/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS__ #define __BTRFS__ #include "list.h" #include "kerncompat.h" #include "radix-tree.h" #include "extent-cache.h" struct btrfs_root; struct btrfs_trans_handle; #define BTRFS_MAGIC "_B2RfS_M" #define BTRFS_ROOT_TREE_OBJECTID 1ULL #define BTRFS_EXTENT_TREE_OBJECTID 2ULL #define BTRFS_FS_TREE_OBJECTID 3ULL #define BTRFS_ROOT_TREE_DIR_OBJECTID 4ULL #define BTRFS_FIRST_FREE_OBJECTID 5ULL /* * we can actually store much bigger names, but lets not confuse the rest * of linux */ #define BTRFS_NAME_LEN 255 /* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32 /* four bytes for CRC32 */ #define BTRFS_CRC32_SIZE 4 #define BTRFS_FT_UNKNOWN 0 #define BTRFS_FT_REG_FILE 1 #define BTRFS_FT_DIR 2 #define BTRFS_FT_CHRDEV 3 #define BTRFS_FT_BLKDEV 4 #define BTRFS_FT_FIFO 5 #define BTRFS_FT_SOCK 6 #define BTRFS_FT_SYMLINK 7 #define BTRFS_FT_XATTR 8 #define BTRFS_FT_MAX 9 /* * the key defines the order in the tree, and so it also defines (optimal) * block layout. objectid corresonds to the inode number. The flags * tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with flags of 1 might refer to the inode * data, flags of 2 may point to file data in the btree and flags == 3 * may point to extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; u8 type; __le64 offset; } __attribute__ ((__packed__)); struct btrfs_key { u64 objectid; u8 type; u64 offset; } __attribute__ ((__packed__)); /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { u8 csum[BTRFS_CSUM_SIZE]; u8 fsid[16]; /* FS specific uuid */ __le64 bytenr; /* which block this node is supposed to live in */ __le64 generation; __le64 owner; __le32 nritems; __le16 flags; u8 level; } __attribute__ ((__packed__)); #define BTRFS_MAX_LEVEL 8 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ sizeof(struct btrfs_header)) / \ sizeof(struct btrfs_key_ptr)) #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize)) #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) - \ sizeof(struct btrfs_file_extent_item)) struct btrfs_buffer; /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct btrfs_super_block { u8 csum[BTRFS_CSUM_SIZE]; /* the first 3 fields must match struct btrfs_header */ u8 fsid[16]; /* FS specific uuid */ __le64 bytenr; /* this block number */ __le64 magic; __le64 generation; __le64 root; __le64 total_bytes; __le64 bytes_used; __le64 root_dir_objectid; __le32 sectorsize; __le32 nodesize; __le32 leafsize; __le32 stripesize; u8 root_level; } __attribute__ ((__packed__)); /* * A leaf is full of items. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le32 offset; __le32 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct btrfs_key_ptr { struct btrfs_disk_key key; __le64 blockptr; __le64 generation; } __attribute__ ((__packed__)); struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; } __attribute__ ((__packed__)); /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; }; /* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */ struct btrfs_extent_item { __le32 refs; } __attribute__ ((__packed__)); struct btrfs_extent_ref { __le64 root; __le64 generation; __le64 objectid; __le64 offset; } __attribute__ ((__packed__)); struct btrfs_inode_ref { __le16 name_len; /* name goes here */ } __attribute__ ((__packed__)); struct btrfs_inode_timespec { __le64 sec; __le32 nsec; } __attribute__ ((__packed__)); /* * there is no padding here on purpose. If you want to extent the inode, * make a new item type */ struct btrfs_inode_item { __le64 generation; __le64 size; __le64 nblocks; __le64 block_group; __le32 nlink; __le32 uid; __le32 gid; __le32 mode; __le32 rdev; __le16 flags; __le16 compat_flags; struct btrfs_inode_timespec atime; struct btrfs_inode_timespec ctime; struct btrfs_inode_timespec mtime; struct btrfs_inode_timespec otime; } __attribute__ ((__packed__)); /* inline data is just a blob of bytes */ struct btrfs_inline_data_item { u8 data; } __attribute__ ((__packed__)); struct btrfs_dir_item { struct btrfs_disk_key location; __le16 data_len; __le16 name_len; u8 type; } __attribute__ ((__packed__)); struct btrfs_root_item { struct btrfs_inode_item inode; __le64 root_dirid; __le64 bytenr; __le64 byte_limit; __le64 bytes_used; __le32 flags; __le32 refs; struct btrfs_disk_key drop_progress; u8 drop_level; u8 level; } __attribute__ ((__packed__)); #define BTRFS_FILE_EXTENT_REG 0 #define BTRFS_FILE_EXTENT_INLINE 1 struct btrfs_file_extent_item { __le64 generation; u8 type; /* * disk space consumed by the extent, checksum blocks are included * in these numbers */ __le64 disk_bytenr; __le64 disk_num_bytes; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ __le64 offset; /* * the logical number of file blocks (no csums included) */ __le64 num_bytes; } __attribute__ ((__packed__)); struct btrfs_csum_item { u8 csum[BTRFS_CSUM_SIZE]; } __attribute__ ((__packed__)); /* tag for the radix tree of block groups in ram */ #define BTRFS_BLOCK_GROUP_DIRTY 0 #define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024) #define BTRFS_BLOCK_GROUP_DATA 1 struct btrfs_block_group_item { __le64 used; u8 flags; } __attribute__ ((__packed__)); struct btrfs_block_group_cache { struct cache_extent cache; struct btrfs_key key; struct btrfs_block_group_item item; int dirty; }; struct btrfs_fs_info { struct btrfs_root *fs_root; struct btrfs_root *extent_root; struct btrfs_root *tree_root; struct btrfs_key last_insert; struct cache_tree extent_cache; struct cache_tree block_group_cache; struct cache_tree pending_tree; struct cache_tree pinned_tree; struct cache_tree del_pending; struct list_head trans; struct list_head cache; u64 last_inode_alloc; u64 last_inode_alloc_dirid; u64 generation; int cache_size; int fp; struct btrfs_trans_handle *running_transaction; struct btrfs_super_block *disk_super; }; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. */ struct btrfs_root { struct btrfs_buffer *node; struct btrfs_buffer *commit_root; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; /* data allocations are done in sectorsize units */ u32 sectorsize; /* node allocations are done in nodesize units */ u32 nodesize; /* leaf allocations are done in leafsize units */ u32 leafsize; /* leaf allocations are done in leafsize units */ u32 stripesize; int ref_cows; u32 type; }; /* the lower bits in the key flags defines the item type */ #define BTRFS_KEY_TYPE_MAX 256 #define BTRFS_KEY_TYPE_SHIFT 24 #define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \ BTRFS_KEY_TYPE_SHIFT) /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 2 #define BTRFS_XATTR_ITEM_KEY 8 /* reserve 3-15 close to the inode for later flexibility */ /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_ITEM_KEY 16 #define BTRFS_DIR_INDEX_KEY 17 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 18 /* * csum items have the checksums for data in the extents */ #define BTRFS_CSUM_ITEM_KEY 19 /* reserve 20-31 for other file stuff */ /* * root items point to tree roots. There are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 32 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 33 #define BTRFS_EXTENT_REF_KEY 34 /* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 50 /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(type *s) \ { \ return le##bits##_to_cpu(s->member); \ } \ static inline void btrfs_set_##name(type *s, u##bits val) \ { \ s->member = cpu_to_le##bits(val); \ } BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_STACK_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_STACK_FUNCS(inode_nblocks, struct btrfs_inode_item, nblocks, 64); BTRFS_SETGET_STACK_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_STACK_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_STACK_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_STACK_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_STACK_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_STACK_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 32); BTRFS_SETGET_STACK_FUNCS(inode_flags, struct btrfs_inode_item, flags, 16); BTRFS_SETGET_STACK_FUNCS(inode_compat_flags, struct btrfs_inode_item, compat_flags, 16); BTRFS_SETGET_STACK_FUNCS(timpsec_sec, struct btrfs_inode_timespec, sec, 64); BTRFS_SETGET_STACK_FUNCS(timpsec_nsec, struct btrfs_inode_timespec, nsec, 32); BTRFS_SETGET_STACK_FUNCS(extent_refs, struct btrfs_extent_item, refs, 32); BTRFS_SETGET_STACK_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); BTRFS_SETGET_STACK_FUNCS(ref_root, struct btrfs_extent_ref, root, 64); BTRFS_SETGET_STACK_FUNCS(ref_generation, struct btrfs_extent_ref, generation, 64); BTRFS_SETGET_STACK_FUNCS(ref_objectid, struct btrfs_extent_ref, objectid, 64); BTRFS_SETGET_STACK_FUNCS(ref_offset, struct btrfs_extent_ref, offset, 64); static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr) { return le64_to_cpu(n->ptrs[nr].blockptr); } static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr, u64 val) { n->ptrs[nr].blockptr = cpu_to_le64(val); } static inline u64 btrfs_node_ptr_generation(struct btrfs_node *n, int nr) { return le64_to_cpu(n->ptrs[nr].generation); } static inline void btrfs_set_node_ptr_generation(struct btrfs_node *n, int nr, u64 val) { n->ptrs[nr].generation = cpu_to_le64(val); } BTRFS_SETGET_STACK_FUNCS(item_offset, struct btrfs_item, offset, 32); static inline u32 btrfs_item_end(struct btrfs_item *item) { return le32_to_cpu(item->offset) + le32_to_cpu(item->size); } BTRFS_SETGET_STACK_FUNCS(item_size, struct btrfs_item, size, 32); BTRFS_SETGET_STACK_FUNCS(dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_STACK_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_STACK_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->type = le32_to_cpu(disk->type); cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->type = cpu_to_le32(cpu->type); disk->objectid = cpu_to_le64(cpu->objectid); } BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, objectid, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); static inline u8 btrfs_key_type(struct btrfs_key *key) { return key->type; } static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) { key->type = val; } BTRFS_SETGET_STACK_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_STACK_FUNCS(header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_STACK_FUNCS(header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_STACK_FUNCS(header_flags, struct btrfs_header, flags, 16); static inline int btrfs_header_level(struct btrfs_header *h) { return h->level; } static inline void btrfs_set_header_level(struct btrfs_header *h, int level) { BUG_ON(level > BTRFS_MAX_LEVEL); h->level = level; } static inline int btrfs_is_leaf(struct btrfs_node *n) { return (btrfs_header_level(&n->header) == 0); } BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(root_byte_limit, struct btrfs_root_item, byte_limit, 64); BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 32); BTRFS_SETGET_STACK_FUNCS(root_bytes_used, struct btrfs_root_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, sectorsize, 32); BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, nodesize, 32); BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block, leafsize, 32); BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, stripesize, 32); BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, root_dir_objectid, 64); static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l) { return (u8 *)l->items; } BTRFS_SETGET_STACK_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); static inline char *btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) { return (char *)(&e->disk_bytenr); } static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) { return (unsigned long)(&((struct btrfs_file_extent_item *)NULL)->disk_bytenr) + datasize; } static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e) { struct btrfs_file_extent_item *fe = NULL; return btrfs_item_size(e) - (unsigned long)(&fe->disk_bytenr); } BTRFS_SETGET_STACK_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_STACK_FUNCS(file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_STACK_FUNCS(file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_STACK_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); /* helper function to cast into the data area of the leaf. */ #define btrfs_item_ptr(leaf, slot, type) \ ((type *)(btrfs_leaf_data(leaf) + \ btrfs_item_offset((leaf)->items + (slot)))) #define btrfs_item_ptr_offset(leaf, slot) \ ((unsigned long)(btrfs_leaf_data(leaf) + \ btrfs_item_offset_nr(leaf, slot))) static inline u32 btrfs_level_size(struct btrfs_root *root, int level) { if (level == 0) return root->leafsize; return root->nodesize; } int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2); struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u32 blocksize); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *buf); int btrfs_inc_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 owner_objectid); int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 root_objectid, u64 root_generation, u64 owner, u64 owner_offset, int pin); int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *buf, struct btrfs_buffer *parent, int parent_slot, struct btrfs_buffer **cow_ret); int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 data_size); int btrfs_truncate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 new_size, int from_end); int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); void btrfs_init_path(struct btrfs_path *p); int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path); int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 data_size); int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf); int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *snap); int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct btrfs_root_item *item, struct btrfs_key *key); int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, char *name, int name_len, u64 dir, struct btrfs_key *location, u8 type); struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, char *name, int name_len, int mod); struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len); int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_dir_item *di); int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, struct btrfs_root *fs_root, u64 dirid, u64 *objectid); int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, struct btrfs_inode_item *inode_item); int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, int mod); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_free_block_groups(struct btrfs_fs_info *info); int btrfs_read_block_groups(struct btrfs_root *root); int btrfs_insert_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_block_group_item *bi); /* file-item.c */ int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 offset, u64 disk_num_bytes, u64 num_bytes); int btrfs_insert_inline_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 offset, char *buffer, size_t size); int btrfs_lookup_csum(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 offset, int cow, struct btrfs_csum_item **item_ret); int btrfs_csum_file_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *inode, u64 objectid, u64 offset, char *data, size_t len); int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid); #endif