct btrfs_list_comparer)); set->total += BTRFS_LIST_NCOMPS_INCREASE; *comp_set = set; } ASSERT(set->comps[set->ncomps].comp_func == NULL); set->comps[set->ncomps].comp_func = all_comp_funcs[comparer]; set->comps[set->ncomps].is_descending = is_descending; set->ncomps++; return 0; } static int sort_comp(struct root_info *entry1, struct root_info *entry2, struct btrfs_list_comparer_set *set) { int rootid_compared = 0; int i, ret = 0; if (!set || !set->ncomps) goto comp_rootid; for (i = 0; i < set->ncomps; i++) { if (!set->comps[i].comp_func) break; ret = set->comps[i].comp_func(entry1, entry2, set->comps[i].is_descending); if (ret) return ret; if (set->comps[i].comp_func == comp_entry_with_rootid) rootid_compared = 1; } if (!rootid_compared) { comp_rootid: ret = comp_entry_with_rootid(entry1, entry2, 0); } return ret; } static int sort_tree_insert(struct root_lookup *sort_tree, struct root_info *ins, struct btrfs_list_comparer_set *comp_set) { struct rb_node **p = &sort_tree->root.rb_node; struct rb_node *parent = NULL; struct root_info *curr; int ret; while (*p) { parent = *p; curr = rb_entry(parent, struct root_info, sort_node); ret = sort_comp(ins, curr, comp_set); if (ret < 0) p = &(*p)->rb_left; else if (ret > 0) p = &(*p)->rb_right; else return -EEXIST; } rb_link_node(&ins->sort_node, parent, p); rb_insert_color(&ins->sort_node, &sort_tree->root); return 0; } /* * insert a new root into the tree. returns the existing root entry * if one is already there. Both root_id and ref_tree are used * as the key */ static int root_tree_insert(struct root_lookup *root_tree, struct root_info *ins) { struct rb_node **p = &root_tree->root.rb_node; struct rb_node * parent = NULL; struct root_info *curr; int ret; while(*p) { parent = *p; curr = rb_entry(parent, struct root_info, rb_node); ret = comp_entry_with_rootid(ins, curr, 0); if (ret < 0) p = &(*p)->rb_left; else if (ret > 0) p = &(*p)->rb_right; else return -EEXIST; } rb_link_node(&ins->rb_node, parent, p); rb_insert_color(&ins->rb_node, &root_tree->root); return 0; } /* * find a given root id in the tree. We return the smallest one, * rb_next can be used to move forward looking for more if required */ static struct root_info *root_tree_search(struct root_lookup *root_tree, u64 root_id) { struct rb_node *n = root_tree->root.rb_node; struct root_info *entry; struct root_info tmp; int ret; tmp.root_id = root_id; while(n) { entry = rb_entry(n, struct root_info, rb_node); ret = comp_entry_with_rootid(&tmp, entry, 0); if (ret < 0) n = n->rb_left; else if (ret > 0) n = n->rb_right; else return entry; } return NULL; } static int update_root(struct root_lookup *root_lookup, u64 root_id, u64 ref_tree, u64 root_offset, u64 flags, u64 dir_id, char *name, int name_len, u64 ogen, u64 gen, time_t ot, void *uuid, void *puuid, void *ruuid) { struct root_info *ri; ri = root_tree_search(root_lookup, root_id); if (!ri || ri->root_id != root_id) return -ENOENT; if (name && name_len > 0) { free(ri->name); ri->name = malloc(name_len + 1); if (!ri->name) { fprintf(stderr, "memory allocation failed\n"); exit(1); } strncpy(ri->name, name, name_len); ri->name[name_len] = 0; } if (ref_tree) ri->ref_tree = ref_tree; if (root_offset) ri->root_offset = root_offset; if (flags) ri->flags = flags; if (dir_id) ri->dir_id = dir_id; if (gen) ri->gen = gen; if (ogen) ri->ogen = ogen; if (!ri->ogen && root_offset) ri->ogen = root_offset; if (ot) ri->otime = ot; if (uuid) memcpy(&ri->uuid, uuid, BTRFS_UUID_SIZE); if (puuid) memcpy(&ri->puuid, puuid, BTRFS_UUID_SIZE); if (ruuid) memcpy(&ri->ruuid, ruuid, BTRFS_UUID_SIZE); return 0; } /* * add_root - update the existed root, or allocate a new root and insert it * into the lookup tree. * root_id: object id of the root * ref_tree: object id of the referring root. * root_offset: offset value of the root'key * dir_id: inode id of the directory in ref_tree where this root can be found. * name: the name of root_id in that directory * name_len: the length of name * ogen: the original generation of the root * gen: the current generation of the root * ot: the original time(create time) of the root * uuid: uuid of the root * puuid: uuid of the root parent if any * ruuid: uuid of the received subvol, if any */ static int add_root(struct root_lookup *root_lookup, u64 root_id, u64 ref_tree, u64 root_offset, u64 flags, u64 dir_id, char *name, int name_len, u64 ogen, u64 gen, time_t ot, void *uuid, void *puuid, void *ruuid) { struct root_info *ri; int ret; ret = update_root(root_lookup, root_id, ref_tree, root_offset, flags, dir_id, name, name_len, ogen, gen, ot, uuid, puuid, ruuid); if (!ret) return 0; ri = calloc(1, sizeof(*ri)); if (!ri) { printf("memory allocation failed\n"); exit(1); } ri->root_id = root_id; if (name && name_len > 0) { ri->name = malloc(name_len + 1); if (!ri->name) { fprintf(stderr, "memory allocation failed\n"); exit(1); } strncpy(ri->name, name, name_len); ri->name[name_len] = 0; } if (ref_tree) ri->ref_tree = ref_tree; if (dir_id) ri->dir_id = dir_id; if (root_offset) ri->root_offset = root_offset; if (flags) ri->flags = flags; if (gen) ri->gen = gen; if (ogen) ri->ogen = ogen; if (!ri->ogen && root_offset) ri->ogen = root_offset; if (ot) ri->otime = ot; if (uuid) memcpy(&ri->uuid, uuid, BTRFS_UUID_SIZE); if (puuid) memcpy(&ri->puuid, puuid, BTRFS_UUID_SIZE); if (ruuid) memcpy(&ri->ruuid, ruuid, BTRFS_UUID_SIZE); ret = root_tree_insert(root_lookup, ri); if (ret) { error("failed to insert tree %llu", (unsigned long long)root_id); exit(1); } return 0; } static void free_root_info(struct rb_node *node) { struct root_info *ri; ri = rb_entry(node, struct root_info, rb_node); free(ri->name); free(ri->path); free(ri->full_path); free(ri); } /* * for a given root_info, search through the root_lookup tree to construct * the full path name to it. * * This can't be called until all the root_info->path fields are filled * in by lookup_ino_path */ static int resolve_root(struct root_lookup *rl, struct root_info *ri, u64 top_id) { char *full_path = NULL; int len = 0; struct root_info *found; /* * we go backwards from the root_info object and add pathnames * from parent directories as we go. */ found = ri; while (1) { char *tmp; u64 next; int add_len; /* * ref_tree = 0 indicates the subvolume * has been deleted. */ if (!found->ref_tree) { free(full_path); return -ENOENT; } add_len = strlen(found->path); if (full_path) { /* room for / and for null */ tmp = malloc(add_len + 2 + len); if (!tmp) { perror("malloc failed"); exit(1); } memcpy(tmp + add_len + 1, full_path, len); tmp[add_len] = '/'; memcpy(tmp, found->path, add_len); tmp [add_len + len + 1] = '\0'; free(full_path); full_path = tmp; len += add_len + 1; } else { full_path = strdup(found->path); len = add_len; } if (!ri->top_id) ri->top_id = found->ref_tree; next = found->ref_tree; if (next == top_id) break; /* * if the ref_tree = BTRFS_FS_TREE_OBJECTID, * we are at the top */ if (next == BTRFS_FS_TREE_OBJECTID) break; /* * if the ref_tree wasn't in our tree of roots, the * subvolume was deleted. */ found = root_tree_search(rl, next); if (!found) { free(full_path); return -ENOENT; } } ri->full_path = full_path; return 0; } /* * for a single root_info, ask the kernel to give us a path name * inside it's ref_root for the dir_id where it lives. * * This fills in root_info->path with the path to the directory and and * appends this root's name. */ static int lookup_ino_path(int fd, struct root_info *ri) { struct btrfs_ioctl_ino_lookup_args args; int ret; if (ri->path) return 0; if (!ri->ref_tree) return -ENOENT; memset(&args, 0, sizeof(args)); args.treeid = ri->ref_tree; args.objectid = ri->dir_id; ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args); if (ret < 0) { if (errno == ENOENT) { ri->ref_tree = 0; return -ENOENT; } error("failed to lookup path for root %llu: %s", (unsigned long long)ri->ref_tree, strerror(errno)); return ret; } if (args.name[0]) { /* * we're in a subdirectory of ref_tree, the kernel ioctl * puts a / in there for us */ ri->path = malloc(strlen(ri->name) + strlen(args.name) + 1); if (!ri->path) { perror("malloc failed"); exit(1); } strcpy(ri->path, args.name); strcat(ri->path, ri->name); } else { /* we're at the root of ref_tree */ ri->path = strdup(ri->name); if (!ri->path) { perror("strdup failed"); exit(1); } } return 0; } /* finding the generation for a given path is a two step process. * First we use the inode lookup routine to find out the root id * * Then we use the tree search ioctl to scan all the root items for a * given root id and spit out the latest generation we can find */ static u64 find_root_gen(int fd) { struct btrfs_ioctl_ino_lookup_args ino_args; int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header sh; unsigned long off = 0; u64 max_found = 0; int i; memset(&ino_args, 0, sizeof(ino_args)); ino_args.objectid = BTRFS_FIRST_FREE_OBJECTID; /* this ioctl fills in ino_args->treeid */ ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &ino_args); if (ret < 0) { error("failed to lookup path for dirid %llu: %s", (unsigned long long)BTRFS_FIRST_FREE_OBJECTID, strerror(errno)); return 0; } memset(&args, 0, sizeof(args)); sk->tree_id = BTRFS_ROOT_TREE_OBJECTID; /* * there may be more than one ROOT_ITEM key if there are * snapshots pending deletion, we have to loop through * them. */ sk->min_objectid = ino_args.treeid; sk->max_objectid = ino_args.treeid; sk->max_type = BTRFS_ROOT_ITEM_KEY; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->nr_items = 4096; while (1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) { error("can't perform the search: %s", strerror(errno)); return 0; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; for (i = 0; i < sk->nr_items; i++) { struct btrfs_root_item *item; memcpy(&sh, args.buf + off, sizeof(sh)); off += sizeof(sh); item = (struct btrfs_root_item *)(args.buf + off); off += sh.len; sk->min_objectid = sh.objectid; sk->min_type = sh.type; sk->min_offset = sh.offset; if (sh.objectid > ino_args.treeid) break; if (sh.objectid == ino_args.treeid && sh.type == BTRFS_ROOT_ITEM_KEY) { max_found = max(max_found, btrfs_root_generation(item)); } } if (sk->min_offset < (u64)-1) sk->min_offset++; else break; if (sk->min_type != BTRFS_ROOT_ITEM_KEY) break; if (sk->min_objectid != ino_args.treeid) break; } return max_found; } /* pass in a directory id and this will return * the full path of the parent directory inside its * subvolume root. * * It may return NULL if it is in the root, or an ERR_PTR if things * go badly. */ static char *__ino_resolve(int fd, u64 dirid) { struct btrfs_ioctl_ino_lookup_args args; int ret; char *full; memset(&args, 0, sizeof(args)); args.objectid = dirid; ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args); if (ret < 0) { error("failed to lookup path for dirid %llu: %s", (unsigned long long)dirid, strerror(errno)); return ERR_PTR(ret); } if (args.name[0]) { /* * we're in a subdirectory of ref_tree, the kernel ioctl * puts a / in there for us */ full = strdup(args.name); if (!full) { perror("malloc failed"); return ERR_PTR(-ENOMEM); } } else { /* we're at the root of ref_tree */ full = NULL; } return full; } /* * simple string builder, returning a new string with both * dirid and name */ static char *build_name(const char *dirid, const char *name) { char *full; if (!dirid) return strdup(name); full = malloc(strlen(dirid) + strlen(name) + 1); if (!full) return NULL; strcpy(full, dirid); strcat(full, name); return full; } /* * given an inode number, this returns the full path name inside the subvolume * to that file/directory. cache_dirid and cache_name are used to * cache the results so we can avoid tree searches if a later call goes * to the same directory or file name */ static char *ino_resolve(int fd, u64 ino, u64 *cache_dirid, char **cache_name) { u64 dirid; char *dirname; char *name; char *full; int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; int namelen; memset(&args, 0, sizeof(args)); sk->tree_id = 0; /* * step one, we search for the inode back ref. We just use the first * one */ sk->min_objectid = ino; sk->max_objectid = ino; sk->max_type = BTRFS_INODE_REF_KEY; sk->max_offset = (u64)-1; sk->min_type = BTRFS_INODE_REF_KEY; sk->max_transid = (u64)-1; sk->nr_items = 1; ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) { error("can't perform the search: %s", strerror(errno)); return NULL; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) return NULL; off = 0; sh = (struct btrfs_ioctl_search_header *)(args.buf + off); if (btrfs_search_header_type(sh) == BTRFS_INODE_REF_KEY) { struct btrfs_inode_ref *ref; dirid = btrfs_search_header_offset(sh); ref = (struct btrfs_inode_ref *)(sh + 1); namelen = btrfs_stack_inode_ref_name_len(ref); name = (char *)(ref + 1); name = strndup(name, namelen); /* use our cached value */ if (dirid == *cache_dirid && *cache_name) { dirname = *cache_name; goto build; } } else { return NULL; } /* * the inode backref gives us the file name and the parent directory id. * From here we use __ino_resolve to get the path to the parent */ dirname = __ino_resolve(fd, dirid); build: full = build_name(dirname, name); if (*cache_name && dirname != *cache_name) free(*cache_name); *cache_name = dirname; *cache_dirid = dirid; free(name); return full; } int btrfs_list_get_default_subvolume(int fd, u64 *default_id) { struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; u64 found = 0; int ret; memset(&args, 0, sizeof(args)); /* * search for a dir item with a name 'default' in the tree of * tree roots, it should point us to a default root */ sk->tree_id = BTRFS_ROOT_TREE_OBJECTID; /* don't worry about ancient format and request only one item */ sk->nr_items = 1; sk->max_objectid = BTRFS_ROOT_TREE_DIR_OBJECTID; sk->min_objectid = BTRFS_ROOT_TREE_DIR_OBJECTID; sk->max_type = BTRFS_DIR_ITEM_KEY; sk->min_type = BTRFS_DIR_ITEM_KEY; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) return ret; /* the ioctl returns the number of items it found in nr_items */ if (sk->nr_items == 0) goto out; sh = (struct btrfs_ioctl_search_header *)args.buf; if (btrfs_search_header_type(sh) == BTRFS_DIR_ITEM_KEY) { struct btrfs_dir_item *di; int name_len; char *name; di = (struct btrfs_dir_item *)(sh + 1); name_len = btrfs_stack_dir_name_len(di); name = (char *)(di + 1); if (!strncmp("default", name, name_len)) found = btrfs_disk_key_objectid(&di->location); } out: *default_id = found; return 0; } static int list_subvol_search(int fd, struct root_lookup *root_lookup) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header sh; struct btrfs_root_ref *ref; struct btrfs_root_item *ri; unsigned long off = 0; int name_len; char *name; u64 dir_id; u64 gen = 0; u64 ogen; u64 flags; int i; time_t t; u8 uuid[BTRFS_UUID_SIZE]; u8 puuid[BTRFS_UUID_SIZE]; u8 ruuid[BTRFS_UUID_SIZE]; root_lookup_init(root_lookup); memset(&args, 0, sizeof(args)); sk->tree_id = BTRFS_ROOT_TREE_OBJECTID; /* Search both live and deleted subvolumes */ sk->max_type = BTRFS_ROOT_BACKREF_KEY; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_objectid = BTRFS_FIRST_FREE_OBJECTID; sk->max_objectid = BTRFS_LAST_FREE_OBJECTID; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->nr_items = 4096; while(1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) return ret; if (sk->nr_items == 0) break; off = 0; /* * for each item, pull the key out of the header and then * read the root_ref item it contains */ for (i = 0; i < sk->nr_items; i++) { memcpy(&sh, args.buf + off, sizeof(sh)); off += sizeof(sh); if (sh.type == BTRFS_ROOT_BACKREF_KEY) { ref = (struct btrfs_root_ref *)(args.buf + off); name_len = btrfs_stack_root_ref_name_len(ref); name = (char *)(ref + 1); dir_id = btrfs_stack_root_ref_dirid(ref); add_root(root_lookup, sh.objectid, sh.offset, 0, 0, dir_id, name, name_len, 0, 0, 0, NULL, NULL, NULL); } else if (sh.type == BTRFS_ROOT_ITEM_KEY) { ri = (struct btrfs_root_item *)(args.buf + off); gen = btrfs_root_generation(ri); flags = btrfs_root_flags(ri); if(sh.len > sizeof(struct btrfs_root_item_v0)) { t = btrfs_stack_timespec_sec(&ri->otime); ogen = btrfs_root_otransid(ri); memcpy(uuid, ri->uuid, BTRFS_UUID_SIZE); memcpy(puuid, ri->parent_uuid, BTRFS_UUID_SIZE); memcpy(ruuid, ri->received_uuid, BTRFS_UUID_SIZE); } else { t = 0; ogen = 0; memset(uuid, 0, BTRFS_UUID_SIZE); memset(puuid, 0, BTRFS_UUID_SIZE); memset(ruuid, 0, BTRFS_UUID_SIZE); } add_root(root_lookup, sh.objectid, 0, sh.offset, flags, 0, NULL, 0, ogen, gen, t, uuid, puuid, ruuid); } off += sh.len; sk->min_objectid = sh.objectid; sk->min_type = sh.type; sk->min_offset = sh.offset; } sk->nr_items = 4096; sk->min_offset++; if (!sk->min_offset) sk->min_type++; else continue; if (sk->min_type > BTRFS_ROOT_BACKREF_KEY) { sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_objectid++; } else continue; if (sk->min_objectid > sk->max_objectid) break; } return 0; } static int filter_by_rootid(struct root_info *ri, u64 data) { return ri->root_id == data; } static int filter_snapshot(struct root_info *ri, u64 data) { return !!ri->root_offset; } static int filter_flags(struct root_info *ri, u64 flags) { return ri->flags & flags; } static int filter_gen_more(struct root_info *ri, u64 data) { return ri->gen >= data; } static int filter_gen_less(struct root_info *ri, u64 data) { return ri->gen <= data; } static int filter_gen_equal(struct root_info *ri, u64 data) { return ri->gen == data; } static int filter_cgen_more(struct root_info *ri, u64 data) { return ri->ogen >= data; } static int filter_cgen_less(struct root_info *ri, u64 data) { return ri->ogen <= data; } static int filter_cgen_equal(struct root_info *ri, u64 data) { return ri->ogen == data; } static int filter_topid_equal(struct root_info *ri, u64 data) { return ri->top_id == data; } static int filter_full_path(struct root_info *ri, u64 data) { if (ri->full_path && ri->top_id != data) { char *tmp; char p[] = ""; int add_len = strlen(p); int len = strlen(ri->full_path); tmp = malloc(len + add_len + 2); if (!tmp) { fprintf(stderr, "memory allocation failed\n"); exit(1); } memcpy(tmp + add_len + 1, ri->full_path, len); tmp[len + add_len + 1] = '\0'; tmp[add_len] = '/'; memcpy(tmp, p, add_len); free(ri->full_path); ri->full_path = tmp; } return 1; } static int filter_by_parent(struct root_info *ri, u64 data) { return !uuid_compare(ri->puuid, (u8 *)(unsigned long)data); } static int filter_deleted(struct root_info *ri, u64 data) { return ri->deleted; } static btrfs_list_filter_func all_filter_funcs[] = { [BTRFS_LIST_FILTER_ROOTID] = filter_by_rootid, [BTRFS_LIST_FILTER_SNAPSHOT_ONLY] = filter_snapshot, [BTRFS_LIST_FILTER_FLAGS] = filter_flags, [BTRFS_LIST_FILTER_GEN_MORE] = filter_gen_more, [BTRFS_LIST_FILTER_GEN_LESS] = filter_gen_less, [BTRFS_LIST_FILTER_GEN_EQUAL] = filter_gen_equal, [BTRFS_LIST_FILTER_CGEN_MORE] = filter_cgen_more, [BTRFS_LIST_FILTER_CGEN_LESS] = filter_cgen_less, [BTRFS_LIST_FILTER_CGEN_EQUAL] = filter_cgen_equal, [BTRFS_LIST_FILTER_TOPID_EQUAL] = filter_topid_equal, [BTRFS_LIST_FILTER_FULL_PATH] = filter_full_path, [BTRFS_LIST_FILTER_BY_PARENT] = filter_by_parent, [BTRFS_LIST_FILTER_DELETED] = filter_deleted, }; struct btrfs_list_filter_set *btrfs_list_alloc_filter_set(void) { struct btrfs_list_filter_set *set; int size; size = sizeof(struct btrfs_list_filter_set) + BTRFS_LIST_NFILTERS_INCREASE * sizeof(struct btrfs_list_filter); set = calloc(1, size); if (!set) { fprintf(stderr, "memory allocation failed\n"); exit(1); } set->total = BTRFS_LIST_NFILTERS_INCREASE; return set; } /* * Setup list filters. Exit if there's not enough memory, as we can't continue * without the structures set up properly. */ void btrfs_list_setup_filter(struct btrfs_list_filter_set **filter_set, enum btrfs_list_filter_enum filter, u64 data) { struct btrfs_list_filter_set *set = *filter_set; int size; ASSERT(set != NULL); ASSERT(filter < BTRFS_LIST_FILTER_MAX); ASSERT(set->nfilters <= set->total); if (set->nfilters == set->total) { void *tmp; size = set->total + BTRFS_LIST_NFILTERS_INCREASE; size = sizeof(*set) + size * sizeof(struct btrfs_list_filter); tmp = set; set = realloc(set, size); if (!set) { fprintf(stderr, "memory allocation failed\n"); free(tmp); exit(1); } memset(&set->filters[set->total], 0, BTRFS_LIST_NFILTERS_INCREASE * sizeof(struct btrfs_list_filter)); set->total += BTRFS_LIST_NFILTERS_INCREASE; *filter_set = set; } ASSERT(set->filters[set->nfilters].filter_func == NULL); if (filter == BTRFS_LIST_FILTER_DELETED) set->only_deleted = 1; set->filters[set->nfilters].filter_func = all_filter_funcs[filter]; set->filters[set->nfilters].data = data; set->nfilters++; } static int filter_root(struct root_info *ri, struct btrfs_list_filter_set *set) { int i, ret; if (!set) return 1; if (set->only_deleted && !ri->deleted) return 0; if (!set->only_deleted && ri->deleted) return 0; for (i = 0; i < set->nfilters; i++) { if (!set->filters[i].filter_func) break; ret = set->filters[i].filter_func(ri, set->filters[i].data); if (!ret) return 0; } return 1; } static void filter_and_sort_subvol(struct root_lookup *all_subvols, struct root_lookup *sort_tree, struct btrfs_list_filter_set *filter_set, struct btrfs_list_comparer_set *comp_set, u64 top_id) { struct rb_node *n; struct root_info *entry; int ret; root_lookup_init(sort_tree); n = rb_last(&all_subvols->root); while (n) { entry = rb_entry(n, struct root_info, rb_node); ret = resolve_root(all_subvols, entry, top_id); if (ret == -ENOENT) { entry->full_path = strdup("DELETED"); entry->deleted = 1; } ret = filter_root(entry, filter_set); if (ret) sort_tree_insert(sort_tree, entry, comp_set); n = rb_prev(n); } } static int list_subvol_fill_paths(int fd, struct root_lookup *root_lookup) { struct rb_node *n; n = rb_first(&root_lookup->root); while (n) { struct root_info *entry; int ret; entry = rb_entry(n, struct root_info, rb_node); ret = lookup_ino_path(fd, entry); if (ret && ret != -ENOENT) return ret; n = rb_next(n); } return 0; } static void print_subvolume_column(struct root_info *subv, enum btrfs_list_column_enum column) { char tstr[256]; char uuidparse[BTRFS_UUID_UNPARSED_SIZE]; ASSERT(0 <= column && column < BTRFS_LIST_ALL); switch (column) { case BTRFS_LIST_OBJECTID: printf("%llu", subv->root_id); break; case BTRFS_LIST_GENERATION: printf("%llu", subv->gen); break; case BTRFS_LIST_OGENERATION: printf("%llu", subv->ogen); break; case BTRFS_LIST_PARENT: printf("%llu", subv->ref_tree); break; case BTRFS_LIST_TOP_LEVEL: printf("%llu", subv->top_id); break; case BTRFS_LIST_OTIME: if (subv->otime) { struct tm tm; localtime_r(&subv->otime, &tm); strftime(tstr, 256, "%Y-%m-%d %X", &tm); } else strcpy(tstr, "-"); printf("%s", tstr); break; case BTRFS_LIST_UUID: if (uuid_is_null(subv->uuid)) strcpy(uuidparse, "-"); else uuid_unparse(subv->uuid, uuidparse); printf("%s", uuidparse); break; case BTRFS_LIST_PUUID: if (uuid_is_null(subv->puuid)) strcpy(uuidparse, "-"); else uuid_unparse(subv->puuid, uuidparse); printf("%s", uuidparse); break; case BTRFS_LIST_RUUID: if (uuid_is_null(subv->ruuid)) strcpy(uuidparse, "-"); else uuid_unparse(subv->ruuid, uuidparse); printf("%s", uuidparse); break; case BTRFS_LIST_PATH: BUG_ON(!subv->full_path); printf("%s", subv->full_path); break; default: break; } } static void print_one_subvol_info_raw(struct root_info *subv, const char *raw_prefix) { int i; for (i = 0; i < BTRFS_LIST_ALL; i++) { if (!btrfs_list_columns[i].need_print) continue; if (raw_prefix) printf("%s",raw_prefix); print_subvolume_column(subv, i); } printf("\n"); } static void print_one_subvol_info_table(struct root_info *subv) { int i; for (i = 0; i < BTRFS_LIST_ALL; i++) { if (!btrfs_list_columns[i].need_print) continue; print_subvolume_column(subv, i); if (i != BTRFS_LIST_PATH) printf("\t"); if (i == BTRFS_LIST_TOP_LEVEL) printf("\t"); } printf("\n"); } static void print_one_subvol_info_default(struct root_info *subv) { int i; for (i = 0; i < BTRFS_LIST_ALL; i++) { if (!btrfs_list_columns[i].need_print) continue; printf("%s ", btrfs_list_columns[i].name); print_subvolume_column(subv, i); if (i != BTRFS_LIST_PATH) printf(" "); } printf("\n"); } static void print_all_subvol_info_tab_head(void) { int i; int len; char barrier[20]; for (i = 0; i < BTRFS_LIST_ALL; i++) { if (btrfs_list_columns[i].need_print) printf("%s\t", btrfs_list_columns[i].name); if (i == BTRFS_LIST_ALL-1) printf("\n"); } for (i = 0; i < BTRFS_LIST_ALL; i++) { memset(barrier, 0, sizeof(barrier)); if (btrfs_list_columns[i].need_print) { len = strlen(btrfs_list_columns[i].name); while (len--) strcat(barrier, "-"); printf("%s\t", barrier); } if (i == BTRFS_LIST_ALL-1) printf("\n"); } } static void print_all_subvol_info(struct root_lookup *sorted_tree, enum btrfs_list_layout layout, const char *raw_prefix) { struct rb_node *n; struct root_info *entry; if (layout == BTRFS_LIST_LAYOUT_TABLE) print_all_subvol_info_tab_head(); n = rb_first(&sorted_tree->root); while (n) { entry = rb_entry(n, struct root_info, sort_node); switch (layout) { case BTRFS_LIST_LAYOUT_DEFAULT: print_one_subvol_info_default(entry); break; case BTRFS_LIST_LAYOUT_TABLE: print_one_subvol_info_table(entry); break; case BTRFS_LIST_LAYOUT_RAW: print_one_subvol_info_raw(entry, raw_prefix); break; } n = rb_next(n); } } static int btrfs_list_subvols(int fd, struct root_lookup *root_lookup) { int ret; ret = list_subvol_search(fd, root_lookup); if (ret) { error("can't perform the search: %s", strerror(errno)); return ret; } /* * now we have an rbtree full of root_info objects, but we need to fill * in their path names within the subvol that is referencing each one. */ ret = list_subvol_fill_paths(fd, root_lookup); return ret; } int btrfs_list_subvols_print(int fd, struct btrfs_list_filter_set *filter_set, struct btrfs_list_comparer_set *comp_set, enum btrfs_list_layout layout, int full_path, const char *raw_prefix) { struct root_lookup root_lookup; struct root_lookup root_sort; int ret = 0; u64 top_id = 0; if (full_path) ret = btrfs_list_get_path_rootid(fd, &top_id); if (ret) return ret; ret = btrfs_list_subvols(fd, &root_lookup); if (ret) return ret; filter_and_sort_subvol(&root_lookup, &root_sort, filter_set, comp_set, top_id); print_all_subvol_info(&root_sort, layout, raw_prefix); rb_free_nodes(&root_lookup.root, free_root_info); return 0; } static char *strdup_or_null(const char *s) { if (!s) return NULL; return strdup(s); } int btrfs_get_subvol(int fd, struct root_info *the_ri) { int ret, rr; struct root_lookup rl; struct rb_node *rbn; struct root_info *ri; u64 root_id; ret = btrfs_list_get_path_rootid(fd, &root_id); if (ret) return ret; ret = btrfs_list_subvols(fd, &rl); if (ret) return ret; rbn = rb_first(&rl.root); while(rbn) { ri = rb_entry(rbn, struct root_info, rb_node); rr = resolve_root(&rl, ri, root_id); if (rr == -ENOENT) { ret = -ENOENT; rbn = rb_next(rbn); continue; } if (!comp_entry_with_rootid(the_ri, ri, 0)) { memcpy(the_ri, ri, offsetof(struct root_info, path)); the_ri->path = strdup_or_null(ri->path); the_ri->name = strdup_or_null(ri->name); the_ri->full_path = strdup_or_null(ri->full_path); ret = 0; break; } rbn = rb_next(rbn); } rb_free_nodes(&rl.root, free_root_info); return ret; } static int print_one_extent(int fd, struct btrfs_ioctl_search_header *sh, struct btrfs_file_extent_item *item, u64 found_gen, u64 *cache_dirid, char **cache_dir_name, u64 *cache_ino, char **cache_full_name) { u64 len = 0; u64 disk_start = 0; u64 disk_offset = 0; u8 type; int compressed = 0; int flags = 0; char *name = NULL; if (btrfs_search_header_objectid(sh) == *cache_ino) { name = *cache_full_name; } else if (*cache_full_name) { free(*cache_full_name); *cache_full_name = NULL; } if (!name) { name = ino_resolve(fd, btrfs_search_header_objectid(sh), cache_dirid, cache_dir_name); *cache_full_name = name; *cache_ino = btrfs_search_header_objectid(sh); } if (!name) return -EIO; type = btrfs_stack_file_extent_type(item); compressed = btrfs_stack_file_extent_compression(item); if (type == BTRFS_FILE_EXTENT_REG || type == BTRFS_FILE_EXTENT_PREALLOC) { disk_start = btrfs_stack_file_extent_disk_bytenr(item); disk_offset = btrfs_stack_file_extent_offset(item); len = btrfs_stack_file_extent_num_bytes(item); } else if (type == BTRFS_FILE_EXTENT_INLINE) { disk_start = 0; disk_offset = 0; len = btrfs_stack_file_extent_ram_bytes(item); } else { error( "unhandled extent type %d for inode %llu file offset %llu gen %llu", type, (unsigned long long)btrfs_search_header_objectid(sh), (unsigned long long)btrfs_search_header_offset(sh), (unsigned long long)found_gen); return -EIO; } printf("inode %llu file offset %llu len %llu disk start %llu " "offset %llu gen %llu flags ", (unsigned long long)btrfs_search_header_objectid(sh), (unsigned long long)btrfs_search_header_offset(sh), (unsigned long long)len, (unsigned long long)disk_start, (unsigned long long)disk_offset, (unsigned long long)found_gen); if (compressed) { printf("COMPRESS"); flags++; } if (type == BTRFS_FILE_EXTENT_PREALLOC) { printf("%sPREALLOC", flags ? "|" : ""); flags++; } if (type == BTRFS_FILE_EXTENT_INLINE) { printf("%sINLINE", flags ? "|" : ""); flags++; } if (!flags) printf("NONE"); printf(" %s\n", name); return 0; } int btrfs_list_find_updated_files(int fd, u64 root_id, u64 oldest_gen) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header sh; struct btrfs_file_extent_item *item; unsigned long off = 0; u64 found_gen; u64 max_found = 0; int i; u64 cache_dirid = 0; u64 cache_ino = 0; char *cache_dir_name = NULL; char *cache_full_name = NULL; struct btrfs_file_extent_item backup; memset(&backup, 0, sizeof(backup)); memset(&args, 0, sizeof(args)); sk->tree_id = root_id; /* * set all the other params to the max, we'll take any objectid * and any trans */ sk->max_objectid = (u64)-1; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->max_type = BTRFS_EXTENT_DATA_KEY; sk->min_transid = oldest_gen; /* just a big number, doesn't matter much */ sk->nr_items = 4096; max_found = find_root_gen(fd); while(1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) { error("can't perform the search: %s", strerror(errno)); break; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; /* * for each item, pull the key out of the header and then * read the root_ref item it contains */ for (i = 0; i < sk->nr_items; i++) { memcpy(&sh, args.buf + off, sizeof(sh)); off += sizeof(sh); /* * just in case the item was too big, pass something other * than garbage */ if (sh.len == 0) item = &backup; else item = (struct btrfs_file_extent_item *)(args.buf + off); found_gen = btrfs_stack_file_extent_generation(item); if (sh.type == BTRFS_EXTENT_DATA_KEY && found_gen >= oldest_gen) { print_one_extent(fd, &sh, item, found_gen, &cache_dirid, &cache_dir_name, &cache_ino, &cache_full_name); } off += sh.len; /* * record the mins in sk so we can make sure the * next search doesn't repeat this root */ sk->min_objectid = sh.objectid; sk->min_offset = sh.offset; sk->min_type = sh.type; } sk->nr_items = 4096; if (sk->min_offset < (u64)-1) sk->min_offset++; else if (sk->min_objectid < (u64)-1) { sk->min_objectid++; sk->min_offset = 0; sk->min_type = 0; } else break; } free(cache_dir_name); free(cache_full_name); printf("transid marker was %llu\n", (unsigned long long)max_found); return ret; } char *btrfs_list_path_for_root(int fd, u64 root) { struct root_lookup root_lookup; struct rb_node *n; char *ret_path = NULL; int ret; u64 top_id; ret = btrfs_list_get_path_rootid(fd, &top_id); if (ret) return ERR_PTR(ret); ret = list_subvol_search(fd, &root_lookup); if (ret < 0) return ERR_PTR(ret); ret = list_subvol_fill_paths(fd, &root_lookup); if (ret < 0) return ERR_PTR(ret); n = rb_last(&root_lookup.root); while (n) { struct root_info *entry; entry = rb_entry(n, struct root_info, rb_node); ret = resolve_root(&root_lookup, entry, top_id); if (ret == -ENOENT && entry->root_id == root) { ret_path = NULL; break; } if (entry->root_id == root) { ret_path = entry->full_path; entry->full_path = NULL; } n = rb_prev(n); } rb_free_nodes(&root_lookup.root, free_root_info); return ret_path; } int btrfs_list_parse_sort_string(char *opt_arg, struct btrfs_list_comparer_set **comps) { int order; int flag; char *p; char **ptr_argv; int what_to_sort; while ((p = strtok(opt_arg, ",")) != NULL) { flag = 0; ptr_argv = all_sort_items; while (*ptr_argv) { if (strcmp(*ptr_argv, p) == 0) { flag = 1; break; } else { p++; if (strcmp(*ptr_argv, p) == 0) { flag = 1; p--; break; } p--; } ptr_argv++; } if (flag == 0) return -1; else { if (*p == '+') { order = 0; p++; } else if (*p == '-') { order = 1; p++; } else order = 0; what_to_sort = btrfs_list_get_sort_item(p); btrfs_list_setup_comparer(comps, what_to_sort, order); } opt_arg = NULL; } return 0; } /* * This function is used to parse the argument of filter condition. * * type is the filter object. */ int btrfs_list_parse_filter_string(char *opt_arg, struct btrfs_list_filter_set **filters, enum btrfs_list_filter_enum type) { u64 arg; switch (*(opt_arg++)) { case '+': arg = arg_strtou64(opt_arg); type += 2; btrfs_list_setup_filter(filters, type, arg); break; case '-': arg = arg_strtou64(opt_arg); type += 1; btrfs_list_setup_filter(filters, type, arg); break; default: opt_arg--; arg = arg_strtou64(opt_arg); btrfs_list_setup_filter(filters, type, arg); break; } return 0; } int btrfs_list_get_path_rootid(int fd, u64 *treeid) { int ret; ret = lookup_path_rootid(fd, treeid); if (ret < 0) error("cannot resolve rootid for path: %s", strerror(errno)); return ret; }