/* * Copyright (C) 2011 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "transaction.h" #include "list.h" #include "volumes.h" #include "utils.h" #include "commands.h" static char fs_name[PATH_MAX]; static char path_name[PATH_MAX]; static char symlink_target[PATH_MAX]; static int get_snaps = 0; static int verbose = 0; static int restore_metadata = 0; static int restore_symlinks = 0; static int ignore_errors = 0; static int overwrite = 0; static int get_xattrs = 0; static int dry_run = 0; #define LZO_LEN 4 #define PAGE_CACHE_SIZE 4096 #define lzo1x_worst_compress(x) ((x) + ((x) / 16) + 64 + 3) static int decompress_zlib(char *inbuf, char *outbuf, u64 compress_len, u64 decompress_len) { z_stream strm; int ret; memset(&strm, 0, sizeof(strm)); ret = inflateInit(&strm); if (ret != Z_OK) { error("zlib init returned %d", ret); return -1; } strm.avail_in = compress_len; strm.next_in = (unsigned char *)inbuf; strm.avail_out = decompress_len; strm.next_out = (unsigned char *)outbuf; ret = inflate(&strm, Z_NO_FLUSH); if (ret != Z_STREAM_END) { (void)inflateEnd(&strm); error("zlib inflate failed: %d", ret); return -1; } (void)inflateEnd(&strm); return 0; } static inline size_t read_compress_length(unsigned char *buf) { __le32 dlen; memcpy(&dlen, buf, LZO_LEN); return le32_to_cpu(dlen); } static int decompress_lzo(unsigned char *inbuf, char *outbuf, u64 compress_len, u64 *decompress_len) { size_t new_len; size_t in_len; size_t out_len = 0; size_t tot_len; size_t tot_in; int ret; ret = lzo_init(); if (ret != LZO_E_OK) { error("lzo init returned %d", ret); return -1; } tot_len = read_compress_length(inbuf); inbuf += LZO_LEN; tot_in = LZO_LEN; while (tot_in < tot_len) { size_t mod_page; size_t rem_page; in_len = read_compress_length(inbuf); if ((tot_in + LZO_LEN + in_len) > tot_len) { error("bad compress length %lu", (unsigned long)in_len); return -1; } inbuf += LZO_LEN; tot_in += LZO_LEN; new_len = lzo1x_worst_compress(PAGE_CACHE_SIZE); ret = lzo1x_decompress_safe((const unsigned char *)inbuf, in_len, (unsigned char *)outbuf, (void *)&new_len, NULL); if (ret != LZO_E_OK) { error("lzo decompress failed: %d", ret); return -1; } out_len += new_len; outbuf += new_len; inbuf += in_len; tot_in += in_len; /* * If the 4 byte header does not fit to the rest of the page we * have to move to the next one, unless we read some garbage */ mod_page = tot_in % PAGE_CACHE_SIZE; rem_page = PAGE_CACHE_SIZE - mod_page; if (rem_page < LZO_LEN) { inbuf += rem_page; tot_in += rem_page; } } *decompress_len = out_len; return 0; } static int decompress(char *inbuf, char *outbuf, u64 compress_len, u64 *decompress_len, int compress) { switch (compress) { case BTRFS_COMPRESS_ZLIB: return decompress_zlib(inbuf, outbuf, compress_len, *decompress_len); case BTRFS_COMPRESS_LZO: return decompress_lzo((unsigned char *)inbuf, outbuf, compress_len, decompress_len); default: break; } error("invalid compression type: %d", compress); return -1; } static int next_leaf(struct btrfs_root *root, struct btrfs_path *path) { int slot; int level = 1; int offset = 1; struct extent_buffer *c; struct extent_buffer *next = NULL; again: for (; level < BTRFS_MAX_LEVEL; level++) { if (path->nodes[level]) break; } if (level >= BTRFS_MAX_LEVEL) return 1; slot = path->slots[level] + 1; while(level < BTRFS_MAX_LEVEL) { if (!path->nodes[level]) return 1; slot = path->slots[level] + offset; c = path->nodes[level]; if (slot >= btrfs_header_nritems(c)) { level++; if (level == BTRFS_MAX_LEVEL) return 1; offset = 1; continue; } if (path->reada) reada_for_search(root, path, level, slot, 0); next = read_node_slot(root, c, slot); if (extent_buffer_uptodate(next)) break; offset++; } path->slots[level] = slot; while(1) { level--; c = path->nodes[level]; free_extent_buffer(c); path->nodes[level] = next; path->slots[level] = 0; if (!level) break; if (path->reada) reada_for_search(root, path, level, 0, 0); next = read_node_slot(root, next, 0); if (!extent_buffer_uptodate(next)) goto again; } return 0; } static int copy_one_inline(int fd, struct btrfs_path *path, u64 pos) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_file_extent_item *fi; char buf[4096]; char *outbuf; u64 ram_size; ssize_t done; unsigned long ptr; int ret; int len; int inline_item_len; int compress; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); ptr = btrfs_file_extent_inline_start(fi); len = btrfs_file_extent_inline_len(leaf, path->slots[0], fi); inline_item_len = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(path->slots[0])); read_extent_buffer(leaf, buf, ptr, inline_item_len); compress = btrfs_file_extent_compression(leaf, fi); if (compress == BTRFS_COMPRESS_NONE) { done = pwrite(fd, buf, len, pos); if (done < len) { fprintf(stderr, "Short inline write, wanted %d, did " "%zd: %d\n", len, done, errno); return -1; } return 0; } ram_size = btrfs_file_extent_ram_bytes(leaf, fi); outbuf = calloc(1, ram_size); if (!outbuf) { error("not enough memory"); return -ENOMEM; } ret = decompress(buf, outbuf, len, &ram_size, compress); if (ret) { free(outbuf); return ret; } done = pwrite(fd, outbuf, ram_size, pos); free(outbuf); if (done < ram_size) { fprintf(stderr, "Short compressed inline write, wanted %Lu, " "did %zd: %d\n", ram_size, done, errno); return -1; } return 0; } static int copy_one_extent(struct btrfs_root *root, int fd, struct extent_buffer *leaf, struct btrfs_file_extent_item *fi, u64 pos) { struct btrfs_multi_bio *multi = NULL; struct btrfs_device *device; char *inbuf, *outbuf = NULL; ssize_t done, total = 0; u64 bytenr; u64 ram_size; u64 disk_size; u64 num_bytes; u64 length; u64 size_left; u64 dev_bytenr; u64 offset; u64 count = 0; int compress; int ret; int dev_fd; int mirror_num = 1; int num_copies; compress = btrfs_file_extent_compression(leaf, fi); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); disk_size = btrfs_file_extent_disk_num_bytes(leaf, fi); ram_size = btrfs_file_extent_ram_bytes(leaf, fi); offset = btrfs_file_extent_offset(leaf, fi); num_bytes = btrfs_file_extent_num_bytes(leaf, fi); size_left = disk_size; if (compress == BTRFS_COMPRESS_NONE) bytenr += offset; if (verbose && offset) printf("offset is %Lu\n", offset); /* we found a hole */ if (disk_size == 0) return 0; inbuf = malloc(size_left); if (!inbuf) { error("not enough memory\n"); return -ENOMEM; } if (compress != BTRFS_COMPRESS_NONE) { outbuf = calloc(1, ram_size); if (!outbuf) { error("not enough memory"); free(inbuf); return -ENOMEM; } } again: length = size_left; ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, bytenr, &length, &multi, mirror_num, NULL); if (ret) { error("cannot map block logical %llu length %llu: %d", (unsigned long long)bytenr, (unsigned long long)length, ret); goto out; } device = multi->stripes[0].dev; dev_fd = device->fd; device->total_ios++; dev_bytenr = multi->stripes[0].physical; kfree(multi); if (size_left < length) length = size_left; done = pread(dev_fd, inbuf+count, length, dev_bytenr); /* Need both checks, or we miss negative values due to u64 conversion */ if (done < 0 || done < length) { num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, bytenr, length); mirror_num++; /* mirror_num is 1-indexed, so num_copies is a valid mirror. */ if (mirror_num > num_copies) { ret = -1; error("exhausted mirrors trying to read (%d > %d)", mirror_num, num_copies); goto out; } fprintf(stderr, "Trying another mirror\n"); goto again; } mirror_num = 1; size_left -= length; count += length; bytenr += length; if (size_left) goto again; if (compress == BTRFS_COMPRESS_NONE) { while (total < num_bytes) { done = pwrite(fd, inbuf+total, num_bytes-total, pos+total); if (done < 0) { ret = -1; error("cannot write data: %d %s", errno, strerror(errno)); goto out; } total += done; } ret = 0; goto out; } ret = decompress(inbuf, outbuf, disk_size, &ram_size, compress); if (ret) { num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, bytenr, length); mirror_num++; if (mirror_num >= num_copies) { ret = -1; goto out; } fprintf(stderr, "Trying another mirror\n"); goto again; } while (total < num_bytes) { done = pwrite(fd, outbuf + offset + total, num_bytes - total, pos + total); if (done < 0) { ret = -1; goto out; } total += done; } out: free(inbuf); free(outbuf); return ret; } enum loop_response { LOOP_STOP, LOOP_CONTINUE, LOOP_DONTASK }; static enum loop_response ask_to_continue(const char *file) { char buf[2]; char *ret; printf("We seem to be looping a lot on %s, do you want to keep going " "on ? (y/N/a): ", file); again: ret = fgets(buf, 2, stdin); if (*ret == '\n' || tolower(*ret) == 'n') return LOOP_STOP; if (tolower(*ret) == 'a') return LOOP_DONTASK; if (tolower(*ret) != 'y') { printf("Please enter one of 'y', 'n', or 'a': "); goto again; } return LOOP_CONTINUE; } static int set_file_xattrs(struct btrfs_root *root, u64 inode, int fd, const char *file_name) { struct btrfs_key key; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_dir_item *di; u32 name_len = 0; u32 data_len = 0; u32 len = 0; u32 cur, total_len; char *name = NULL; char *data = NULL; int ret = 0; key.objectid = inode; key.type = BTRFS_XATTR_ITEM_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; leaf = path->nodes[0]; while (1) { if (path->slots[0] >= btrfs_header_nritems(leaf)) { do { ret = next_leaf(root, path); if (ret < 0) { error("searching for extended attributes: %d\n", ret); goto out; } else if (ret) { /* No more leaves to search */ ret = 0; goto out; } leaf = path->nodes[0]; } while (!leaf); continue; } btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.type != BTRFS_XATTR_ITEM_KEY || key.objectid != inode) break; cur = 0; total_len = btrfs_item_size_nr(leaf, path->slots[0]); di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); while (cur < total_len) { len = btrfs_dir_name_len(leaf, di); if (len > name_len) { free(name); name = (char *) malloc(len + 1); if (!name) { ret = -ENOMEM; goto out; } } read_extent_buffer(leaf, name, (unsigned long)(di + 1), len); name[len] = '\0'; name_len = len; len = btrfs_dir_data_len(leaf, di); if (len > data_len) { free(data); data = (char *) malloc(len); if (!data) { ret = -ENOMEM; goto out; } } read_extent_buffer(leaf, data, (unsigned long)(di + 1) + name_len, len); data_len = len; if (fsetxattr(fd, name, data, data_len, 0)) error("setting extended attribute %s on file %s: %s", name, file_name, strerror(errno)); len = sizeof(*di) + name_len + data_len; cur += len; di = (struct btrfs_dir_item *)((char *)di + len); } path->slots[0]++; } ret = 0; out: btrfs_free_path(path); free(name); free(data); return ret; } static int copy_metadata(struct btrfs_root *root, int fd, struct btrfs_key *key) { struct btrfs_path *path; struct btrfs_inode_item *inode_item; int ret; path = btrfs_alloc_path(); if (!path) { error("not enough memory"); return -ENOMEM; } ret = btrfs_lookup_inode(NULL, root, path, key, 0); if (ret == 0) { struct btrfs_timespec *bts; struct timespec times[2]; inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); ret = fchown(fd, btrfs_inode_uid(path->nodes[0], inode_item), btrfs_inode_gid(path->nodes[0], inode_item)); if (ret) { error("failed to change owner: %s", strerror(errno)); goto out; } ret = fchmod(fd, btrfs_inode_mode(path->nodes[0], inode_item)); if (ret) { error("failed to change mode: %s", strerror(errno)); goto out; } bts = btrfs_inode_atime(inode_item); times[0].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[0].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); bts = btrfs_inode_mtime(inode_item); times[1].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[1].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); ret = futimens(fd, times); if (ret) { error("failed to set times: %s", strerror(errno)); goto out; } } out: btrfs_free_path(path); return ret; } static int copy_file(struct btrfs_root *root, int fd, struct btrfs_key *key, const char *file) { struct extent_buffer *leaf; struct btrfs_path *path; struct btrfs_file_extent_item *fi; struct btrfs_inode_item *inode_item; struct btrfs_timespec *bts; struct btrfs_key found_key; int ret; int extent_type; int compression; int loops = 0; u64 found_size = 0; struct timespec times[2]; int times_ok = 0; path = btrfs_alloc_path(); if (!path) { error("not enough memory"); return -ENOMEM; } ret = btrfs_lookup_inode(NULL, root, path, key, 0); if (ret == 0) { inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); found_size = btrfs_inode_size(path->nodes[0], inode_item); if (restore_metadata) { /* * Change the ownership and mode now, set times when * copyout is finished. */ ret = fchown(fd, btrfs_inode_uid(path->nodes[0], inode_item), btrfs_inode_gid(path->nodes[0], inode_item)); if (ret && !ignore_errors) goto out; ret = fchmod(fd, btrfs_inode_mode(path->nodes[0], inode_item)); if (ret && !ignore_errors) goto out; bts = btrfs_inode_atime(inode_item); times[0].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[0].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); bts = btrfs_inode_mtime(inode_item); times[1].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[1].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); times_ok = 1; } } btrfs_release_path(path); key->offset = 0; key->type = BTRFS_EXTENT_DATA_KEY; ret = btrfs_search_slot(NULL, root, key, path, 0, 0); if (ret < 0) { error("searching extent data returned %d", ret); goto out; } leaf = path->nodes[0]; while (!leaf) { ret = next_leaf(root, path); if (ret < 0) { error("cannot get next leaf: %d", ret); goto out; } else if (ret > 0) { /* No more leaves to search */ ret = 0; goto out; } leaf = path->nodes[0]; } while (1) { if (loops >= 0 && loops++ >= 1024) { enum loop_response resp; resp = ask_to_continue(file); if (resp == LOOP_STOP) break; else if (resp == LOOP_CONTINUE) loops = 0; else if (resp == LOOP_DONTASK) loops = -1; } if (path->slots[0] >= btrfs_header_nritems(leaf)) { do { ret = next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error searching %d\n", ret); goto out; } else if (ret) { /* No more leaves to search */ btrfs_free_path(path); goto set_size; } leaf = path->nodes[0]; } while (!leaf); continue; } btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != key->objectid) break; if (found_key.type != key->type) break; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(leaf, fi); compression = btrfs_file_extent_compression(leaf, fi); if (compression >= BTRFS_COMPRESS_LAST) { warning("compression type %d not supported", compression); ret = -1; goto out; } if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) goto next; if (extent_type == BTRFS_FILE_EXTENT_INLINE) { ret = copy_one_inline(fd, path, found_key.offset); if (ret) goto out; } else if (extent_type == BTRFS_FILE_EXTENT_REG) { ret = copy_one_extent(root, fd, leaf, fi, found_key.offset); if (ret) goto out; } else { warning("weird extent type %d", extent_type); } next: path->slots[0]++; } btrfs_free_path(path); set_size: if (found_size) { ret = ftruncate(fd, (loff_t)found_size); if (ret) return ret; } if (get_xattrs) { ret = set_file_xattrs(root, key->objectid, fd, file); if (ret) return ret; } if (restore_metadata && times_ok) { ret = futimens(fd, times); if (ret) return ret; } return 0; out: btrfs_free_path(path); return ret; } /* * returns: * 0 if the file exists and should be skipped. * 1 if the file does NOT exist * 2 if the file exists but is OK to overwrite */ static int overwrite_ok(const char * path) { static int warn = 0; struct stat st; int ret; /* don't be fooled by symlinks */ ret = fstatat(-1, path_name, &st, AT_SYMLINK_NOFOLLOW); if (!ret) { if (overwrite) return 2; if (verbose || !warn) printf("Skipping existing file" " %s\n", path); if (!warn) printf("If you wish to overwrite use -o\n"); warn = 1; return 0; } return 1; } static int copy_symlink(struct btrfs_root *root, struct btrfs_key *key, const char *file) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_file_extent_item *extent_item; struct btrfs_inode_item *inode_item; u32 len; u32 name_offset; int ret; struct btrfs_timespec *bts; struct timespec times[2]; ret = overwrite_ok(path_name); if (ret == 0) return 0; /* skip this file */ /* symlink() can't overwrite, so unlink first */ if (ret == 2) { ret = unlink(path_name); if (ret) { fprintf(stderr, "failed to unlink '%s' for overwrite\n", path_name); return ret; } } key->type = BTRFS_EXTENT_DATA_KEY; key->offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, key, path, 0, 0); if (ret < 0) goto out; leaf = path->nodes[0]; if (!leaf) { fprintf(stderr, "Error getting leaf for symlink '%s'\n", file); ret = -1; goto out; } extent_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); len = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(path->slots[0])); if (len >= PATH_MAX) { fprintf(stderr, "Symlink '%s' target length %d is longer than PATH_MAX\n", fs_name, len); ret = -1; goto out; } name_offset = (unsigned long) extent_item + offsetof(struct btrfs_file_extent_item, disk_bytenr); read_extent_buffer(leaf, symlink_target, name_offset, len); symlink_target[len] = 0; if (!dry_run) { ret = symlink(symlink_target, path_name); if (ret < 0) { fprintf(stderr, "Failed to restore symlink '%s': %s\n", path_name, strerror(errno)); goto out; } } printf("SYMLINK: '%s' => '%s'\n", path_name, symlink_target); ret = 0; if (!restore_metadata) goto out; /* * Symlink metadata operates differently than files/directories, so do * our own work here. */ key->type = BTRFS_INODE_ITEM_KEY; key->offset = 0; btrfs_release_path(path); ret = btrfs_lookup_inode(NULL, root, path, key, 0); if (ret) { fprintf(stderr, "Failed to lookup inode for '%s'\n", file); goto out; } inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); ret = fchownat(-1, file, btrfs_inode_uid(path->nodes[0], inode_item), btrfs_inode_gid(path->nodes[0], inode_item), AT_SYMLINK_NOFOLLOW); if (ret) { fprintf(stderr, "Failed to change owner: %s\n", strerror(errno)); goto out; } bts = btrfs_inode_atime(inode_item); times[0].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[0].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); bts = btrfs_inode_mtime(inode_item); times[1].tv_sec = btrfs_timespec_sec(path->nodes[0], bts); times[1].tv_nsec = btrfs_timespec_nsec(path->nodes[0], bts); ret = utimensat(-1, file, times, AT_SYMLINK_NOFOLLOW); if (ret) fprintf(stderr, "Failed to set times: %s\n", strerror(errno)); out: btrfs_free_path(path); return ret; } static int search_dir(struct btrfs_root *root, struct btrfs_key *key, const char *output_rootdir, const char *in_dir, const regex_t *mreg) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_dir_item *dir_item; struct btrfs_key found_key, location; char filename[BTRFS_NAME_LEN + 1]; unsigned long name_ptr; int name_len; int ret = 0; int fd; int loops = 0; u8 type; path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Ran out of memory\n"); return -ENOMEM; } key->offset = 0; key->type = BTRFS_DIR_INDEX_KEY; ret = btrfs_search_slot(NULL, root, key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching %d\n", ret); goto out; } ret = 0; leaf = path->nodes[0]; while (!leaf) { if (verbose > 1) printf("No leaf after search, looking for the next " "leaf\n"); ret = next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error getting next leaf %d\n", ret); goto out; } else if (ret > 0) { /* No more leaves to search */ if (verbose) printf("Reached the end of the tree looking " "for the directory\n"); ret = 0; goto out; } leaf = path->nodes[0]; } while (leaf) { if (loops++ >= 1024) { printf("We have looped trying to restore files in %s " "too many times to be making progress, " "stopping\n", in_dir); break; } if (path->slots[0] >= btrfs_header_nritems(leaf)) { do { ret = next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error searching %d\n", ret); goto out; } else if (ret > 0) { /* No more leaves to search */ if (verbose) printf("Reached the end of " "the tree searching the" " directory\n"); ret = 0; goto out; } leaf = path->nodes[0]; } while (!leaf); continue; } btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != key->objectid) { if (verbose > 1) printf("Found objectid=%Lu, key=%Lu\n", found_key.objectid, key->objectid); break; } if (found_key.type != key->type) { if (verbose > 1) printf("Found type=%u, want=%u\n", found_key.type, key->type); break; } dir_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); name_ptr = (unsigned long)(dir_item + 1); name_len = btrfs_dir_name_len(leaf, dir_item); read_extent_buffer(leaf, filename, name_ptr, name_len); filename[name_len] = '\0'; type = btrfs_dir_type(leaf, dir_item); btrfs_dir_item_key_to_cpu(leaf, dir_item, &location); /* full path from root of btrfs being restored */ snprintf(fs_name, PATH_MAX, "%s/%s", in_dir, filename); if (mreg && REG_NOMATCH == regexec(mreg, fs_name, 0, NULL, 0)) goto next; /* full path from system root */ snprintf(path_name, PATH_MAX, "%s%s", output_rootdir, fs_name); /* * Restore directories, files, symlinks and metadata. */ if (type == BTRFS_FT_REG_FILE) { if (!overwrite_ok(path_name)) goto next; if (verbose) printf("Restoring %s\n", path_name); if (dry_run) goto next; fd = open(path_name, O_CREAT|O_WRONLY, 0644); if (fd < 0) { fprintf(stderr, "Error creating %s: %d\n", path_name, errno); if (ignore_errors) goto next; ret = -1; goto out; } loops = 0; ret = copy_file(root, fd, &location, path_name); close(fd); if (ret) { fprintf(stderr, "Error copying data for %s\n", path_name); if (ignore_errors) goto next; goto out; } } else if (type == BTRFS_FT_DIR) { struct btrfs_root *search_root = root; char *dir = strdup(fs_name); if (!dir) { fprintf(stderr, "Ran out of memory\n"); ret = -ENOMEM; goto out; } if (location.type == BTRFS_ROOT_ITEM_KEY) { /* * If we are a snapshot and this is the index * object to ourselves just skip it. */ if (location.objectid == root->root_key.objectid) { free(dir); goto next; } location.offset = (u64)-1; search_root = btrfs_read_fs_root(root->fs_info, &location); if (IS_ERR(search_root)) { free(dir); fprintf(stderr, "Error reading " "subvolume %s: %lu\n", path_name, PTR_ERR(search_root)); if (ignore_errors) goto next; ret = PTR_ERR(search_root); goto out; } /* * A subvolume will have a key.offset of 0, a * snapshot will have key.offset of a transid. */ if (search_root->root_key.offset != 0 && get_snaps == 0) { free(dir); printf("Skipping snapshot %s\n", filename); goto next; } location.objectid = BTRFS_FIRST_FREE_OBJECTID; } if (verbose) printf("Restoring %s\n", path_name); errno = 0; if (dry_run) ret = 0; else ret = mkdir(path_name, 0755); if (ret && errno != EEXIST) { free(dir); fprintf(stderr, "Error mkdiring %s: %d\n", path_name, errno); if (ignore_errors) goto next; ret = -1; goto out; } loops = 0; ret = search_dir(search_root, &location, output_rootdir, dir, mreg); free(dir); if (ret) { fprintf(stderr, "Error searching %s\n", path_name); if (ignore_errors) goto next; goto out; } } else if (type == BTRFS_FT_SYMLINK) { if (restore_symlinks) ret = copy_symlink(root, &location, path_name); if (ret < 0) { if (ignore_errors) goto next; btrfs_free_path(path); return ret; } } next: path->slots[0]++; } if (restore_metadata) { snprintf(path_name, PATH_MAX, "%s%s", output_rootdir, in_dir); fd = open(path_name, O_RDONLY); if (fd < 0) { fprintf(stderr, "ERROR: Failed to access %s to restore metadata\n", path_name); if (!ignore_errors) { ret = -1; goto out; } } else { /* * Set owner/mode/time on the directory as well */ key->type = BTRFS_INODE_ITEM_KEY; ret = copy_metadata(root, fd, key); close(fd); if (ret && !ignore_errors) goto out; } } if (verbose) printf("Done searching %s\n", in_dir); out: btrfs_free_path(path); return ret; } static int do_list_roots(struct btrfs_root *root) { struct btrfs_key key; struct btrfs_key found_key; struct btrfs_disk_key disk_key; struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_root_item ri; unsigned long offset; int slot; int ret; root = root->fs_info->tree_root; path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Failed to alloc path\n"); return -ENOMEM; } key.offset = 0; key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Failed to do search %d\n", ret); btrfs_free_path(path); return -1; } leaf = path->nodes[0]; while (1) { slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = path->nodes[0]; slot = path->slots[0]; } btrfs_item_key(leaf, &disk_key, slot); btrfs_disk_key_to_cpu(&found_key, &disk_key); if (btrfs_key_type(&found_key) != BTRFS_ROOT_ITEM_KEY) { path->slots[0]++; continue; } offset = btrfs_item_ptr_offset(leaf, slot); read_extent_buffer(leaf, &ri, offset, sizeof(ri)); printf(" tree "); btrfs_print_key(&disk_key); printf(" %Lu level %d\n", btrfs_root_bytenr(&ri), btrfs_root_level(&ri)); path->slots[0]++; } btrfs_free_path(path); return 0; } static struct btrfs_root *open_fs(const char *dev, u64 root_location, int super_mirror, int list_roots) { struct btrfs_fs_info *fs_info = NULL; struct btrfs_root *root = NULL; u64 bytenr; int i; for (i = super_mirror; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); fs_info = open_ctree_fs_info(dev, bytenr, root_location, 0, OPEN_CTREE_PARTIAL); if (fs_info) break; fprintf(stderr, "Could not open root, trying backup super\n"); } if (!fs_info) return NULL; /* * All we really need to succeed is reading the chunk tree, everything * else we can do by hand, since we only need to read the tree root and * the fs_root. */ if (!extent_buffer_uptodate(fs_info->tree_root->node)) { u64 generation; root = fs_info->tree_root; if (!root_location) root_location = btrfs_super_root(fs_info->super_copy); generation = btrfs_super_generation(fs_info->super_copy); root->node = read_tree_block(root, root_location, root->leafsize, generation); if (!extent_buffer_uptodate(root->node)) { fprintf(stderr, "Error opening tree root\n"); close_ctree(root); return NULL; } } if (!list_roots && !fs_info->fs_root) { struct btrfs_key key; key.objectid = BTRFS_FS_TREE_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; fs_info->fs_root = btrfs_read_fs_root_no_cache(fs_info, &key); if (IS_ERR(fs_info->fs_root)) { fprintf(stderr, "Couldn't read fs root: %ld\n", PTR_ERR(fs_info->fs_root)); close_ctree(fs_info->tree_root); return NULL; } } if (list_roots && do_list_roots(fs_info->tree_root)) { close_ctree(fs_info->tree_root); return NULL; } return fs_info->fs_root; } static int find_first_dir(struct btrfs_root *root, u64 *objectid) { struct btrfs_path *path; struct btrfs_key found_key; struct btrfs_key key; int ret = -1; int i; key.objectid = 0; key.type = BTRFS_DIR_INDEX_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) { fprintf(stderr, "Ran out of memory\n"); return ret; } ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching %d\n", ret); goto out; } if (!path->nodes[0]) { fprintf(stderr, "No leaf!\n"); goto out; } again: for (i = path->slots[0]; i < btrfs_header_nritems(path->nodes[0]); i++) { btrfs_item_key_to_cpu(path->nodes[0], &found_key, i); if (found_key.type != key.type) continue; printf("Using objectid %Lu for first dir\n", found_key.objectid); *objectid = found_key.objectid; ret = 0; goto out; } do { ret = next_leaf(root, path); if (ret < 0) { fprintf(stderr, "Error getting next leaf %d\n", ret); goto out; } else if (ret > 0) { fprintf(stderr, "No more leaves\n"); goto out; } } while (!path->nodes[0]); if (path->nodes[0]) goto again; printf("Couldn't find a dir index item\n"); out: btrfs_free_path(path); return ret; } const char * const cmd_restore_usage[] = { "btrfs restore [options] | -l ", "Try to restore files from a damaged filesystem (unmounted)", "", "-s|--snapshots get snapshots", "-x|--xattr get extended attributes", "-m|--metadata restore owner, mode and times", "-S|--symlinks restore symbolic links", "-v|--verbose verbose", "-i|--ignore-errors ignore errors", "-o|--overwrite overwrite", "-t tree location", "-f filesystem location", "-u|--super super mirror", "-r|--root root objectid", "-d find dir", "-l|--list-roots list tree roots", "-D|--dry-run dry run (only list files that would be recovered)", "--path-regex ", " restore only filenames matching regex,", " you have to use following syntax (possibly quoted):", " ^/(|home(|/username(|/Desktop(|/.*))))$", "-c ignore case (--path-regex only)", NULL }; int cmd_restore(int argc, char **argv) { struct btrfs_root *root; struct btrfs_key key; char dir_name[PATH_MAX]; u64 tree_location = 0; u64 fs_location = 0; u64 root_objectid = 0; int len; int ret; int super_mirror = 0; int find_dir = 0; int list_roots = 0; const char *match_regstr = NULL; int match_cflags = REG_EXTENDED | REG_NOSUB | REG_NEWLINE; regex_t match_reg, *mreg = NULL; char reg_err[256]; while (1) { int opt; static const struct option long_options[] = { { "path-regex", required_argument, NULL, 256}, { "dry-run", no_argument, NULL, 'D'}, { "metadata", no_argument, NULL, 'm'}, { "symlinks", no_argument, NULL, 'S'}, { "snapshots", no_argument, NULL, 's'}, { "xattr", no_argument, NULL, 'x'}, { "verbose", no_argument, NULL, 'v'}, { "ignore-errors", no_argument, NULL, 'i'}, { "overwrite", no_argument, NULL, 'o'}, { "super", required_argument, NULL, 'u'}, { "root", required_argument, NULL, 'r'}, { "list-roots", no_argument, NULL, 'l'}, { NULL, 0, NULL, 0} }; opt = getopt_long(argc, argv, "sSxviot:u:dmf:r:lDc", long_options, NULL); if (opt < 0) break; switch (opt) { case 's': get_snaps = 1; break; case 'v': verbose++; break; case 'i': ignore_errors = 1; break; case 'o': overwrite = 1; break; case 't': tree_location = arg_strtou64(optarg); break; case 'f': fs_location = arg_strtou64(optarg); break; case 'u': super_mirror = arg_strtou64(optarg); if (super_mirror >= BTRFS_SUPER_MIRROR_MAX) { fprintf(stderr, "Super mirror not " "valid\n"); exit(1); } break; case 'd': find_dir = 1; break; case 'r': root_objectid = arg_strtou64(optarg); if (!is_fstree(root_objectid)) { fprintf(stderr, "objectid %llu is not a valid fs/file tree\n", root_objectid); exit(1); } break; case 'l': list_roots = 1; break; case 'm': restore_metadata = 1; break; case 'S': restore_symlinks = 1; break; case 'D': dry_run = 1; break; case 'c': match_cflags |= REG_ICASE; break; /* long option without single letter alternative */ case 256: match_regstr = optarg; break; case 'x': get_xattrs = 1; break; default: usage(cmd_restore_usage); } } if (!list_roots && check_argc_min(argc - optind, 2)) usage(cmd_restore_usage); else if (list_roots && check_argc_min(argc - optind, 1)) usage(cmd_restore_usage); if (fs_location && root_objectid) { fprintf(stderr, "don't use -f and -r at the same time.\n"); return 1; } if ((ret = check_mounted(argv[optind])) < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); return 1; } else if (ret) { fprintf(stderr, "%s is currently mounted. Aborting.\n", argv[optind]); return 1; } root = open_fs(argv[optind], tree_location, super_mirror, list_roots); if (root == NULL) return 1; if (list_roots) goto out; if (fs_location != 0) { free_extent_buffer(root->node); root->node = read_tree_block(root, fs_location, root->leafsize, 0); if (!extent_buffer_uptodate(root->node)) { fprintf(stderr, "Failed to read fs location\n"); ret = 1; goto out; } } memset(path_name, 0, PATH_MAX); if (strlen(argv[optind + 1]) >= PATH_MAX) { fprintf(stderr, "ERROR: path too long\n"); ret = 1; goto out; } strncpy(dir_name, argv[optind + 1], sizeof dir_name); dir_name[sizeof dir_name - 1] = 0; /* Strip the trailing / on the dir name */ len = strlen(dir_name); while (len && dir_name[--len] == '/') { dir_name[len] = '\0'; } if (root_objectid != 0) { struct btrfs_root *orig_root = root; key.objectid = root_objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(orig_root->fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "fail to read root %llu: %s\n", root_objectid, strerror(-PTR_ERR(root))); root = orig_root; ret = 1; goto out; } key.type = 0; key.offset = 0; } if (find_dir) { ret = find_first_dir(root, &key.objectid); if (ret) goto out; } else { key.objectid = BTRFS_FIRST_FREE_OBJECTID; } if (match_regstr) { ret = regcomp(&match_reg, match_regstr, match_cflags); if (ret) { regerror(ret, &match_reg, reg_err, sizeof(reg_err)); fprintf(stderr, "Regex compile failed: %s\n", reg_err); goto out; } mreg = &match_reg; } if (dry_run) printf("This is a dry-run, no files are going to be restored\n"); ret = search_dir(root, &key, dir_name, "", mreg); out: if (mreg) regfree(mreg); close_ctree(root); return !!ret; }