/* * Copyright (C) 2017 SUSE. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include #include #include #include #include #include #include "kernel-shared/ctree.h" #include "kernel-shared/volumes.h" #include "common/internal.h" #include "kernel-shared/disk-io.h" #include "common/messages.h" #include "kernel-shared/transaction.h" #include "common/utils.h" #include "mkfs/rootdir.h" #include "mkfs/common.h" #include "common/send-utils.h" #include "common/path-utils.h" static u32 fs_block_size; static u64 index_cnt = 2; /* * Size estimate will be done using the following data: * 1) Number of inodes * Since we will later shrink the fs, over-estimate is completely fine here * as long as our estimate ensures we can populate the image without ENOSPC. * So we only record how many inodes there are, and account the maximum * space for each inode. * * 2) Data space for each (regular) inode * To estimate data chunk size. * Don't care if it can fit as an inline extent. * Always round them up to sectorsize. */ static u64 ftw_meta_nr_inode; static u64 ftw_data_size; static int add_directory_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ino_t parent_inum, const char *name, struct stat *st, int *dir_index_cnt) { int ret; int name_len; struct btrfs_key location; u8 filetype = 0; name_len = strlen(name); location.objectid = objectid; location.offset = 0; location.type = BTRFS_INODE_ITEM_KEY; if (S_ISDIR(st->st_mode)) filetype = BTRFS_FT_DIR; if (S_ISREG(st->st_mode)) filetype = BTRFS_FT_REG_FILE; if (S_ISLNK(st->st_mode)) filetype = BTRFS_FT_SYMLINK; if (S_ISSOCK(st->st_mode)) filetype = BTRFS_FT_SOCK; if (S_ISCHR(st->st_mode)) filetype = BTRFS_FT_CHRDEV; if (S_ISBLK(st->st_mode)) filetype = BTRFS_FT_BLKDEV; if (S_ISFIFO(st->st_mode)) filetype = BTRFS_FT_FIFO; ret = btrfs_insert_dir_item(trans, root, name, name_len, parent_inum, &location, filetype, index_cnt); if (ret) return ret; ret = btrfs_insert_inode_ref(trans, root, name, name_len, objectid, parent_inum, index_cnt); *dir_index_cnt = index_cnt; index_cnt++; return ret; } static int fill_inode_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *dst, struct stat *src) { u64 blocks = 0; u64 sectorsize = root->fs_info->sectorsize; /* * btrfs_inode_item has some reserved fields * and represents on-disk inode entry, so * zero everything to prevent information leak */ memset(dst, 0, sizeof(*dst)); btrfs_set_stack_inode_generation(dst, trans->transid); btrfs_set_stack_inode_size(dst, src->st_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->st_nlink); btrfs_set_stack_inode_uid(dst, src->st_uid); btrfs_set_stack_inode_gid(dst, src->st_gid); btrfs_set_stack_inode_mode(dst, src->st_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->st_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->st_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->st_size); if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root->fs_info) && src->st_size < sectorsize) btrfs_set_stack_inode_nbytes(dst, src->st_size); else { blocks = src->st_size / sectorsize; if (src->st_size % sectorsize) blocks += 1; blocks *= sectorsize; btrfs_set_stack_inode_nbytes(dst, blocks); } } if (S_ISLNK(src->st_mode)) btrfs_set_stack_inode_nbytes(dst, src->st_size + 1); return 0; } static int directory_select(const struct dirent *entry) { if (entry->d_name[0] == '.' && (entry->d_name[1] == 0 || (entry->d_name[1] == '.' && entry->d_name[2] == 0))) return 0; return 1; } static void free_namelist(struct dirent **files, int count) { int i; if (count < 0) return; for (i = 0; i < count; ++i) free(files[i]); free(files); } static u64 calculate_dir_inode_size(const char *dirname) { int count, i; struct dirent **files, *cur_file; u64 dir_inode_size = 0; count = scandir(dirname, &files, directory_select, NULL); for (i = 0; i < count; i++) { cur_file = files[i]; dir_inode_size += strlen(cur_file->d_name); } free_namelist(files, count); dir_inode_size *= 2; return dir_inode_size; } static int add_inode_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct stat *st, const char *name, u64 self_objectid, struct btrfs_inode_item *inode_ret) { int ret; struct btrfs_inode_item btrfs_inode; u64 objectid; u64 inode_size = 0; fill_inode_item(trans, root, &btrfs_inode, st); objectid = self_objectid; if (S_ISDIR(st->st_mode)) { inode_size = calculate_dir_inode_size(name); btrfs_set_stack_inode_size(&btrfs_inode, inode_size); } ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); *inode_ret = btrfs_inode; return ret; } static int add_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *file_name) { int ret; int cur_name_len; char xattr_list[XATTR_LIST_MAX]; char *xattr_list_end; char *cur_name; char cur_value[XATTR_SIZE_MAX]; ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX); if (ret < 0) { if (errno == ENOTSUP) return 0; error("getting a list of xattr failed for %s: %m", file_name); return ret; } if (ret == 0) return ret; xattr_list_end = xattr_list + ret; cur_name = xattr_list; while (cur_name < xattr_list_end) { cur_name_len = strlen(cur_name); ret = lgetxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX); if (ret < 0) { if (errno == ENOTSUP) return 0; error("getting a xattr value failed for %s attr %s: %m", file_name, cur_name); return ret; } ret = btrfs_insert_xattr_item(trans, root, cur_name, cur_name_len, cur_value, ret, objectid); if (ret) { errno = -ret; error("inserting a xattr item failed for %s: %m", file_name); } cur_name += cur_name_len + 1; } return ret; } static int add_symbolic_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *path_name) { int ret; char buf[PATH_MAX]; ret = readlink(path_name, buf, sizeof(buf)); if (ret <= 0) { error("readlink failed for %s: %m", path_name); goto fail; } if (ret >= sizeof(buf)) { error("symlink too long for %s", path_name); ret = -1; goto fail; } buf[ret] = '\0'; /* readlink does not do it for us */ ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buf, ret + 1); fail: return ret; } static int add_file_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *btrfs_inode, u64 objectid, struct stat *st, const char *path_name) { int ret = -1; ssize_t ret_read; u64 bytes_read = 0; struct btrfs_key key; int blocks; u32 sectorsize = root->fs_info->sectorsize; u64 first_block = 0; u64 file_pos = 0; u64 cur_bytes; u64 total_bytes; struct extent_buffer *eb = NULL; int fd; if (st->st_size == 0) return 0; fd = open(path_name, O_RDONLY); if (fd == -1) { error("cannot open %s: %m", path_name); return ret; } blocks = st->st_size / sectorsize; if (st->st_size % sectorsize) blocks += 1; if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root->fs_info) && st->st_size < sectorsize) { char *buffer = malloc(st->st_size); if (!buffer) { ret = -ENOMEM; goto end; } ret_read = pread64(fd, buffer, st->st_size, bytes_read); if (ret_read == -1) { error("cannot read %s at offset %llu length %llu: %m", path_name, (unsigned long long)bytes_read, (unsigned long long)st->st_size); free(buffer); goto end; } ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, st->st_size); free(buffer); goto end; } /* round up our st_size to the FS blocksize */ total_bytes = (u64)blocks * sectorsize; /* * do our IO in extent buffers so it can work * against any raid type */ eb = calloc(1, sizeof(*eb) + sectorsize); if (!eb) { ret = -ENOMEM; goto end; } again: /* * keep our extent size at 1MB max, this makes it easier to work inside * the tiny block groups created during mkfs */ cur_bytes = min(total_bytes, (u64)SZ_1M); ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1, &key, 1); if (ret) goto end; first_block = key.objectid; bytes_read = 0; while (bytes_read < cur_bytes) { memset(eb->data, 0, sectorsize); ret_read = pread64(fd, eb->data, sectorsize, file_pos + bytes_read); if (ret_read == -1) { error("cannot read %s at offset %llu length %llu: %m", path_name, (unsigned long long)file_pos + bytes_read, (unsigned long long)sectorsize); goto end; } eb->start = first_block + bytes_read; eb->len = sectorsize; eb->fs_info = root->fs_info; /* * we're doing the csum before we record the extent, but * that's ok */ ret = btrfs_csum_file_block(trans, root->fs_info->csum_root, first_block + bytes_read + sectorsize, first_block + bytes_read, eb->data, sectorsize); if (ret) goto end; ret = write_and_map_eb(root->fs_info, eb); if (ret) { error("failed to write %s", path_name); goto end; } bytes_read += sectorsize; } if (bytes_read) { ret = btrfs_record_file_extent(trans, root, objectid, btrfs_inode, file_pos, first_block, cur_bytes); if (ret) goto end; } file_pos += cur_bytes; total_bytes -= cur_bytes; if (total_bytes) goto again; end: free(eb); close(fd); return ret; } static int traverse_directory(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *dir_name, struct directory_name_entry *dir_head) { int ret = 0; struct btrfs_inode_item cur_inode; struct btrfs_inode_item *inode_item; int count, i, dir_index_cnt; struct dirent **files; struct stat st; struct directory_name_entry *dir_entry, *parent_dir_entry; struct dirent *cur_file; ino_t parent_inum, cur_inum; ino_t highest_inum = 0; const char *parent_dir_name; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key root_dir_key; u64 root_dir_inode_size = 0; /* Add list for source directory */ dir_entry = malloc(sizeof(struct directory_name_entry)); if (!dir_entry) return -ENOMEM; dir_entry->dir_name = dir_name; dir_entry->path = realpath(dir_name, NULL); if (!dir_entry->path) { error("realpath failed for %s: %m", dir_name); ret = -1; goto fail_no_dir; } parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID; dir_entry->inum = parent_inum; list_add_tail(&dir_entry->list, &dir_head->list); btrfs_init_path(&path); root_dir_key.objectid = btrfs_root_dirid(&root->root_item); root_dir_key.offset = 0; root_dir_key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1); if (ret) { error("failed to lookup root dir: %d", ret); goto fail_no_dir; } leaf = path.nodes[0]; inode_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); root_dir_inode_size = calculate_dir_inode_size(dir_name); btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); do { parent_dir_entry = list_entry(dir_head->list.next, struct directory_name_entry, list); list_del(&parent_dir_entry->list); parent_inum = parent_dir_entry->inum; parent_dir_name = parent_dir_entry->dir_name; if (chdir(parent_dir_entry->path)) { error("chdir failed for %s: %m", parent_dir_name); ret = -1; goto fail_no_files; } count = scandir(parent_dir_entry->path, &files, directory_select, NULL); if (count == -1) { error("scandir failed for %s: %m", parent_dir_name); ret = -1; goto fail; } for (i = 0; i < count; i++) { cur_file = files[i]; if (lstat(cur_file->d_name, &st) == -1) { error("lstat failed for %s: %m", cur_file->d_name); ret = -1; goto fail; } cur_inum = st.st_ino; ret = add_directory_items(trans, root, cur_inum, parent_inum, cur_file->d_name, &st, &dir_index_cnt); if (ret) { error("unable to add directory items for %s: %d", cur_file->d_name, ret); goto fail; } ret = add_inode_items(trans, root, &st, cur_file->d_name, cur_inum, &cur_inode); if (ret == -EEXIST) { if (st.st_nlink <= 1) { error( "item %s already exists but has wrong st_nlink %lu <= 1", cur_file->d_name, (unsigned long)st.st_nlink); goto fail; } ret = 0; continue; } if (ret) { error("unable to add inode items for %s: %d", cur_file->d_name, ret); goto fail; } ret = add_xattr_item(trans, root, cur_inum, cur_file->d_name); if (ret) { error("unable to add xattr items for %s: %d", cur_file->d_name, ret); if (ret != -ENOTSUP) goto fail; } if (S_ISDIR(st.st_mode)) { char tmp[PATH_MAX]; dir_entry = malloc(sizeof(*dir_entry)); if (!dir_entry) { ret = -ENOMEM; goto fail; } dir_entry->dir_name = cur_file->d_name; if (path_cat_out(tmp, parent_dir_entry->path, cur_file->d_name)) { error("invalid path: %s/%s", parent_dir_entry->path, cur_file->d_name); ret = -EINVAL; goto fail; } dir_entry->path = strdup(tmp); if (!dir_entry->path) { error("not enough memory to store path"); ret = -ENOMEM; goto fail; } dir_entry->inum = cur_inum; list_add_tail(&dir_entry->list, &dir_head->list); } else if (S_ISREG(st.st_mode)) { ret = add_file_items(trans, root, &cur_inode, cur_inum, &st, cur_file->d_name); if (ret) { error("unable to add file items for %s: %d", cur_file->d_name, ret); goto fail; } } else if (S_ISLNK(st.st_mode)) { ret = add_symbolic_link(trans, root, cur_inum, cur_file->d_name); if (ret) { error("unable to add symlink for %s: %d", cur_file->d_name, ret); goto fail; } } } free_namelist(files, count); free(parent_dir_entry->path); free(parent_dir_entry); index_cnt = 2; } while (!list_empty(&dir_head->list)); out: return !!ret; fail: free_namelist(files, count); fail_no_files: free(parent_dir_entry); goto out; fail_no_dir: free(dir_entry); goto out; } int btrfs_mkfs_fill_dir(const char *source_dir, struct btrfs_root *root, bool verbose) { int ret; struct btrfs_trans_handle *trans; struct stat root_st; struct directory_name_entry dir_head; struct directory_name_entry *dir_entry = NULL; ret = lstat(source_dir, &root_st); if (ret) { error("unable to lstat %s: %m", source_dir); ret = -errno; goto out; } INIT_LIST_HEAD(&dir_head.list); trans = btrfs_start_transaction(root, 1); BUG_ON(IS_ERR(trans)); ret = traverse_directory(trans, root, source_dir, &dir_head); if (ret) { error("unable to traverse directory %s: %d", source_dir, ret); goto fail; } ret = btrfs_commit_transaction(trans, root); if (ret) { error("transaction commit failed: %d", ret); goto out; } if (verbose) printf("Making image is completed.\n"); return 0; fail: /* * Since we don't have btrfs_abort_transaction() yet, uncommitted trans * will trigger a BUG_ON(). * * However before mkfs is fully finished, the magic number is invalid, * so even we commit transaction here, the fs still can't be mounted. * * To do a graceful error out, here we commit transaction as a * workaround. * Since we have already hit some problem, the return value doesn't * matter now. */ btrfs_commit_transaction(trans, root); while (!list_empty(&dir_head.list)) { dir_entry = list_entry(dir_head.list.next, struct directory_name_entry, list); list_del(&dir_entry->list); free(dir_entry->path); free(dir_entry); } out: return ret; } static int ftw_add_entry_size(const char *fpath, const struct stat *st, int type, struct FTW *ftwbuf) { /* * Failed to read the directory, mostly due to EPERM. Abort ASAP, so * we don't need to populate the fs. */ if (type == FTW_DNR || type == FTW_NS) return -EPERM; if (S_ISREG(st->st_mode)) ftw_data_size += round_up(st->st_size, fs_block_size); ftw_meta_nr_inode++; return 0; } u64 btrfs_mkfs_size_dir(const char *dir_name, u32 sectorsize, u64 min_dev_size, u64 meta_profile, u64 data_profile) { u64 total_size = 0; int ret; u64 meta_size = 0; /* Based on @ftw_meta_nr_inode */ u64 meta_chunk_size = 0; /* Based on @meta_size */ u64 data_chunk_size = 0; /* Based on @ftw_data_size */ u64 meta_threshold = SZ_8M; u64 data_threshold = SZ_8M; float data_multiplier = 1; float meta_multiplier = 1; fs_block_size = sectorsize; ftw_data_size = 0; ftw_meta_nr_inode = 0; /* * Symbolic link is not followed when creating files, so no need to * follow them here. */ ret = nftw(dir_name, ftw_add_entry_size, 10, FTW_PHYS); if (ret < 0) { error("ftw subdir walk of %s failed: %m", dir_name); exit(1); } /* * Maximum metadata usage for every inode, which will be PATH_MAX * for the following items: * 1) DIR_ITEM * 2) DIR_INDEX * 3) INODE_REF * * Plus possible inline extent size, which is sectorsize. * * And finally, allow metadata usage to increase with data size. * Follow the old kernel 8:1 data:meta ratio. * This is especially important for --rootdir, as the file extent size * upper limit is 1M, instead of 128M in kernel. * This can bump meta usage easily. */ meta_size = ftw_meta_nr_inode * (PATH_MAX * 3 + sectorsize) + ftw_data_size / 8; /* Minimal chunk size from btrfs_alloc_chunk(). */ if (meta_profile & BTRFS_BLOCK_GROUP_DUP) { meta_threshold = SZ_32M; meta_multiplier = 2; } if (data_profile & BTRFS_BLOCK_GROUP_DUP) { data_threshold = SZ_64M; data_multiplier = 2; } /* * Only when the usage is larger than the minimal chunk size (threshold) * we need to allocate new chunk, or the initial chunk in the image is * large enough. */ if (meta_size > meta_threshold) meta_chunk_size = (round_up(meta_size, meta_threshold) - meta_threshold) * meta_multiplier; if (ftw_data_size > data_threshold) data_chunk_size = (round_up(ftw_data_size, data_threshold) - data_threshold) * data_multiplier; total_size = data_chunk_size + meta_chunk_size + min_dev_size; return total_size; } /* * Get the end position of the last device extent for given @devid; * @size_ret is exclusive (means it should be aligned to sectorsize) */ static int get_device_extent_end(struct btrfs_fs_info *fs_info, u64 devid, u64 *size_ret) { struct btrfs_root *dev_root = fs_info->dev_root; struct btrfs_key key; struct btrfs_path path; struct btrfs_dev_extent *de; int ret; key.objectid = devid; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = (u64)-1; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0); /* Not really possible */ BUG_ON(ret == 0); ret = btrfs_previous_item(dev_root, &path, devid, BTRFS_DEV_EXTENT_KEY); if (ret < 0) goto out; /* No dev_extent at all, not really possible for rootdir case */ if (ret > 0) { *size_ret = 0; ret = -EUCLEAN; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); de = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_extent); *size_ret = key.offset + btrfs_dev_extent_length(path.nodes[0], de); out: btrfs_release_path(&path); return ret; } /* * Set device size to @new_size. * * Only used for --rootdir option. * We will need to reset the following values: * 1) dev item in chunk tree * 2) super->dev_item * 3) super->total_bytes */ static int set_device_size(struct btrfs_fs_info *fs_info, struct btrfs_device *device, u64 new_size) { struct btrfs_root *chunk_root = fs_info->chunk_root; struct btrfs_trans_handle *trans; struct btrfs_dev_item *di; struct btrfs_path path; struct btrfs_key key; int ret; /* * Update in-memory device->total_bytes, so that at trans commit time, * super->dev_item will also get updated */ device->total_bytes = new_size; btrfs_init_path(&path); /* Update device item in chunk tree */ trans = btrfs_start_transaction(chunk_root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); errno = -ret; error("failed to start transaction: %d (%m)", ret); return ret; } key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1); if (ret < 0) goto err; if (ret > 0) ret = -ENOENT; di = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_item); btrfs_set_device_total_bytes(path.nodes[0], di, new_size); btrfs_mark_buffer_dirty(path.nodes[0]); /* * Update super->total_bytes, since it's only used for --rootdir, * there is only one device, just use the @new_size. */ btrfs_set_super_total_bytes(fs_info->super_copy, new_size); /* * Commit transaction to reflect the updated super->total_bytes and * super->dev_item */ ret = btrfs_commit_transaction(trans, chunk_root); if (ret < 0) { errno = -ret; error("failed to commit current transaction: %d (%m)", ret); } btrfs_release_path(&path); return ret; err: btrfs_release_path(&path); /* * Committing the transaction here won't cause problems since the fs * still has an invalid magic number, and something wrong already * happened, we don't care the return value anyway. */ btrfs_commit_transaction(trans, chunk_root); return ret; } int btrfs_mkfs_shrink_fs(struct btrfs_fs_info *fs_info, u64 *new_size_ret, bool shrink_file_size) { u64 new_size; struct btrfs_device *device; struct list_head *cur; struct stat64 file_stat; int nr_devs = 0; int ret; list_for_each(cur, &fs_info->fs_devices->devices) nr_devs++; if (nr_devs > 1) { error("cannot shrink fs with more than 1 device"); return -ENOTTY; } ret = get_device_extent_end(fs_info, 1, &new_size); if (ret < 0) { errno = -ret; error("failed to get minimal device size: %d (%m)", ret); return ret; } BUG_ON(!IS_ALIGNED(new_size, fs_info->sectorsize)); device = list_entry(fs_info->fs_devices->devices.next, struct btrfs_device, dev_list); ret = set_device_size(fs_info, device, new_size); if (ret < 0) return ret; if (new_size_ret) *new_size_ret = new_size; if (shrink_file_size) { ret = fstat64(device->fd, &file_stat); if (ret < 0) { error("failed to stat devid %llu: %m", device->devid); return ret; } if (!S_ISREG(file_stat.st_mode)) return ret; ret = ftruncate64(device->fd, new_size); if (ret < 0) { error("failed to truncate device file of devid %llu: %m", device->devid); return ret; } } return ret; }