/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "volumes.h" #include "repair.h" #include "disk-io.h" #include "print-tree.h" #include "common/task-utils.h" #include "transaction.h" #include "common/utils.h" #include "cmds/commands.h" #include "free-space-cache.h" #include "free-space-tree.h" #include "btrfsck.h" #include "qgroup-verify.h" #include "common/rbtree-utils.h" #include "backref.h" #include "kernel-shared/ulist.h" #include "hash.h" #include "common/help.h" #include "check/mode-common.h" #include "check/mode-original.h" #include "check/mode-lowmem.h" u64 bytes_used = 0; u64 total_csum_bytes = 0; u64 total_btree_bytes = 0; u64 total_fs_tree_bytes = 0; u64 total_extent_tree_bytes = 0; u64 btree_space_waste = 0; u64 data_bytes_allocated = 0; u64 data_bytes_referenced = 0; LIST_HEAD(duplicate_extents); LIST_HEAD(delete_items); int no_holes = 0; static int is_free_space_tree = 0; int init_extent_tree = 0; int check_data_csum = 0; struct btrfs_fs_info *global_info; struct task_ctx ctx = { 0 }; struct cache_tree *roots_info_cache = NULL; enum btrfs_check_mode { CHECK_MODE_ORIGINAL, CHECK_MODE_LOWMEM, CHECK_MODE_UNKNOWN, CHECK_MODE_DEFAULT = CHECK_MODE_ORIGINAL }; static enum btrfs_check_mode check_mode = CHECK_MODE_DEFAULT; static int compare_data_backref(struct rb_node *node1, struct rb_node *node2) { struct extent_backref *ext1 = rb_node_to_extent_backref(node1); struct extent_backref *ext2 = rb_node_to_extent_backref(node2); struct data_backref *back1 = to_data_backref(ext1); struct data_backref *back2 = to_data_backref(ext2); WARN_ON(!ext1->is_data); WARN_ON(!ext2->is_data); /* parent and root are a union, so this covers both */ if (back1->parent > back2->parent) return 1; if (back1->parent < back2->parent) return -1; /* This is a full backref and the parents match. */ if (back1->node.full_backref) return 0; if (back1->owner > back2->owner) return 1; if (back1->owner < back2->owner) return -1; if (back1->offset > back2->offset) return 1; if (back1->offset < back2->offset) return -1; if (back1->found_ref && back2->found_ref) { if (back1->disk_bytenr > back2->disk_bytenr) return 1; if (back1->disk_bytenr < back2->disk_bytenr) return -1; if (back1->bytes > back2->bytes) return 1; if (back1->bytes < back2->bytes) return -1; } return 0; } static int compare_tree_backref(struct rb_node *node1, struct rb_node *node2) { struct extent_backref *ext1 = rb_node_to_extent_backref(node1); struct extent_backref *ext2 = rb_node_to_extent_backref(node2); struct tree_backref *back1 = to_tree_backref(ext1); struct tree_backref *back2 = to_tree_backref(ext2); WARN_ON(ext1->is_data); WARN_ON(ext2->is_data); /* parent and root are a union, so this covers both */ if (back1->parent > back2->parent) return 1; if (back1->parent < back2->parent) return -1; return 0; } static int compare_extent_backref(struct rb_node *node1, struct rb_node *node2) { struct extent_backref *ext1 = rb_node_to_extent_backref(node1); struct extent_backref *ext2 = rb_node_to_extent_backref(node2); if (ext1->is_data > ext2->is_data) return 1; if (ext1->is_data < ext2->is_data) return -1; if (ext1->full_backref > ext2->full_backref) return 1; if (ext1->full_backref < ext2->full_backref) return -1; if (ext1->is_data) return compare_data_backref(node1, node2); else return compare_tree_backref(node1, node2); } static void print_status_check_line(void *p) { struct task_ctx *priv = p; const char *task_position_string[] = { "[1/7] checking root items ", "[2/7] checking extents ", is_free_space_tree ? "[3/7] checking free space tree " : "[3/7] checking free space cache ", "[4/7] checking fs roots ", check_data_csum ? "[5/7] checking csums against data " : "[5/7] checking csums (without verifying data) ", "[6/7] checking root refs ", "[7/7] checking quota groups ", }; time_t elapsed; int hours; int minutes; int seconds; elapsed = time(NULL) - priv->start_time; hours = elapsed / 3600; elapsed -= hours * 3600; minutes = elapsed / 60; elapsed -= minutes * 60; seconds = elapsed; printf("%s (%d:%02d:%02d elapsed", task_position_string[priv->tp], hours, minutes, seconds); if (priv->item_count > 0) printf(", %llu items checked)\r", priv->item_count); else printf(")\r"); fflush(stdout); } static void *print_status_check(void *p) { struct task_ctx *priv = p; /* 1 second */ task_period_start(priv->info, 1000); if (priv->tp == TASK_NOTHING) return NULL; while (1) { print_status_check_line(p); task_period_wait(priv->info); } return NULL; } static int print_status_return(void *p) { print_status_check_line(p); printf("\n"); fflush(stdout); return 0; } static enum btrfs_check_mode parse_check_mode(const char *str) { if (strcmp(str, "lowmem") == 0) return CHECK_MODE_LOWMEM; if (strcmp(str, "orig") == 0) return CHECK_MODE_ORIGINAL; if (strcmp(str, "original") == 0) return CHECK_MODE_ORIGINAL; return CHECK_MODE_UNKNOWN; } /* Compatible function to allow reuse of old codes */ static u64 first_extent_gap(struct rb_root *holes) { struct file_extent_hole *hole; if (RB_EMPTY_ROOT(holes)) return (u64)-1; hole = rb_entry(rb_first(holes), struct file_extent_hole, node); return hole->start; } static int compare_hole(struct rb_node *node1, struct rb_node *node2) { struct file_extent_hole *hole1; struct file_extent_hole *hole2; hole1 = rb_entry(node1, struct file_extent_hole, node); hole2 = rb_entry(node2, struct file_extent_hole, node); if (hole1->start > hole2->start) return -1; if (hole1->start < hole2->start) return 1; /* Now hole1->start == hole2->start */ if (hole1->len >= hole2->len) /* * Hole 1 will be merge center * Same hole will be merged later */ return -1; /* Hole 2 will be merge center */ return 1; } /* * Add a hole to the record * * This will do hole merge for copy_file_extent_holes(), * which will ensure there won't be continuous holes. */ static int add_file_extent_hole(struct rb_root *holes, u64 start, u64 len) { struct file_extent_hole *hole; struct file_extent_hole *prev = NULL; struct file_extent_hole *next = NULL; hole = malloc(sizeof(*hole)); if (!hole) return -ENOMEM; hole->start = start; hole->len = len; /* Since compare will not return 0, no -EEXIST will happen */ rb_insert(holes, &hole->node, compare_hole); /* simple merge with previous hole */ if (rb_prev(&hole->node)) prev = rb_entry(rb_prev(&hole->node), struct file_extent_hole, node); if (prev && prev->start + prev->len >= hole->start) { hole->len = hole->start + hole->len - prev->start; hole->start = prev->start; rb_erase(&prev->node, holes); free(prev); prev = NULL; } /* iterate merge with next holes */ while (1) { if (!rb_next(&hole->node)) break; next = rb_entry(rb_next(&hole->node), struct file_extent_hole, node); if (hole->start + hole->len >= next->start) { if (hole->start + hole->len <= next->start + next->len) hole->len = next->start + next->len - hole->start; rb_erase(&next->node, holes); free(next); next = NULL; } else break; } return 0; } static int compare_hole_range(struct rb_node *node, void *data) { struct file_extent_hole *hole; u64 start; hole = (struct file_extent_hole *)data; start = hole->start; hole = rb_entry(node, struct file_extent_hole, node); if (start < hole->start) return -1; if (start >= hole->start && start < hole->start + hole->len) return 0; return 1; } /* * Delete a hole in the record * * This will do the hole split and is much restrict than add. */ static int del_file_extent_hole(struct rb_root *holes, u64 start, u64 len) { struct file_extent_hole *hole; struct file_extent_hole tmp; u64 prev_start = 0; u64 prev_len = 0; u64 next_start = 0; u64 next_len = 0; struct rb_node *node; int have_prev = 0; int have_next = 0; int ret = 0; tmp.start = start; tmp.len = len; node = rb_search(holes, &tmp, compare_hole_range, NULL); if (!node) return -EEXIST; hole = rb_entry(node, struct file_extent_hole, node); if (start + len > hole->start + hole->len) return -EEXIST; /* * Now there will be no overlap, delete the hole and re-add the * split(s) if they exists. */ if (start > hole->start) { prev_start = hole->start; prev_len = start - hole->start; have_prev = 1; } if (hole->start + hole->len > start + len) { next_start = start + len; next_len = hole->start + hole->len - start - len; have_next = 1; } rb_erase(node, holes); free(hole); if (have_prev) { ret = add_file_extent_hole(holes, prev_start, prev_len); if (ret < 0) return ret; } if (have_next) { ret = add_file_extent_hole(holes, next_start, next_len); if (ret < 0) return ret; } return 0; } static int copy_file_extent_holes(struct rb_root *dst, struct rb_root *src) { struct file_extent_hole *hole; struct rb_node *node; int ret = 0; node = rb_first(src); while (node) { hole = rb_entry(node, struct file_extent_hole, node); ret = add_file_extent_hole(dst, hole->start, hole->len); if (ret) break; node = rb_next(node); } return ret; } static void free_file_extent_holes(struct rb_root *holes) { struct rb_node *node; struct file_extent_hole *hole; node = rb_first(holes); while (node) { hole = rb_entry(node, struct file_extent_hole, node); rb_erase(node, holes); free(hole); node = rb_first(holes); } } static void record_root_in_trans(struct btrfs_trans_handle *trans, struct btrfs_root *root) { if (root->last_trans != trans->transid) { root->track_dirty = 1; root->last_trans = trans->transid; root->commit_root = root->node; extent_buffer_get(root->node); } } static int device_record_compare(struct rb_node *node1, struct rb_node *node2) { struct device_record *rec1; struct device_record *rec2; rec1 = rb_entry(node1, struct device_record, node); rec2 = rb_entry(node2, struct device_record, node); if (rec1->devid > rec2->devid) return -1; else if (rec1->devid < rec2->devid) return 1; else return 0; } static struct inode_record *clone_inode_rec(struct inode_record *orig_rec) { struct inode_record *rec; struct inode_backref *backref; struct inode_backref *orig; struct inode_backref *tmp; struct mismatch_dir_hash_record *hash_record; struct mismatch_dir_hash_record *new_record; struct unaligned_extent_rec_t *src; struct unaligned_extent_rec_t *dst; struct rb_node *rb; size_t size; int ret; rec = malloc(sizeof(*rec)); if (!rec) return ERR_PTR(-ENOMEM); memcpy(rec, orig_rec, sizeof(*rec)); rec->refs = 1; INIT_LIST_HEAD(&rec->backrefs); INIT_LIST_HEAD(&rec->mismatch_dir_hash); INIT_LIST_HEAD(&rec->unaligned_extent_recs); rec->holes = RB_ROOT; list_for_each_entry(orig, &orig_rec->backrefs, list) { size = sizeof(*orig) + orig->namelen + 1; backref = malloc(size); if (!backref) { ret = -ENOMEM; goto cleanup; } memcpy(backref, orig, size); list_add_tail(&backref->list, &rec->backrefs); } list_for_each_entry(hash_record, &orig_rec->mismatch_dir_hash, list) { size = sizeof(*hash_record) + hash_record->namelen; new_record = malloc(size); if (!new_record) { ret = -ENOMEM; goto cleanup; } memcpy(&new_record, hash_record, size); list_add_tail(&new_record->list, &rec->mismatch_dir_hash); } list_for_each_entry(src, &orig_rec->unaligned_extent_recs, list) { size = sizeof(*src); dst = malloc(size); if (!dst) { ret = -ENOMEM; goto cleanup; } memcpy(dst, src, size); list_add_tail(&dst->list, &rec->unaligned_extent_recs); } ret = copy_file_extent_holes(&rec->holes, &orig_rec->holes); if (ret < 0) goto cleanup_rb; return rec; cleanup_rb: rb = rb_first(&rec->holes); while (rb) { struct file_extent_hole *hole; hole = rb_entry(rb, struct file_extent_hole, node); rb = rb_next(rb); free(hole); } cleanup: if (!list_empty(&rec->backrefs)) list_for_each_entry_safe(orig, tmp, &rec->backrefs, list) { list_del(&orig->list); free(orig); } if (!list_empty(&rec->mismatch_dir_hash)) { list_for_each_entry_safe(hash_record, new_record, &rec->mismatch_dir_hash, list) { list_del(&hash_record->list); free(hash_record); } } if (!list_empty(&rec->unaligned_extent_recs)) list_for_each_entry_safe(src, dst, &rec->unaligned_extent_recs, list) { list_del(&src->list); free(src); } free(rec); return ERR_PTR(ret); } static void print_inode_error(struct btrfs_root *root, struct inode_record *rec) { u64 root_objectid = root->root_key.objectid; int errors = rec->errors; if (!errors) return; /* reloc root errors, we print its corresponding fs root objectid*/ if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { root_objectid = root->root_key.offset; fprintf(stderr, "reloc"); } fprintf(stderr, "root %llu inode %llu errors %x", (unsigned long long) root_objectid, (unsigned long long) rec->ino, rec->errors); if (errors & I_ERR_NO_INODE_ITEM) fprintf(stderr, ", no inode item"); if (errors & I_ERR_NO_ORPHAN_ITEM) fprintf(stderr, ", no orphan item"); if (errors & I_ERR_DUP_INODE_ITEM) fprintf(stderr, ", dup inode item"); if (errors & I_ERR_DUP_DIR_INDEX) fprintf(stderr, ", dup dir index"); if (errors & I_ERR_ODD_DIR_ITEM) fprintf(stderr, ", odd dir item"); if (errors & I_ERR_ODD_FILE_EXTENT) fprintf(stderr, ", odd file extent"); if (errors & I_ERR_BAD_FILE_EXTENT) fprintf(stderr, ", bad file extent"); if (errors & I_ERR_FILE_EXTENT_OVERLAP) fprintf(stderr, ", file extent overlap"); if (errors & I_ERR_FILE_EXTENT_TOO_LARGE) fprintf(stderr, ", inline file extent too large"); if (errors & I_ERR_FILE_EXTENT_DISCOUNT) fprintf(stderr, ", file extent discount"); if (errors & I_ERR_DIR_ISIZE_WRONG) fprintf(stderr, ", dir isize wrong"); if (errors & I_ERR_FILE_NBYTES_WRONG) fprintf(stderr, ", nbytes wrong"); if (errors & I_ERR_ODD_CSUM_ITEM) fprintf(stderr, ", odd csum item"); if (errors & I_ERR_SOME_CSUM_MISSING) fprintf(stderr, ", some csum missing"); if (errors & I_ERR_LINK_COUNT_WRONG) fprintf(stderr, ", link count wrong"); if (errors & I_ERR_ODD_INODE_FLAGS) fprintf(stderr, ", odd inode flags"); if (errors & I_ERR_INLINE_RAM_BYTES_WRONG) fprintf(stderr, ", invalid inline ram bytes"); if (errors & I_ERR_INVALID_IMODE) fprintf(stderr, ", invalid inode mode bit 0%o", rec->imode & ~07777); fprintf(stderr, "\n"); /* Print the holes if needed */ if (errors & I_ERR_FILE_EXTENT_DISCOUNT) { struct file_extent_hole *hole; struct rb_node *node; int found = 0; node = rb_first(&rec->holes); fprintf(stderr, "Found file extent holes:\n"); while (node) { found = 1; hole = rb_entry(node, struct file_extent_hole, node); fprintf(stderr, "\tstart: %llu, len: %llu\n", hole->start, hole->len); node = rb_next(node); } if (!found) fprintf(stderr, "\tstart: 0, len: %llu\n", round_up(rec->isize, root->fs_info->sectorsize)); } /* Print dir item with mismatch hash */ if (errors & I_ERR_MISMATCH_DIR_HASH) { struct mismatch_dir_hash_record *hash_record; fprintf(stderr, "Dir items with mismatch hash:\n"); list_for_each_entry(hash_record, &rec->mismatch_dir_hash, list) { char *namebuf = (char *)(hash_record + 1); u32 crc; crc = btrfs_name_hash(namebuf, hash_record->namelen); fprintf(stderr, "\tname: %.*s namelen: %u wanted 0x%08x has 0x%08llx\n", hash_record->namelen, namebuf, hash_record->namelen, crc, hash_record->key.offset); } } } static void print_ref_error(int errors) { if (errors & REF_ERR_NO_DIR_ITEM) fprintf(stderr, ", no dir item"); if (errors & REF_ERR_NO_DIR_INDEX) fprintf(stderr, ", no dir index"); if (errors & REF_ERR_NO_INODE_REF) fprintf(stderr, ", no inode ref"); if (errors & REF_ERR_DUP_DIR_ITEM) fprintf(stderr, ", dup dir item"); if (errors & REF_ERR_DUP_DIR_INDEX) fprintf(stderr, ", dup dir index"); if (errors & REF_ERR_DUP_INODE_REF) fprintf(stderr, ", dup inode ref"); if (errors & REF_ERR_INDEX_UNMATCH) fprintf(stderr, ", index mismatch"); if (errors & REF_ERR_FILETYPE_UNMATCH) fprintf(stderr, ", filetype mismatch"); if (errors & REF_ERR_NAME_TOO_LONG) fprintf(stderr, ", name too long"); if (errors & REF_ERR_NO_ROOT_REF) fprintf(stderr, ", no root ref"); if (errors & REF_ERR_NO_ROOT_BACKREF) fprintf(stderr, ", no root backref"); if (errors & REF_ERR_DUP_ROOT_REF) fprintf(stderr, ", dup root ref"); if (errors & REF_ERR_DUP_ROOT_BACKREF) fprintf(stderr, ", dup root backref"); fprintf(stderr, "\n"); } static struct inode_record *get_inode_rec(struct cache_tree *inode_cache, u64 ino, int mod) { struct ptr_node *node; struct cache_extent *cache; struct inode_record *rec = NULL; int ret; cache = lookup_cache_extent(inode_cache, ino, 1); if (cache) { node = container_of(cache, struct ptr_node, cache); rec = node->data; if (mod && rec->refs > 1) { node->data = clone_inode_rec(rec); if (IS_ERR(node->data)) return node->data; rec->refs--; rec = node->data; } } else if (mod) { rec = calloc(1, sizeof(*rec)); if (!rec) return ERR_PTR(-ENOMEM); rec->ino = ino; rec->extent_start = (u64)-1; rec->refs = 1; INIT_LIST_HEAD(&rec->backrefs); INIT_LIST_HEAD(&rec->mismatch_dir_hash); INIT_LIST_HEAD(&rec->unaligned_extent_recs); rec->holes = RB_ROOT; node = malloc(sizeof(*node)); if (!node) { free(rec); return ERR_PTR(-ENOMEM); } node->cache.start = ino; node->cache.size = 1; node->data = rec; if (ino == BTRFS_FREE_INO_OBJECTID) rec->found_link = 1; ret = insert_cache_extent(inode_cache, &node->cache); if (ret) return ERR_PTR(-EEXIST); } return rec; } static void free_unaligned_extent_recs(struct list_head *unaligned_extent_recs) { struct unaligned_extent_rec_t *urec; while (!list_empty(unaligned_extent_recs)) { urec = list_entry(unaligned_extent_recs->next, struct unaligned_extent_rec_t, list); list_del(&urec->list); free(urec); } } static void free_inode_rec(struct inode_record *rec) { struct inode_backref *backref; struct mismatch_dir_hash_record *hash; struct mismatch_dir_hash_record *next; if (--rec->refs > 0) return; while (!list_empty(&rec->backrefs)) { backref = to_inode_backref(rec->backrefs.next); list_del(&backref->list); free(backref); } list_for_each_entry_safe(hash, next, &rec->mismatch_dir_hash, list) free(hash); free_unaligned_extent_recs(&rec->unaligned_extent_recs); free_file_extent_holes(&rec->holes); free(rec); } static int can_free_inode_rec(struct inode_record *rec) { if (!rec->errors && rec->checked && rec->found_inode_item && rec->nlink == rec->found_link && list_empty(&rec->backrefs)) return 1; return 0; } static void maybe_free_inode_rec(struct cache_tree *inode_cache, struct inode_record *rec) { struct cache_extent *cache; struct inode_backref *tmp, *backref; struct ptr_node *node; u8 filetype; if (!rec->found_inode_item) return; filetype = imode_to_type(rec->imode); list_for_each_entry_safe(backref, tmp, &rec->backrefs, list) { if (backref->found_dir_item && backref->found_dir_index) { if (backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; if (!backref->errors && backref->found_inode_ref && rec->nlink == rec->found_link) { list_del(&backref->list); free(backref); } } } if (!rec->checked || rec->merging) return; if (!is_valid_imode(rec->imode)) rec->errors |= I_ERR_INVALID_IMODE; if (S_ISDIR(rec->imode)) { if (rec->found_size != rec->isize) rec->errors |= I_ERR_DIR_ISIZE_WRONG; if (rec->found_file_extent) rec->errors |= I_ERR_ODD_FILE_EXTENT; } else if (S_ISREG(rec->imode) || S_ISLNK(rec->imode)) { if (rec->found_dir_item) rec->errors |= I_ERR_ODD_DIR_ITEM; if (rec->found_size != rec->nbytes) rec->errors |= I_ERR_FILE_NBYTES_WRONG; if (rec->nlink > 0 && !no_holes && (rec->extent_end < rec->isize || first_extent_gap(&rec->holes) < rec->isize)) rec->errors |= I_ERR_FILE_EXTENT_DISCOUNT; } if (S_ISREG(rec->imode) || S_ISLNK(rec->imode)) { if (rec->found_csum_item && rec->nodatasum) rec->errors |= I_ERR_ODD_CSUM_ITEM; if (rec->some_csum_missing && !rec->nodatasum) rec->errors |= I_ERR_SOME_CSUM_MISSING; } BUG_ON(rec->refs != 1); if (can_free_inode_rec(rec)) { cache = lookup_cache_extent(inode_cache, rec->ino, 1); node = container_of(cache, struct ptr_node, cache); BUG_ON(node->data != rec); remove_cache_extent(inode_cache, &node->cache); free(node); free_inode_rec(rec); } } static int check_orphan_item(struct btrfs_root *root, u64 ino) { struct btrfs_path path; struct btrfs_key key; int ret; key.objectid = BTRFS_ORPHAN_OBJECTID; key.type = BTRFS_ORPHAN_ITEM_KEY; key.offset = ino; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); btrfs_release_path(&path); if (ret > 0) ret = -ENOENT; return ret; } static int process_inode_item(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { struct inode_record *rec; struct btrfs_inode_item *item; u64 flags; rec = active_node->current; BUG_ON(rec->ino != key->objectid || rec->refs > 1); if (rec->found_inode_item) { rec->errors |= I_ERR_DUP_INODE_ITEM; return 1; } item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); rec->nlink = btrfs_inode_nlink(eb, item); rec->isize = btrfs_inode_size(eb, item); rec->nbytes = btrfs_inode_nbytes(eb, item); rec->imode = btrfs_inode_mode(eb, item); if (btrfs_inode_flags(eb, item) & BTRFS_INODE_NODATASUM) rec->nodatasum = 1; rec->found_inode_item = 1; if (rec->nlink == 0) rec->errors |= I_ERR_NO_ORPHAN_ITEM; flags = btrfs_inode_flags(eb, item); if (S_ISLNK(rec->imode) && flags & (BTRFS_INODE_IMMUTABLE | BTRFS_INODE_APPEND)) rec->errors |= I_ERR_ODD_INODE_FLAGS; maybe_free_inode_rec(&active_node->inode_cache, rec); return 0; } static struct inode_backref *get_inode_backref(struct inode_record *rec, const char *name, int namelen, u64 dir) { struct inode_backref *backref; list_for_each_entry(backref, &rec->backrefs, list) { if (rec->ino == BTRFS_MULTIPLE_OBJECTIDS) break; if (backref->dir != dir || backref->namelen != namelen) continue; if (memcmp(name, backref->name, namelen)) continue; return backref; } backref = malloc(sizeof(*backref) + namelen + 1); if (!backref) return NULL; memset(backref, 0, sizeof(*backref)); backref->dir = dir; backref->namelen = namelen; memcpy(backref->name, name, namelen); backref->name[namelen] = '\0'; list_add_tail(&backref->list, &rec->backrefs); return backref; } static int add_inode_backref(struct cache_tree *inode_cache, u64 ino, u64 dir, u64 index, const char *name, int namelen, u8 filetype, u8 itemtype, int errors) { struct inode_record *rec; struct inode_backref *backref; rec = get_inode_rec(inode_cache, ino, 1); BUG_ON(IS_ERR(rec)); backref = get_inode_backref(rec, name, namelen, dir); BUG_ON(!backref); if (errors) backref->errors |= errors; if (itemtype == BTRFS_DIR_INDEX_KEY) { if (backref->found_dir_index) backref->errors |= REF_ERR_DUP_DIR_INDEX; if (backref->found_inode_ref && backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; if (backref->found_dir_item && backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; backref->index = index; backref->filetype = filetype; backref->found_dir_index = 1; } else if (itemtype == BTRFS_DIR_ITEM_KEY) { rec->found_link++; if (backref->found_dir_item) backref->errors |= REF_ERR_DUP_DIR_ITEM; if (backref->found_dir_index && backref->filetype != filetype) backref->errors |= REF_ERR_FILETYPE_UNMATCH; backref->filetype = filetype; backref->found_dir_item = 1; } else if ((itemtype == BTRFS_INODE_REF_KEY) || (itemtype == BTRFS_INODE_EXTREF_KEY)) { if (backref->found_inode_ref) backref->errors |= REF_ERR_DUP_INODE_REF; if (backref->found_dir_index && backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; else backref->index = index; backref->ref_type = itemtype; backref->found_inode_ref = 1; } else { BUG_ON(1); } maybe_free_inode_rec(inode_cache, rec); return 0; } static int merge_inode_recs(struct inode_record *src, struct inode_record *dst, struct cache_tree *dst_cache) { struct inode_backref *backref; u32 dir_count = 0; int ret = 0; dst->merging = 1; list_for_each_entry(backref, &src->backrefs, list) { if (backref->found_dir_index) { add_inode_backref(dst_cache, dst->ino, backref->dir, backref->index, backref->name, backref->namelen, backref->filetype, BTRFS_DIR_INDEX_KEY, backref->errors); } if (backref->found_dir_item) { dir_count++; add_inode_backref(dst_cache, dst->ino, backref->dir, 0, backref->name, backref->namelen, backref->filetype, BTRFS_DIR_ITEM_KEY, backref->errors); } if (backref->found_inode_ref) { add_inode_backref(dst_cache, dst->ino, backref->dir, backref->index, backref->name, backref->namelen, 0, backref->ref_type, backref->errors); } } if (src->found_dir_item) dst->found_dir_item = 1; if (src->found_file_extent) dst->found_file_extent = 1; if (src->found_csum_item) dst->found_csum_item = 1; if (src->some_csum_missing) dst->some_csum_missing = 1; if (first_extent_gap(&dst->holes) > first_extent_gap(&src->holes)) { ret = copy_file_extent_holes(&dst->holes, &src->holes); if (ret < 0) return ret; } BUG_ON(src->found_link < dir_count); dst->found_link += src->found_link - dir_count; dst->found_size += src->found_size; if (src->extent_start != (u64)-1) { if (dst->extent_start == (u64)-1) { dst->extent_start = src->extent_start; dst->extent_end = src->extent_end; } else { if (dst->extent_end > src->extent_start) dst->errors |= I_ERR_FILE_EXTENT_OVERLAP; else if (dst->extent_end < src->extent_start) { ret = add_file_extent_hole(&dst->holes, dst->extent_end, src->extent_start - dst->extent_end); } if (dst->extent_end < src->extent_end) dst->extent_end = src->extent_end; } } dst->errors |= src->errors; if (src->found_inode_item) { if (!dst->found_inode_item) { dst->nlink = src->nlink; dst->isize = src->isize; dst->nbytes = src->nbytes; dst->imode = src->imode; dst->nodatasum = src->nodatasum; dst->found_inode_item = 1; } else { dst->errors |= I_ERR_DUP_INODE_ITEM; } } dst->merging = 0; return 0; } static int splice_shared_node(struct shared_node *src_node, struct shared_node *dst_node) { struct cache_extent *cache; struct ptr_node *node, *ins; struct cache_tree *src, *dst; struct inode_record *rec, *conflict; u64 current_ino = 0; int splice = 0; int ret; if (--src_node->refs == 0) splice = 1; if (src_node->current) current_ino = src_node->current->ino; src = &src_node->root_cache; dst = &dst_node->root_cache; again: cache = search_cache_extent(src, 0); while (cache) { node = container_of(cache, struct ptr_node, cache); rec = node->data; cache = next_cache_extent(cache); if (splice) { remove_cache_extent(src, &node->cache); ins = node; } else { ins = malloc(sizeof(*ins)); BUG_ON(!ins); ins->cache.start = node->cache.start; ins->cache.size = node->cache.size; ins->data = rec; rec->refs++; } ret = insert_cache_extent(dst, &ins->cache); if (ret == -EEXIST) { conflict = get_inode_rec(dst, rec->ino, 1); BUG_ON(IS_ERR(conflict)); merge_inode_recs(rec, conflict, dst); if (rec->checked) { conflict->checked = 1; if (dst_node->current == conflict) dst_node->current = NULL; } maybe_free_inode_rec(dst, conflict); free_inode_rec(rec); free(ins); } else { BUG_ON(ret); } } if (src == &src_node->root_cache) { src = &src_node->inode_cache; dst = &dst_node->inode_cache; goto again; } if (current_ino > 0 && (!dst_node->current || current_ino > dst_node->current->ino)) { if (dst_node->current) { dst_node->current->checked = 1; maybe_free_inode_rec(dst, dst_node->current); } dst_node->current = get_inode_rec(dst, current_ino, 1); BUG_ON(IS_ERR(dst_node->current)); } return 0; } static void free_inode_ptr(struct cache_extent *cache) { struct ptr_node *node; struct inode_record *rec; node = container_of(cache, struct ptr_node, cache); rec = node->data; free_inode_rec(rec); free(node); } FREE_EXTENT_CACHE_BASED_TREE(inode_recs, free_inode_ptr); static struct shared_node *find_shared_node(struct cache_tree *shared, u64 bytenr) { struct cache_extent *cache; struct shared_node *node; cache = lookup_cache_extent(shared, bytenr, 1); if (cache) { node = container_of(cache, struct shared_node, cache); return node; } return NULL; } static int add_shared_node(struct cache_tree *shared, u64 bytenr, u32 refs) { int ret; struct shared_node *node; node = calloc(1, sizeof(*node)); if (!node) return -ENOMEM; node->cache.start = bytenr; node->cache.size = 1; cache_tree_init(&node->root_cache); cache_tree_init(&node->inode_cache); node->refs = refs; ret = insert_cache_extent(shared, &node->cache); return ret; } static int enter_shared_node(struct btrfs_root *root, u64 bytenr, u32 refs, struct walk_control *wc, int level) { struct shared_node *node; struct shared_node *dest; int ret; if (level == wc->active_node) return 0; BUG_ON(wc->active_node <= level); node = find_shared_node(&wc->shared, bytenr); if (!node) { ret = add_shared_node(&wc->shared, bytenr, refs); BUG_ON(ret); node = find_shared_node(&wc->shared, bytenr); wc->nodes[level] = node; wc->active_node = level; return 0; } if (wc->root_level == wc->active_node && btrfs_root_refs(&root->root_item) == 0) { if (--node->refs == 0) { free_inode_recs_tree(&node->root_cache); free_inode_recs_tree(&node->inode_cache); remove_cache_extent(&wc->shared, &node->cache); free(node); } return 1; } dest = wc->nodes[wc->active_node]; splice_shared_node(node, dest); if (node->refs == 0) { remove_cache_extent(&wc->shared, &node->cache); free(node); } return 1; } static int leave_shared_node(struct btrfs_root *root, struct walk_control *wc, int level) { struct shared_node *node; struct shared_node *dest; int i; if (level == wc->root_level) return 0; for (i = level + 1; i < BTRFS_MAX_LEVEL; i++) { if (wc->nodes[i]) break; } BUG_ON(i >= BTRFS_MAX_LEVEL); node = wc->nodes[wc->active_node]; wc->nodes[wc->active_node] = NULL; wc->active_node = i; dest = wc->nodes[wc->active_node]; if (wc->active_node < wc->root_level || btrfs_root_refs(&root->root_item) > 0) { BUG_ON(node->refs <= 1); splice_shared_node(node, dest); } else { BUG_ON(node->refs < 2); node->refs--; } return 0; } /* * Returns: * < 0 - on error * 1 - if the root with id child_root_id is a child of root parent_root_id * 0 - if the root child_root_id isn't a child of the root parent_root_id but * has other root(s) as parent(s) * 2 - if the root child_root_id doesn't have any parent roots */ static int is_child_root(struct btrfs_root *root, u64 parent_root_id, u64 child_root_id) { struct btrfs_path path; struct btrfs_key key; struct extent_buffer *leaf; int has_parent = 0; int ret; btrfs_init_path(&path); key.objectid = parent_root_id; key.type = BTRFS_ROOT_REF_KEY; key.offset = child_root_id; ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); if (ret < 0) return ret; btrfs_release_path(&path); if (!ret) return 1; key.objectid = child_root_id; key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0, 0); if (ret < 0) goto out; while (1) { leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root->fs_info->tree_root, &path); if (ret) break; leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid != child_root_id || key.type != BTRFS_ROOT_BACKREF_KEY) break; has_parent = 1; if (key.offset == parent_root_id) { btrfs_release_path(&path); return 1; } path.slots[0]++; } out: btrfs_release_path(&path); if (ret < 0) return ret; return has_parent ? 0 : 2; } static int add_mismatch_dir_hash(struct inode_record *dir_rec, struct btrfs_key *key, const char *namebuf, int namelen) { struct mismatch_dir_hash_record *hash_record; hash_record = malloc(sizeof(*hash_record) + namelen); if (!hash_record) { error("failed to allocate memory for mismatch dir hash rec"); return -ENOMEM; } memcpy(&hash_record->key, key, sizeof(*key)); memcpy(hash_record + 1, namebuf, namelen); hash_record->namelen = namelen; list_add(&hash_record->list, &dir_rec->mismatch_dir_hash); return 0; } static int process_dir_item(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u32 data_len; int error; int nritems = 0; u8 filetype; struct btrfs_dir_item *di; struct inode_record *rec; struct cache_tree *root_cache; struct cache_tree *inode_cache; struct btrfs_key location; char namebuf[BTRFS_NAME_LEN]; root_cache = &active_node->root_cache; inode_cache = &active_node->inode_cache; rec = active_node->current; rec->found_dir_item = 1; di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); total = btrfs_item_size_nr(eb, slot); while (cur < total) { int ret; nritems++; btrfs_dir_item_key_to_cpu(eb, di, &location); name_len = btrfs_dir_name_len(eb, di); data_len = btrfs_dir_data_len(eb, di); filetype = btrfs_dir_type(eb, di); rec->found_size += name_len; if (cur + sizeof(*di) + name_len > total || name_len > BTRFS_NAME_LEN) { error = REF_ERR_NAME_TOO_LONG; if (cur + sizeof(*di) > total) break; len = min_t(u32, total - cur - sizeof(*di), BTRFS_NAME_LEN); } else { len = name_len; error = 0; } read_extent_buffer(eb, namebuf, (unsigned long)(di + 1), len); if (key->type == BTRFS_DIR_ITEM_KEY && key->offset != btrfs_name_hash(namebuf, len)) { rec->errors |= I_ERR_MISMATCH_DIR_HASH; ret = add_mismatch_dir_hash(rec, key, namebuf, len); /* Fatal error, ENOMEM */ if (ret < 0) return ret; goto next; } if (location.type == BTRFS_INODE_ITEM_KEY) { add_inode_backref(inode_cache, location.objectid, key->objectid, key->offset, namebuf, len, filetype, key->type, error); } else if (location.type == BTRFS_ROOT_ITEM_KEY) { add_inode_backref(root_cache, location.objectid, key->objectid, key->offset, namebuf, len, filetype, key->type, error); } else { fprintf(stderr, "unknown location type %d in DIR_ITEM[%llu %llu]\n", location.type, key->objectid, key->offset); add_inode_backref(inode_cache, BTRFS_MULTIPLE_OBJECTIDS, key->objectid, key->offset, namebuf, len, filetype, key->type, error); } next: len = sizeof(*di) + name_len + data_len; di = (struct btrfs_dir_item *)((char *)di + len); cur += len; } if (key->type == BTRFS_DIR_INDEX_KEY && nritems > 1) rec->errors |= I_ERR_DUP_DIR_INDEX; return 0; } static int process_inode_ref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u64 index; int error; struct cache_tree *inode_cache; struct btrfs_inode_ref *ref; char namebuf[BTRFS_NAME_LEN]; inode_cache = &active_node->inode_cache; ref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); total = btrfs_item_size_nr(eb, slot); while (cur < total) { name_len = btrfs_inode_ref_name_len(eb, ref); index = btrfs_inode_ref_index(eb, ref); /* inode_ref + namelen should not cross item boundary */ if (cur + sizeof(*ref) + name_len > total || name_len > BTRFS_NAME_LEN) { if (total < cur + sizeof(*ref)) break; /* Still try to read out the remaining part */ len = min_t(u32, total - cur - sizeof(*ref), BTRFS_NAME_LEN); error = REF_ERR_NAME_TOO_LONG; } else { len = name_len; error = 0; } read_extent_buffer(eb, namebuf, (unsigned long)(ref + 1), len); add_inode_backref(inode_cache, key->objectid, key->offset, index, namebuf, len, 0, key->type, error); len = sizeof(*ref) + name_len; ref = (struct btrfs_inode_ref *)((char *)ref + len); cur += len; } return 0; } static int process_inode_extref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { u32 total; u32 cur = 0; u32 len; u32 name_len; u64 index; u64 parent; int error; struct cache_tree *inode_cache; struct btrfs_inode_extref *extref; char namebuf[BTRFS_NAME_LEN]; inode_cache = &active_node->inode_cache; extref = btrfs_item_ptr(eb, slot, struct btrfs_inode_extref); total = btrfs_item_size_nr(eb, slot); while (cur < total) { name_len = btrfs_inode_extref_name_len(eb, extref); index = btrfs_inode_extref_index(eb, extref); parent = btrfs_inode_extref_parent(eb, extref); if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(extref + 1), len); add_inode_backref(inode_cache, key->objectid, parent, index, namebuf, len, 0, key->type, error); len = sizeof(*extref) + name_len; extref = (struct btrfs_inode_extref *)((char *)extref + len); cur += len; } return 0; } static int process_file_extent(struct btrfs_root *root, struct extent_buffer *eb, int slot, struct btrfs_key *key, struct shared_node *active_node) { struct inode_record *rec; struct btrfs_file_extent_item *fi; u64 num_bytes = 0; u64 disk_bytenr = 0; u64 extent_offset = 0; u64 mask = root->fs_info->sectorsize - 1; u32 max_inline_size = min_t(u32, mask, BTRFS_MAX_INLINE_DATA_SIZE(root->fs_info)); u8 compression; int extent_type; int ret; rec = active_node->current; BUG_ON(rec->ino != key->objectid || rec->refs > 1); rec->found_file_extent = 1; if (rec->extent_start == (u64)-1) { rec->extent_start = key->offset; rec->extent_end = key->offset; } if (rec->extent_end > key->offset) rec->errors |= I_ERR_FILE_EXTENT_OVERLAP; else if (rec->extent_end < key->offset) { ret = add_file_extent_hole(&rec->holes, rec->extent_end, key->offset - rec->extent_end); if (ret < 0) return ret; } fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(eb, fi); compression = btrfs_file_extent_compression(eb, fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) { struct btrfs_item *item = btrfs_item_nr(slot); num_bytes = btrfs_file_extent_ram_bytes(eb, fi); if (num_bytes == 0) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (compression) { if (btrfs_file_extent_inline_item_len(eb, item) > max_inline_size || num_bytes > root->fs_info->sectorsize) rec->errors |= I_ERR_FILE_EXTENT_TOO_LARGE; } else { if (num_bytes > max_inline_size) rec->errors |= I_ERR_FILE_EXTENT_TOO_LARGE; if (btrfs_file_extent_inline_item_len(eb, item) != num_bytes) rec->errors |= I_ERR_INLINE_RAM_BYTES_WRONG; } rec->found_size += num_bytes; num_bytes = (num_bytes + mask) & ~mask; } else if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { num_bytes = btrfs_file_extent_num_bytes(eb, fi); disk_bytenr = btrfs_file_extent_disk_bytenr(eb, fi); extent_offset = btrfs_file_extent_offset(eb, fi); if (num_bytes == 0 || (num_bytes & mask)) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (num_bytes + extent_offset > btrfs_file_extent_ram_bytes(eb, fi)) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (extent_type == BTRFS_FILE_EXTENT_PREALLOC && (btrfs_file_extent_compression(eb, fi) || btrfs_file_extent_encryption(eb, fi) || btrfs_file_extent_other_encoding(eb, fi))) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (compression && rec->nodatasum) rec->errors |= I_ERR_BAD_FILE_EXTENT; if (disk_bytenr > 0) rec->found_size += num_bytes; } else { rec->errors |= I_ERR_BAD_FILE_EXTENT; } rec->extent_end = key->offset + num_bytes; /* * The data reloc tree will copy full extents into its inode and then * copy the corresponding csums. Because the extent it copied could be * a preallocated extent that hasn't been written to yet there may be no * csums to copy, ergo we won't have csums for our file extent. This is * ok so just don't bother checking csums if the inode belongs to the * data reloc tree. */ if (disk_bytenr > 0 && btrfs_header_owner(eb) != BTRFS_DATA_RELOC_TREE_OBJECTID) { u64 found; if (compression) num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); else disk_bytenr += extent_offset; ret = count_csum_range(root->fs_info, disk_bytenr, num_bytes, &found); if (ret < 0) return ret; if (extent_type == BTRFS_FILE_EXTENT_REG) { if (found > 0) rec->found_csum_item = 1; if (found < num_bytes) rec->some_csum_missing = 1; if (compression && found < num_bytes) rec->errors |= I_ERR_SOME_CSUM_MISSING; } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { if (found > 0) { ret = check_prealloc_extent_written(root->fs_info, disk_bytenr, num_bytes); if (ret < 0) return ret; if (ret == 0) rec->errors |= I_ERR_ODD_CSUM_ITEM; } } } return 0; } static int process_one_leaf(struct btrfs_root *root, struct extent_buffer *eb, struct walk_control *wc) { struct btrfs_key key; u32 nritems; int i; int ret = 0; struct cache_tree *inode_cache; struct shared_node *active_node; if (wc->root_level == wc->active_node && btrfs_root_refs(&root->root_item) == 0) return 0; active_node = wc->nodes[wc->active_node]; inode_cache = &active_node->inode_cache; nritems = btrfs_header_nritems(eb); for (i = 0; i < nritems; i++) { btrfs_item_key_to_cpu(eb, &key, i); if (key.objectid == BTRFS_FREE_SPACE_OBJECTID) continue; if (key.type == BTRFS_ORPHAN_ITEM_KEY) continue; if (active_node->current == NULL || active_node->current->ino < key.objectid) { if (active_node->current) { active_node->current->checked = 1; maybe_free_inode_rec(inode_cache, active_node->current); } active_node->current = get_inode_rec(inode_cache, key.objectid, 1); BUG_ON(IS_ERR(active_node->current)); } switch (key.type) { case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: ret = process_dir_item(eb, i, &key, active_node); break; case BTRFS_INODE_REF_KEY: ret = process_inode_ref(eb, i, &key, active_node); break; case BTRFS_INODE_EXTREF_KEY: ret = process_inode_extref(eb, i, &key, active_node); break; case BTRFS_INODE_ITEM_KEY: ret = process_inode_item(eb, i, &key, active_node); break; case BTRFS_EXTENT_DATA_KEY: ret = process_file_extent(root, eb, i, &key, active_node); break; default: break; }; } return ret; } static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int *level, struct node_refs *nrefs) { enum btrfs_tree_block_status status; u64 bytenr; u64 ptr_gen; struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *next; struct extent_buffer *cur; int ret, err = 0; u64 refs; WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); if (path->nodes[*level]->start == nrefs->bytenr[*level]) { refs = nrefs->refs[*level]; ret = 0; } else { ret = btrfs_lookup_extent_info(NULL, fs_info, path->nodes[*level]->start, *level, 1, &refs, NULL); if (ret < 0) { err = ret; goto out; } nrefs->bytenr[*level] = path->nodes[*level]->start; nrefs->refs[*level] = refs; } if (refs > 1) { ret = enter_shared_node(root, path->nodes[*level]->start, refs, wc, *level); if (ret > 0) { err = ret; goto out; } } while (*level >= 0) { WARN_ON(*level < 0); WARN_ON(*level >= BTRFS_MAX_LEVEL); cur = path->nodes[*level]; if (btrfs_header_level(cur) != *level) WARN_ON(1); if (path->slots[*level] >= btrfs_header_nritems(cur)) break; if (*level == 0) { ret = process_one_leaf(root, cur, wc); if (ret < 0) err = ret; break; } bytenr = btrfs_node_blockptr(cur, path->slots[*level]); ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); if (bytenr == nrefs->bytenr[*level - 1]) { refs = nrefs->refs[*level - 1]; } else { ret = btrfs_lookup_extent_info(NULL, fs_info, bytenr, *level - 1, 1, &refs, NULL); if (ret < 0) { refs = 0; } else { nrefs->bytenr[*level - 1] = bytenr; nrefs->refs[*level - 1] = refs; } } if (refs > 1) { ret = enter_shared_node(root, bytenr, refs, wc, *level - 1); if (ret > 0) { path->slots[*level]++; continue; } } next = btrfs_find_tree_block(fs_info, bytenr, fs_info->nodesize); if (!next || !btrfs_buffer_uptodate(next, ptr_gen)) { free_extent_buffer(next); reada_walk_down(root, cur, path->slots[*level]); next = read_tree_block(root->fs_info, bytenr, ptr_gen); if (!extent_buffer_uptodate(next)) { struct btrfs_key node_key; btrfs_node_key_to_cpu(path->nodes[*level], &node_key, path->slots[*level]); btrfs_add_corrupt_extent_record(root->fs_info, &node_key, path->nodes[*level]->start, root->fs_info->nodesize, *level); err = -EIO; goto out; } } ret = check_child_node(cur, path->slots[*level], next); if (ret) { free_extent_buffer(next); err = ret; goto out; } if (btrfs_is_leaf(next)) status = btrfs_check_leaf(fs_info, NULL, next); else status = btrfs_check_node(fs_info, NULL, next); if (status != BTRFS_TREE_BLOCK_CLEAN) { free_extent_buffer(next); err = -EIO; goto out; } *level = *level - 1; free_extent_buffer(path->nodes[*level]); path->nodes[*level] = next; path->slots[*level] = 0; } out: path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); return err; } static int walk_up_tree(struct btrfs_root *root, struct btrfs_path *path, struct walk_control *wc, int *level) { int i; struct extent_buffer *leaf; for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { leaf = path->nodes[i]; if (path->slots[i] + 1 < btrfs_header_nritems(leaf)) { path->slots[i]++; *level = i; return 0; } free_extent_buffer(path->nodes[*level]); path->nodes[*level] = NULL; BUG_ON(*level > wc->active_node); if (*level == wc->active_node) leave_shared_node(root, wc, *level); *level = i + 1; } return 1; } static int check_root_dir(struct inode_record *rec) { struct inode_backref *backref; int ret = -1; if (!rec->found_inode_item || rec->errors) goto out; if (rec->nlink != 1 || rec->found_link != 0) goto out; if (list_empty(&rec->backrefs)) goto out; backref = to_inode_backref(rec->backrefs.next); if (!backref->found_inode_ref) goto out; if (backref->index != 0 || backref->namelen != 2 || memcmp(backref->name, "..", 2)) goto out; if (backref->found_dir_index || backref->found_dir_item) goto out; ret = 0; out: return ret; } static int repair_inode_isize(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct btrfs_inode_item *ei; struct btrfs_key key; int ret; key.objectid = rec->ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret) { if (!path->slots[0]) { ret = -ENOENT; goto out; } path->slots[0]--; ret = 0; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid != rec->ino) { ret = -ENOENT; goto out; } ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); btrfs_set_inode_size(path->nodes[0], ei, rec->found_size); btrfs_mark_buffer_dirty(path->nodes[0]); rec->errors &= ~I_ERR_DIR_ISIZE_WRONG; printf("reset isize for dir %llu root %llu\n", rec->ino, root->root_key.objectid); out: btrfs_release_path(path); return ret; } static int repair_inode_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { int ret; ret = btrfs_add_orphan_item(trans, root, path, rec->ino); btrfs_release_path(path); if (!ret) rec->errors &= ~I_ERR_NO_ORPHAN_ITEM; return ret; } static int repair_inode_nbytes(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct btrfs_inode_item *ei; struct btrfs_key key; int ret = 0; key.objectid = rec->ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret) { if (ret > 0) ret = -ENOENT; goto out; } /* Since ret == 0, no need to check anything */ ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); btrfs_set_inode_nbytes(path->nodes[0], ei, rec->found_size); btrfs_mark_buffer_dirty(path->nodes[0]); rec->errors &= ~I_ERR_FILE_NBYTES_WRONG; printf("reset nbytes for ino %llu root %llu\n", rec->ino, root->root_key.objectid); out: btrfs_release_path(path); return ret; } static int add_missing_dir_index(struct btrfs_root *root, struct cache_tree *inode_cache, struct inode_record *rec, struct inode_backref *backref) { struct btrfs_path path; struct btrfs_trans_handle *trans; struct btrfs_dir_item *dir_item; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_disk_key disk_key; struct inode_record *dir_rec; unsigned long name_ptr; u32 data_size = sizeof(*dir_item) + backref->namelen; int ret; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); fprintf(stderr, "repairing missing dir index item for inode %llu\n", (unsigned long long)rec->ino); btrfs_init_path(&path); key.objectid = backref->dir; key.type = BTRFS_DIR_INDEX_KEY; key.offset = backref->index; ret = btrfs_insert_empty_item(trans, root, &path, &key, data_size); BUG_ON(ret); leaf = path.nodes[0]; dir_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_dir_item); disk_key.objectid = cpu_to_le64(rec->ino); disk_key.type = BTRFS_INODE_ITEM_KEY; disk_key.offset = 0; btrfs_set_dir_item_key(leaf, dir_item, &disk_key); btrfs_set_dir_type(leaf, dir_item, imode_to_type(rec->imode)); btrfs_set_dir_data_len(leaf, dir_item, 0); btrfs_set_dir_name_len(leaf, dir_item, backref->namelen); name_ptr = (unsigned long)(dir_item + 1); write_extent_buffer(leaf, backref->name, name_ptr, backref->namelen); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); btrfs_commit_transaction(trans, root); backref->found_dir_index = 1; dir_rec = get_inode_rec(inode_cache, backref->dir, 0); BUG_ON(IS_ERR(dir_rec)); if (!dir_rec) return 0; dir_rec->found_size += backref->namelen; if (dir_rec->found_size == dir_rec->isize && (dir_rec->errors & I_ERR_DIR_ISIZE_WRONG)) dir_rec->errors &= ~I_ERR_DIR_ISIZE_WRONG; if (dir_rec->found_size != dir_rec->isize) dir_rec->errors |= I_ERR_DIR_ISIZE_WRONG; return 0; } static int delete_dir_index(struct btrfs_root *root, struct inode_backref *backref) { struct btrfs_trans_handle *trans; struct btrfs_dir_item *di; struct btrfs_path path; int ret = 0; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); fprintf(stderr, "Deleting bad dir index [%llu,%u,%llu] root %llu\n", (unsigned long long)backref->dir, BTRFS_DIR_INDEX_KEY, (unsigned long long)backref->index, (unsigned long long)root->objectid); btrfs_init_path(&path); di = btrfs_lookup_dir_index(trans, root, &path, backref->dir, backref->name, backref->namelen, backref->index, -1); if (IS_ERR(di)) { ret = PTR_ERR(di); btrfs_release_path(&path); btrfs_commit_transaction(trans, root); if (ret == -ENOENT) return 0; return ret; } if (!di) ret = btrfs_del_item(trans, root, &path); else ret = btrfs_delete_one_dir_name(trans, root, &path, di); BUG_ON(ret); btrfs_release_path(&path); btrfs_commit_transaction(trans, root); return ret; } static int create_inode_item(struct btrfs_root *root, struct inode_record *rec, int root_dir) { struct btrfs_trans_handle *trans; u64 nlink = 0; u32 mode = 0; u64 size = 0; int ret; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); return ret; } nlink = root_dir ? 1 : rec->found_link; if (rec->found_dir_item) { if (rec->found_file_extent) fprintf(stderr, "root %llu inode %llu has both a dir " "item and extents, unsure if it is a dir or a " "regular file so setting it as a directory\n", (unsigned long long)root->objectid, (unsigned long long)rec->ino); mode = S_IFDIR | 0755; size = rec->found_size; } else if (!rec->found_dir_item) { size = rec->extent_end; mode = S_IFREG | 0755; } ret = insert_inode_item(trans, root, rec->ino, size, rec->nbytes, nlink, mode); btrfs_commit_transaction(trans, root); return 0; } static int repair_inode_backrefs(struct btrfs_root *root, struct inode_record *rec, struct cache_tree *inode_cache, int delete) { struct inode_backref *tmp, *backref; u64 root_dirid = btrfs_root_dirid(&root->root_item); int ret = 0; int repaired = 0; list_for_each_entry_safe(backref, tmp, &rec->backrefs, list) { if (!delete && rec->ino == root_dirid) { if (!rec->found_inode_item) { ret = create_inode_item(root, rec, 1); if (ret) break; repaired++; } } /* Index 0 for root dir's are special, don't mess with it */ if (rec->ino == root_dirid && backref->index == 0) continue; if (delete && ((backref->found_dir_index && !backref->found_inode_ref) || (backref->found_dir_index && backref->found_inode_ref && (backref->errors & REF_ERR_INDEX_UNMATCH)))) { ret = delete_dir_index(root, backref); if (ret) break; repaired++; list_del(&backref->list); free(backref); continue; } if (!delete && !backref->found_dir_index && backref->found_dir_item && backref->found_inode_ref) { ret = add_missing_dir_index(root, inode_cache, rec, backref); if (ret) break; repaired++; if (backref->found_dir_item && backref->found_dir_index) { if (!backref->errors && backref->found_inode_ref) { list_del(&backref->list); free(backref); continue; } } } if (!delete && (!backref->found_dir_index && !backref->found_dir_item && backref->found_inode_ref)) { struct btrfs_trans_handle *trans; struct btrfs_key location; ret = check_dir_conflict(root, backref->name, backref->namelen, backref->dir, backref->index); if (ret) { /* * let nlink fixing routine to handle it, * which can do it better. */ ret = 0; break; } location.objectid = rec->ino; location.type = BTRFS_INODE_ITEM_KEY; location.offset = 0; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } fprintf(stderr, "adding missing dir index/item pair " "for inode %llu\n", (unsigned long long)rec->ino); ret = btrfs_insert_dir_item(trans, root, backref->name, backref->namelen, backref->dir, &location, imode_to_type(rec->imode), backref->index); BUG_ON(ret); btrfs_commit_transaction(trans, root); repaired++; } if (!delete && (backref->found_inode_ref && backref->found_dir_index && backref->found_dir_item && !(backref->errors & REF_ERR_INDEX_UNMATCH) && !rec->found_inode_item)) { ret = create_inode_item(root, rec, 0); if (ret) break; repaired++; } } return ret ? ret : repaired; } /* * To determine the file type for nlink/inode_item repair * * Return 0 if file type is found and BTRFS_FT_* is stored into type. * Return -ENOENT if file type is not found. */ static int find_file_type(struct inode_record *rec, u8 *type) { struct inode_backref *backref; /* For inode item recovered case */ if (rec->found_inode_item) { *type = imode_to_type(rec->imode); return 0; } list_for_each_entry(backref, &rec->backrefs, list) { if (backref->found_dir_index || backref->found_dir_item) { *type = backref->filetype; return 0; } } return -ENOENT; } /* * To determine the file name for nlink repair * * Return 0 if file name is found, set name and namelen. * Return -ENOENT if file name is not found. */ static int find_file_name(struct inode_record *rec, char *name, int *namelen) { struct inode_backref *backref; list_for_each_entry(backref, &rec->backrefs, list) { if (backref->found_dir_index || backref->found_dir_item || backref->found_inode_ref) { memcpy(name, backref->name, backref->namelen); *namelen = backref->namelen; return 0; } } return -ENOENT; } /* Reset the nlink of the inode to the correct one */ static int reset_nlink(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct inode_backref *backref; struct inode_backref *tmp; struct btrfs_key key; struct btrfs_inode_item *inode_item; int ret = 0; /* We don't believe this either, reset it and iterate backref */ rec->found_link = 0; /* Remove all backref including the valid ones */ list_for_each_entry_safe(backref, tmp, &rec->backrefs, list) { ret = btrfs_unlink(trans, root, rec->ino, backref->dir, backref->index, backref->name, backref->namelen, 0); if (ret < 0) goto out; /* remove invalid backref, so it won't be added back */ if (!(backref->found_dir_index && backref->found_dir_item && backref->found_inode_ref)) { list_del(&backref->list); free(backref); } else { rec->found_link++; } } /* Set nlink to 0 */ key.objectid = rec->ino; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_inode_item); btrfs_set_inode_nlink(path->nodes[0], inode_item, 0); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_release_path(path); /* * Add back valid inode_ref/dir_item/dir_index, * add_link() will handle the nlink inc, so new nlink must be correct */ list_for_each_entry(backref, &rec->backrefs, list) { ret = btrfs_add_link(trans, root, rec->ino, backref->dir, backref->name, backref->namelen, backref->filetype, &backref->index, 1, 0); if (ret < 0) goto out; } out: btrfs_release_path(path); return ret; } static int repair_inode_nlinks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { char namebuf[BTRFS_NAME_LEN] = {0}; u8 type = 0; int namelen = 0; int name_recovered = 0; int type_recovered = 0; int ret = 0; /* * Get file name and type first before these invalid inode ref * are deleted by remove_all_invalid_backref() */ name_recovered = !find_file_name(rec, namebuf, &namelen); type_recovered = !find_file_type(rec, &type); if (!name_recovered) { printf("Can't get file name for inode %llu, using '%llu' as fallback\n", rec->ino, rec->ino); namelen = count_digits(rec->ino); sprintf(namebuf, "%llu", rec->ino); name_recovered = 1; } if (!type_recovered) { printf("Can't get file type for inode %llu, using FILE as fallback\n", rec->ino); type = BTRFS_FT_REG_FILE; type_recovered = 1; } ret = reset_nlink(trans, root, path, rec); if (ret < 0) { errno = -ret; fprintf(stderr, "Failed to reset nlink for inode %llu: %m\n", rec->ino); goto out; } if (rec->found_link == 0) { ret = link_inode_to_lostfound(trans, root, path, rec->ino, namebuf, namelen, type, (u64 *)&rec->found_link); if (ret) goto out; } printf("Fixed the nlink of inode %llu\n", rec->ino); out: /* * Clear the flag anyway, or we will loop forever for the same inode * as it will not be removed from the bad inode list and the dead loop * happens. */ rec->errors &= ~I_ERR_LINK_COUNT_WRONG; btrfs_release_path(path); return ret; } /* * Check if there is any normal(reg or prealloc) file extent for given * ino. * This is used to determine the file type when neither its dir_index/item or * inode_item exists. * * This will *NOT* report error, if any error happens, just consider it does * not have any normal file extent. */ static int find_normal_file_extent(struct btrfs_root *root, u64 ino) { struct btrfs_path path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_file_extent_item *fi; u8 type; int ret = 0; btrfs_init_path(&path); key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) { ret = 0; goto out; } if (ret && path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(root, &path); if (ret) { ret = 0; goto out; } } while (1) { btrfs_item_key_to_cpu(path.nodes[0], &found_key, path.slots[0]); if (found_key.objectid != ino || found_key.type != BTRFS_EXTENT_DATA_KEY) break; fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); type = btrfs_file_extent_type(path.nodes[0], fi); if (type != BTRFS_FILE_EXTENT_INLINE) { ret = 1; goto out; } } out: btrfs_release_path(&path); return ret; } static u32 btrfs_type_to_imode(u8 type) { static u32 imode_by_btrfs_type[] = { [BTRFS_FT_REG_FILE] = S_IFREG, [BTRFS_FT_DIR] = S_IFDIR, [BTRFS_FT_CHRDEV] = S_IFCHR, [BTRFS_FT_BLKDEV] = S_IFBLK, [BTRFS_FT_FIFO] = S_IFIFO, [BTRFS_FT_SOCK] = S_IFSOCK, [BTRFS_FT_SYMLINK] = S_IFLNK, }; return imode_by_btrfs_type[(type)]; } static int repair_inode_no_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { u8 filetype; u32 mode = 0700; int type_recovered = 0; int ret = 0; printf("Trying to rebuild inode:%llu\n", rec->ino); type_recovered = !find_file_type(rec, &filetype); /* * Try to determine inode type if type not found. * * For found regular file extent, it must be FILE. * For found dir_item/index, it must be DIR. * * For undetermined one, use FILE as fallback. * * TODO: * 1. If found backref(inode_index/item is already handled) to it, * it must be DIR. * Need new inode-inode ref structure to allow search for that. */ if (!type_recovered) { if (rec->found_file_extent && find_normal_file_extent(root, rec->ino)) { type_recovered = 1; filetype = BTRFS_FT_REG_FILE; } else if (rec->found_dir_item) { type_recovered = 1; filetype = BTRFS_FT_DIR; } else{ printf("Can't determine the filetype for inode %llu, assume it is a normal file\n", rec->ino); type_recovered = 1; filetype = BTRFS_FT_REG_FILE; } } ret = btrfs_new_inode(trans, root, rec->ino, mode | btrfs_type_to_imode(filetype)); if (ret < 0) goto out; /* * Here inode rebuild is done, we only rebuild the inode item, * don't repair the nlink(like move to lost+found). * That is the job of nlink repair. * * We just fill the record and return */ rec->found_dir_item = 1; rec->imode = mode | btrfs_type_to_imode(filetype); rec->nlink = 0; rec->errors &= ~I_ERR_NO_INODE_ITEM; /* Ensure the inode_nlinks repair function will be called */ rec->errors |= I_ERR_LINK_COUNT_WRONG; out: return ret; } static int repair_inode_discount_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct rb_node *node; struct file_extent_hole *hole; int found = 0; int ret = 0; node = rb_first(&rec->holes); while (node) { found = 1; hole = rb_entry(node, struct file_extent_hole, node); ret = btrfs_punch_hole(trans, root, rec->ino, hole->start, hole->len); if (ret < 0) goto out; ret = del_file_extent_hole(&rec->holes, hole->start, hole->len); if (ret < 0) goto out; if (RB_EMPTY_ROOT(&rec->holes)) rec->errors &= ~I_ERR_FILE_EXTENT_DISCOUNT; node = rb_first(&rec->holes); } /* special case for a file losing all its file extent */ if (!found) { ret = btrfs_punch_hole(trans, root, rec->ino, 0, round_up(rec->isize, root->fs_info->sectorsize)); if (ret < 0) goto out; } printf("Fixed discount file extents for inode: %llu in root: %llu\n", rec->ino, root->objectid); out: return ret; } static int repair_inline_ram_bytes(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { struct btrfs_key key; struct btrfs_file_extent_item *fi; struct btrfs_item *i; u64 on_disk_item_len; int ret; key.objectid = rec->ino; key.offset = 0; key.type = BTRFS_EXTENT_DATA_KEY; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret < 0) goto out; i = btrfs_item_nr(path->slots[0]); on_disk_item_len = btrfs_file_extent_inline_item_len(path->nodes[0], i); fi = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_ram_bytes(path->nodes[0], fi, on_disk_item_len); btrfs_mark_buffer_dirty(path->nodes[0]); printf("Repaired inline ram_bytes for root %llu ino %llu\n", root->objectid, rec->ino); rec->errors &= ~I_ERR_INLINE_RAM_BYTES_WRONG; out: btrfs_release_path(path); return ret; } static int repair_mismatch_dir_hash(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode_record *rec) { struct mismatch_dir_hash_record *hash; int ret = -EUCLEAN; printf( "Deleting bad dir items with invalid hash for root %llu ino %llu\n", root->root_key.objectid, rec->ino); while (!list_empty(&rec->mismatch_dir_hash)) { char *namebuf; hash = list_entry(rec->mismatch_dir_hash.next, struct mismatch_dir_hash_record, list); namebuf = (char *)(hash + 1); ret = delete_corrupted_dir_item(trans, root, &hash->key, namebuf, hash->namelen); if (ret < 0) break; /* Also reduce dir isize */ rec->found_size -= hash->namelen; list_del(&hash->list); free(hash); } if (!ret) { rec->errors &= ~I_ERR_MISMATCH_DIR_HASH; /* We rely on later dir isize repair to reset dir isize */ rec->errors |= I_ERR_DIR_ISIZE_WRONG; } return ret; } static int btrfs_delete_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key) { struct btrfs_path path; int ret = 0; btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, key, &path, -1, 1); if (ret) { if (ret > 0) ret = -ENOENT; btrfs_release_path(&path); return ret; } ret = btrfs_del_item(trans, root, &path); btrfs_release_path(&path); return ret; } static int find_file_extent_offset_by_bytenr(struct btrfs_root *root, u64 owner, u64 bytenr, u64 *offset_ret) { int ret = 0; struct btrfs_path path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_file_extent_item *fi; struct extent_buffer *leaf; u64 disk_bytenr; int slot; btrfs_init_path(&path); key.objectid = owner; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret) { if (ret > 0) ret = -ENOENT; btrfs_release_path(&path); return ret; } btrfs_release_path(&path); key.objectid = owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) { btrfs_release_path(&path); return ret; } while (1) { leaf = path.nodes[0]; slot = path.slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret) { if (ret > 0) ret = 0; break; } leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if ((found_key.objectid != owner) || (found_key.type != BTRFS_EXTENT_DATA_KEY)) break; fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); if (disk_bytenr == bytenr) { *offset_ret = found_key.offset; ret = 0; break; } path.slots[0]++; } btrfs_release_path(&path); return ret; } static int repair_unaligned_extent_recs(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { int ret = 0; struct btrfs_key key; struct unaligned_extent_rec_t *urec; struct unaligned_extent_rec_t *tmp; list_for_each_entry_safe(urec, tmp, &rec->unaligned_extent_recs, list) { key.objectid = urec->owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = urec->offset; fprintf(stderr, "delete file extent item [%llu,%llu]\n", urec->owner, urec->offset); ret = btrfs_delete_item(trans, root, &key); if (ret) return ret; list_del(&urec->list); free(urec); } rec->errors &= ~I_ERR_UNALIGNED_EXTENT_REC; return ret; } static int repair_imode_original(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct inode_record *rec) { int ret; u32 imode; if (root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) return -ENOTTY; if (rec->ino != BTRFS_ROOT_TREE_DIR_OBJECTID || !is_fstree(rec->ino)) return -ENOTTY; if (rec->ino == BTRFS_ROOT_TREE_DIR_OBJECTID) imode = 040755; else imode = 0100600; ret = reset_imode(trans, root, path, rec->ino, imode); if (ret < 0) return ret; rec->errors &= ~I_ERR_INVALID_IMODE; return ret; } static int try_repair_inode(struct btrfs_root *root, struct inode_record *rec) { struct btrfs_trans_handle *trans; struct btrfs_path path; int ret = 0; /* unaligned extent recs always lead to csum missing error, clean it */ if ((rec->errors & I_ERR_SOME_CSUM_MISSING) && (rec->errors & I_ERR_UNALIGNED_EXTENT_REC)) rec->errors &= ~I_ERR_SOME_CSUM_MISSING; if (!(rec->errors & (I_ERR_DIR_ISIZE_WRONG | I_ERR_NO_ORPHAN_ITEM | I_ERR_LINK_COUNT_WRONG | I_ERR_NO_INODE_ITEM | I_ERR_FILE_EXTENT_DISCOUNT | I_ERR_FILE_NBYTES_WRONG | I_ERR_INLINE_RAM_BYTES_WRONG | I_ERR_MISMATCH_DIR_HASH | I_ERR_UNALIGNED_EXTENT_REC))) return rec->errors; /* * For nlink repair, it may create a dir and add link, so * 2 for parent(256)'s dir_index and dir_item * 2 for lost+found dir's inode_item and inode_ref * 1 for the new inode_ref of the file * 2 for lost+found dir's dir_index and dir_item for the file */ trans = btrfs_start_transaction(root, 7); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_init_path(&path); if (!ret && rec->errors & I_ERR_MISMATCH_DIR_HASH) ret = repair_mismatch_dir_hash(trans, root, rec); if (rec->errors & I_ERR_NO_INODE_ITEM) ret = repair_inode_no_item(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_FILE_EXTENT_DISCOUNT) ret = repair_inode_discount_extent(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_DIR_ISIZE_WRONG) ret = repair_inode_isize(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_NO_ORPHAN_ITEM) ret = repair_inode_orphan_item(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_LINK_COUNT_WRONG) ret = repair_inode_nlinks(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_FILE_NBYTES_WRONG) ret = repair_inode_nbytes(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_INLINE_RAM_BYTES_WRONG) ret = repair_inline_ram_bytes(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_UNALIGNED_EXTENT_REC) ret = repair_unaligned_extent_recs(trans, root, &path, rec); if (!ret && rec->errors & I_ERR_INVALID_IMODE) ret = repair_imode_original(trans, root, &path, rec); btrfs_commit_transaction(trans, root); btrfs_release_path(&path); return ret; } static int check_inode_recs(struct btrfs_root *root, struct cache_tree *inode_cache) { struct cache_extent *cache; struct ptr_node *node; struct inode_record *rec; struct inode_backref *backref; int stage = 0; int ret = 0; int err = 0; u64 error = 0; u64 root_dirid = btrfs_root_dirid(&root->root_item); if (btrfs_root_refs(&root->root_item) == 0) { if (!cache_tree_empty(inode_cache)) fprintf(stderr, "warning line %d\n", __LINE__); return 0; } /* * We need to repair backrefs first because we could change some of the * errors in the inode recs. * * We also need to go through and delete invalid backrefs first and then * add the correct ones second. We do this because we may get EEXIST * when adding back the correct index because we hadn't yet deleted the * invalid index. * * For example, if we were missing a dir index then the directories * isize would be wrong, so if we fixed the isize to what we thought it * would be and then fixed the backref we'd still have a invalid fs, so * we need to add back the dir index and then check to see if the isize * is still wrong. */ while (stage < 3) { stage++; if (stage == 3 && !err) break; cache = search_cache_extent(inode_cache, 0); while (repair && cache) { node = container_of(cache, struct ptr_node, cache); rec = node->data; cache = next_cache_extent(cache); /* Need to free everything up and rescan */ if (stage == 3) { remove_cache_extent(inode_cache, &node->cache); free(node); free_inode_rec(rec); continue; } if (list_empty(&rec->backrefs)) continue; ret = repair_inode_backrefs(root, rec, inode_cache, stage == 1); if (ret < 0) { err = ret; stage = 2; break; } if (ret > 0) { err = -EAGAIN; } } } if (err) return err; rec = get_inode_rec(inode_cache, root_dirid, 0); BUG_ON(IS_ERR(rec)); if (rec) { if (repair) { ret = try_repair_inode(root, rec); if (ret < 0) error++; } ret = check_root_dir(rec); if (ret) { fprintf(stderr, "root %llu root dir %llu error\n", (unsigned long long)root->root_key.objectid, (unsigned long long)root_dirid); print_inode_error(root, rec); error++; } } else { if (repair) { struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { err = PTR_ERR(trans); return err; } fprintf(stderr, "root %llu missing its root dir, recreating\n", (unsigned long long)root->objectid); ret = btrfs_make_root_dir(trans, root, root_dirid); if (ret < 0) { btrfs_abort_transaction(trans, ret); return ret; } btrfs_commit_transaction(trans, root); return -EAGAIN; } fprintf(stderr, "root %llu root dir %llu not found\n", (unsigned long long)root->root_key.objectid, (unsigned long long)root_dirid); } while (1) { cache = search_cache_extent(inode_cache, 0); if (!cache) break; node = container_of(cache, struct ptr_node, cache); rec = node->data; remove_cache_extent(inode_cache, &node->cache); free(node); if (rec->ino == root_dirid || rec->ino == BTRFS_ORPHAN_OBJECTID) { free_inode_rec(rec); continue; } if (rec->errors & I_ERR_NO_ORPHAN_ITEM) { ret = check_orphan_item(root, rec->ino); if (ret == 0) rec->errors &= ~I_ERR_NO_ORPHAN_ITEM; if (can_free_inode_rec(rec)) { free_inode_rec(rec); continue; } } if (!rec->found_inode_item) rec->errors |= I_ERR_NO_INODE_ITEM; if (rec->found_link != rec->nlink) rec->errors |= I_ERR_LINK_COUNT_WRONG; if (repair) { ret = try_repair_inode(root, rec); if (ret == 0 && can_free_inode_rec(rec)) { free_inode_rec(rec); continue; } } if (!(repair && ret == 0)) error++; print_inode_error(root, rec); list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->found_dir_item) backref->errors |= REF_ERR_NO_DIR_ITEM; if (!backref->found_dir_index) backref->errors |= REF_ERR_NO_DIR_INDEX; if (!backref->found_inode_ref) backref->errors |= REF_ERR_NO_INODE_REF; fprintf(stderr, "\tunresolved ref dir %llu index %llu" " namelen %u name %s filetype %d errors %x", (unsigned long long)backref->dir, (unsigned long long)backref->index, backref->namelen, backref->name, backref->filetype, backref->errors); print_ref_error(backref->errors); } free_inode_rec(rec); } return (error > 0) ? -1 : 0; } static struct root_record *get_root_rec(struct cache_tree *root_cache, u64 objectid) { struct cache_extent *cache; struct root_record *rec = NULL; int ret; cache = lookup_cache_extent(root_cache, objectid, 1); if (cache) { rec = container_of(cache, struct root_record, cache); } else { rec = calloc(1, sizeof(*rec)); if (!rec) return ERR_PTR(-ENOMEM); rec->objectid = objectid; INIT_LIST_HEAD(&rec->backrefs); rec->cache.start = objectid; rec->cache.size = 1; ret = insert_cache_extent(root_cache, &rec->cache); if (ret) return ERR_PTR(-EEXIST); } return rec; } static struct root_backref *get_root_backref(struct root_record *rec, u64 ref_root, u64 dir, u64 index, const char *name, int namelen) { struct root_backref *backref; list_for_each_entry(backref, &rec->backrefs, list) { if (backref->ref_root != ref_root || backref->dir != dir || backref->namelen != namelen) continue; if (memcmp(name, backref->name, namelen)) continue; return backref; } backref = calloc(1, sizeof(*backref) + namelen + 1); if (!backref) return NULL; backref->ref_root = ref_root; backref->dir = dir; backref->index = index; backref->namelen = namelen; memcpy(backref->name, name, namelen); backref->name[namelen] = '\0'; list_add_tail(&backref->list, &rec->backrefs); return backref; } static void free_root_record(struct cache_extent *cache) { struct root_record *rec; struct root_backref *backref; rec = container_of(cache, struct root_record, cache); while (!list_empty(&rec->backrefs)) { backref = to_root_backref(rec->backrefs.next); list_del(&backref->list); free(backref); } free(rec); } FREE_EXTENT_CACHE_BASED_TREE(root_recs, free_root_record); static int add_root_backref(struct cache_tree *root_cache, u64 root_id, u64 ref_root, u64 dir, u64 index, const char *name, int namelen, int item_type, int errors) { struct root_record *rec; struct root_backref *backref; rec = get_root_rec(root_cache, root_id); BUG_ON(IS_ERR(rec)); backref = get_root_backref(rec, ref_root, dir, index, name, namelen); BUG_ON(!backref); backref->errors |= errors; if (item_type != BTRFS_DIR_ITEM_KEY) { if (backref->found_dir_index || backref->found_back_ref || backref->found_forward_ref) { if (backref->index != index) backref->errors |= REF_ERR_INDEX_UNMATCH; } else { backref->index = index; } } if (item_type == BTRFS_DIR_ITEM_KEY) { if (backref->found_forward_ref) rec->found_ref++; backref->found_dir_item = 1; } else if (item_type == BTRFS_DIR_INDEX_KEY) { backref->found_dir_index = 1; } else if (item_type == BTRFS_ROOT_REF_KEY) { if (backref->found_forward_ref) backref->errors |= REF_ERR_DUP_ROOT_REF; else if (backref->found_dir_item) rec->found_ref++; backref->found_forward_ref = 1; } else if (item_type == BTRFS_ROOT_BACKREF_KEY) { if (backref->found_back_ref) backref->errors |= REF_ERR_DUP_ROOT_BACKREF; backref->found_back_ref = 1; } else { BUG_ON(1); } if (backref->found_forward_ref && backref->found_dir_item) backref->reachable = 1; return 0; } static int merge_root_recs(struct btrfs_root *root, struct cache_tree *src_cache, struct cache_tree *dst_cache) { struct cache_extent *cache; struct ptr_node *node; struct inode_record *rec; struct inode_backref *backref; int ret = 0; if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { free_inode_recs_tree(src_cache); return 0; } while (1) { cache = search_cache_extent(src_cache, 0); if (!cache) break; node = container_of(cache, struct ptr_node, cache); rec = node->data; remove_cache_extent(src_cache, &node->cache); free(node); ret = is_child_root(root, root->objectid, rec->ino); if (ret < 0) break; else if (ret == 0) goto skip; list_for_each_entry(backref, &rec->backrefs, list) { BUG_ON(backref->found_inode_ref); if (backref->found_dir_item) add_root_backref(dst_cache, rec->ino, root->root_key.objectid, backref->dir, backref->index, backref->name, backref->namelen, BTRFS_DIR_ITEM_KEY, backref->errors); if (backref->found_dir_index) add_root_backref(dst_cache, rec->ino, root->root_key.objectid, backref->dir, backref->index, backref->name, backref->namelen, BTRFS_DIR_INDEX_KEY, backref->errors); } skip: free_inode_rec(rec); } if (ret < 0) return ret; return 0; } static int check_root_refs(struct btrfs_root *root, struct cache_tree *root_cache) { struct root_record *rec; struct root_record *ref_root; struct root_backref *backref; struct cache_extent *cache; int loop = 1; int ret; int error; int errors = 0; rec = get_root_rec(root_cache, BTRFS_FS_TREE_OBJECTID); BUG_ON(IS_ERR(rec)); rec->found_ref = 1; /* fixme: this can not detect circular references */ while (loop) { loop = 0; cache = search_cache_extent(root_cache, 0); while (1) { ctx.item_count++; if (!cache) break; rec = container_of(cache, struct root_record, cache); cache = next_cache_extent(cache); if (rec->found_ref == 0) continue; list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->reachable) continue; ref_root = get_root_rec(root_cache, backref->ref_root); BUG_ON(IS_ERR(ref_root)); if (ref_root->found_ref > 0) continue; backref->reachable = 0; rec->found_ref--; if (rec->found_ref == 0) loop = 1; } } } cache = search_cache_extent(root_cache, 0); while (1) { if (!cache) break; rec = container_of(cache, struct root_record, cache); cache = next_cache_extent(cache); if (rec->found_ref == 0 && rec->objectid >= BTRFS_FIRST_FREE_OBJECTID && rec->objectid <= BTRFS_LAST_FREE_OBJECTID) { ret = check_orphan_item(root->fs_info->tree_root, rec->objectid); if (ret == 0) continue; /* * If we don't have a root item then we likely just have * a dir item in a snapshot for this root but no actual * ref key or anything so it's meaningless. */ if (!rec->found_root_item) continue; errors++; fprintf(stderr, "fs tree %llu not referenced\n", (unsigned long long)rec->objectid); } error = 0; if (rec->found_ref > 0 && !rec->found_root_item) error = 1; list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->found_dir_item) backref->errors |= REF_ERR_NO_DIR_ITEM; if (!backref->found_dir_index) backref->errors |= REF_ERR_NO_DIR_INDEX; if (!backref->found_back_ref) backref->errors |= REF_ERR_NO_ROOT_BACKREF; if (!backref->found_forward_ref) backref->errors |= REF_ERR_NO_ROOT_REF; if (backref->reachable && backref->errors) error = 1; } if (!error) continue; errors++; fprintf(stderr, "fs tree %llu refs %u %s\n", (unsigned long long)rec->objectid, rec->found_ref, rec->found_root_item ? "" : "not found"); list_for_each_entry(backref, &rec->backrefs, list) { if (!backref->reachable) continue; if (!backref->errors && rec->found_root_item) continue; fprintf(stderr, "\tunresolved ref root %llu dir %llu" " index %llu namelen %u name %s errors %x\n", (unsigned long long)backref->ref_root, (unsigned long long)backref->dir, (unsigned long long)backref->index, backref->namelen, backref->name, backref->errors); print_ref_error(backref->errors); } } return errors > 0 ? 1 : 0; } static int process_root_ref(struct extent_buffer *eb, int slot, struct btrfs_key *key, struct cache_tree *root_cache) { u64 dirid; u64 index; u32 len; u32 name_len; struct btrfs_root_ref *ref; char namebuf[BTRFS_NAME_LEN]; int error; ref = btrfs_item_ptr(eb, slot, struct btrfs_root_ref); dirid = btrfs_root_ref_dirid(eb, ref); index = btrfs_root_ref_sequence(eb, ref); name_len = btrfs_root_ref_name_len(eb, ref); if (name_len <= BTRFS_NAME_LEN) { len = name_len; error = 0; } else { len = BTRFS_NAME_LEN; error = REF_ERR_NAME_TOO_LONG; } read_extent_buffer(eb, namebuf, (unsigned long)(ref + 1), len); if (key->type == BTRFS_ROOT_REF_KEY) { add_root_backref(root_cache, key->offset, key->objectid, dirid, index, namebuf, len, key->type, error); } else { add_root_backref(root_cache, key->objectid, key->offset, dirid, index, namebuf, len, key->type, error); } return 0; } static void free_corrupt_block(struct cache_extent *cache) { struct btrfs_corrupt_block *corrupt; corrupt = container_of(cache, struct btrfs_corrupt_block, cache); free(corrupt); } FREE_EXTENT_CACHE_BASED_TREE(corrupt_blocks, free_corrupt_block); /* * Repair the btree of the given root. * * The fix is to remove the node key in corrupt_blocks cache_tree. * and rebalance the tree. * After the fix, the btree should be writeable. */ static int repair_btree(struct btrfs_root *root, struct cache_tree *corrupt_blocks) { struct btrfs_trans_handle *trans; struct btrfs_path path; struct btrfs_corrupt_block *corrupt; struct cache_extent *cache; struct btrfs_key key; u64 offset; int level; int ret = 0; if (cache_tree_empty(corrupt_blocks)) return 0; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); errno = -ret; fprintf(stderr, "Error starting transaction: %m\n"); return ret; } btrfs_init_path(&path); cache = first_cache_extent(corrupt_blocks); while (cache) { corrupt = container_of(cache, struct btrfs_corrupt_block, cache); level = corrupt->level; path.lowest_level = level; key.objectid = corrupt->key.objectid; key.type = corrupt->key.type; key.offset = corrupt->key.offset; /* * Here we don't want to do any tree balance, since it may * cause a balance with corrupted brother leaf/node, * so ins_len set to 0 here. * Balance will be done after all corrupt node/leaf is deleted. */ ret = btrfs_search_slot(trans, root, &key, &path, 0, 1); if (ret < 0) goto out; offset = btrfs_node_blockptr(path.nodes[level], path.slots[level]); /* Remove the ptr */ ret = btrfs_del_ptr(root, &path, level, path.slots[level]); if (ret < 0) goto out; /* * Remove the corresponding extent * return value is not concerned. */ btrfs_release_path(&path); ret = btrfs_free_extent(trans, root, offset, root->fs_info->nodesize, 0, root->root_key.objectid, level - 1, 0); cache = next_cache_extent(cache); } /* Balance the btree using btrfs_search_slot() */ cache = first_cache_extent(corrupt_blocks); while (cache) { corrupt = container_of(cache, struct btrfs_corrupt_block, cache); memcpy(&key, &corrupt->key, sizeof(key)); ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) goto out; /* return will always >0 since it won't find the item */ ret = 0; btrfs_release_path(&path); cache = next_cache_extent(cache); } out: btrfs_commit_transaction(trans, root); btrfs_release_path(&path); return ret; } static int check_fs_root(struct btrfs_root *root, struct cache_tree *root_cache, struct walk_control *wc) { int ret = 0; int err = 0; int wret; int level; struct btrfs_path path; struct shared_node root_node; struct root_record *rec; struct btrfs_root_item *root_item = &root->root_item; struct cache_tree corrupt_blocks; enum btrfs_tree_block_status status; struct node_refs nrefs; struct unaligned_extent_rec_t *urec; struct unaligned_extent_rec_t *tmp; /* * Reuse the corrupt_block cache tree to record corrupted tree block * * Unlike the usage in extent tree check, here we do it in a per * fs/subvol tree base. */ cache_tree_init(&corrupt_blocks); root->fs_info->corrupt_blocks = &corrupt_blocks; if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { rec = get_root_rec(root_cache, root->root_key.objectid); BUG_ON(IS_ERR(rec)); if (btrfs_root_refs(root_item) > 0) rec->found_root_item = 1; } btrfs_init_path(&path); memset(&root_node, 0, sizeof(root_node)); cache_tree_init(&root_node.root_cache); cache_tree_init(&root_node.inode_cache); memset(&nrefs, 0, sizeof(nrefs)); /* Mode unaligned extent recs to corresponding inode record */ list_for_each_entry_safe(urec, tmp, &root->unaligned_extent_recs, list) { struct inode_record *inode; inode = get_inode_rec(&root_node.inode_cache, urec->owner, 1); if (IS_ERR_OR_NULL(inode)) { fprintf(stderr, "fail to get inode rec on [%llu,%llu]\n", urec->objectid, urec->owner); list_del(&urec->list); free(urec); continue; } inode->errors |= I_ERR_UNALIGNED_EXTENT_REC; list_move(&urec->list, &inode->unaligned_extent_recs); } level = btrfs_header_level(root->node); memset(wc->nodes, 0, sizeof(wc->nodes)); wc->nodes[level] = &root_node; wc->active_node = level; wc->root_level = level; /* We may not have checked the root block, lets do that now */ if (btrfs_is_leaf(root->node)) status = btrfs_check_leaf(root->fs_info, NULL, root->node); else status = btrfs_check_node(root->fs_info, NULL, root->node); if (status != BTRFS_TREE_BLOCK_CLEAN) return -EIO; if (btrfs_root_refs(root_item) > 0 || btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { path.nodes[level] = root->node; extent_buffer_get(root->node); path.slots[level] = 0; } else { struct btrfs_key key; struct btrfs_disk_key found_key; btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); level = root_item->drop_level; path.lowest_level = level; if (level > btrfs_header_level(root->node) || level >= BTRFS_MAX_LEVEL) { error("ignoring invalid drop level: %u", level); goto skip_walking; } wret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (wret < 0) goto skip_walking; btrfs_node_key(path.nodes[level], &found_key, path.slots[level]); WARN_ON(memcmp(&found_key, &root_item->drop_progress, sizeof(found_key))); } while (1) { ctx.item_count++; wret = walk_down_tree(root, &path, wc, &level, &nrefs); if (wret < 0) ret = wret; if (wret != 0) break; wret = walk_up_tree(root, &path, wc, &level); if (wret < 0) ret = wret; if (wret != 0) break; } skip_walking: btrfs_release_path(&path); if (!cache_tree_empty(&corrupt_blocks)) { struct cache_extent *cache; struct btrfs_corrupt_block *corrupt; printf("The following tree block(s) is corrupted in tree %llu:\n", root->root_key.objectid); cache = first_cache_extent(&corrupt_blocks); while (cache) { corrupt = container_of(cache, struct btrfs_corrupt_block, cache); printf("\ttree block bytenr: %llu, level: %d, node key: (%llu, %u, %llu)\n", cache->start, corrupt->level, corrupt->key.objectid, corrupt->key.type, corrupt->key.offset); cache = next_cache_extent(cache); } if (repair) { printf("Try to repair the btree for root %llu\n", root->root_key.objectid); ret = repair_btree(root, &corrupt_blocks); if (ret < 0) { errno = -ret; fprintf(stderr, "Failed to repair btree: %m\n"); } if (!ret) printf("Btree for root %llu is fixed\n", root->root_key.objectid); } } err = merge_root_recs(root, &root_node.root_cache, root_cache); if (err < 0) ret = err; if (root_node.current) { root_node.current->checked = 1; maybe_free_inode_rec(&root_node.inode_cache, root_node.current); } err = check_inode_recs(root, &root_node.inode_cache); if (!ret) ret = err; free_corrupt_blocks_tree(&corrupt_blocks); root->fs_info->corrupt_blocks = NULL; return ret; } static int check_fs_roots(struct btrfs_fs_info *fs_info, struct cache_tree *root_cache) { struct btrfs_path path; struct btrfs_key key; struct walk_control wc; struct extent_buffer *leaf, *tree_node; struct btrfs_root *tmp_root; struct btrfs_root *tree_root = fs_info->tree_root; u64 skip_root = 0; int ret; int err = 0; /* * Just in case we made any changes to the extent tree that weren't * reflected into the free space cache yet. */ if (repair) reset_cached_block_groups(fs_info); memset(&wc, 0, sizeof(wc)); cache_tree_init(&wc.shared); btrfs_init_path(&path); again: key.offset = 0; if (skip_root) key.objectid = skip_root + 1; else key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_search_slot(NULL, tree_root, &key, &path, 0, 0); if (ret < 0) { err = 1; goto out; } tree_node = tree_root->node; while (1) { if (tree_node != tree_root->node) { free_root_recs_tree(root_cache); btrfs_release_path(&path); goto again; } leaf = path.nodes[0]; if (path.slots[0] >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(tree_root, &path); if (ret) { if (ret < 0) err = 1; break; } leaf = path.nodes[0]; } btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type == BTRFS_ROOT_ITEM_KEY && fs_root_objectid(key.objectid)) { if (key.objectid == BTRFS_TREE_RELOC_OBJECTID) { tmp_root = btrfs_read_fs_root_no_cache( fs_info, &key); } else { key.offset = (u64)-1; tmp_root = btrfs_read_fs_root( fs_info, &key); } if (IS_ERR(tmp_root)) { err = 1; goto next; } ret = check_fs_root(tmp_root, root_cache, &wc); if (ret == -EAGAIN) { free_root_recs_tree(root_cache); btrfs_release_path(&path); goto again; } if (ret) { err = 1; /* * We failed to repair this root but modified * tree root, after again: label we will still * hit this root and fail to repair, so we must * skip it to avoid infinite loop. */ if (repair) skip_root = key.objectid; } if (key.objectid == BTRFS_TREE_RELOC_OBJECTID) btrfs_free_fs_root(tmp_root); } else if (key.type == BTRFS_ROOT_REF_KEY || key.type == BTRFS_ROOT_BACKREF_KEY) { process_root_ref(leaf, path.slots[0], &key, root_cache); } else if (key.type == BTRFS_INODE_ITEM_KEY && is_fstree(key.objectid)) { ret = check_repair_free_space_inode(fs_info, &path); if (ret < 0 && !path.nodes[0]) { err = 1; goto out; } if (ret < 0 && path.nodes[0]) { err = 1; goto next; } } next: path.slots[0]++; } out: btrfs_release_path(&path); if (err) free_extent_cache_tree(&wc.shared); if (!cache_tree_empty(&wc.shared)) fprintf(stderr, "warning line %d\n", __LINE__); return err; } static struct tree_backref *find_tree_backref(struct extent_record *rec, u64 parent, u64 root) { struct rb_node *node; struct tree_backref *back = NULL; struct tree_backref match = { .node = { .is_data = 0, }, }; if (parent) { match.parent = parent; match.node.full_backref = 1; } else { match.root = root; } node = rb_search(&rec->backref_tree, &match.node.node, (rb_compare_keys)compare_extent_backref, NULL); if (node) back = to_tree_backref(rb_node_to_extent_backref(node)); return back; } static struct data_backref *find_data_backref(struct extent_record *rec, u64 parent, u64 root, u64 owner, u64 offset, int found_ref, u64 disk_bytenr, u64 bytes) { struct rb_node *node; struct data_backref *back = NULL; struct data_backref match = { .node = { .is_data = 1, }, .owner = owner, .offset = offset, .bytes = bytes, .found_ref = found_ref, .disk_bytenr = disk_bytenr, }; if (parent) { match.parent = parent; match.node.full_backref = 1; } else { match.root = root; } node = rb_search(&rec->backref_tree, &match.node.node, (rb_compare_keys)compare_extent_backref, NULL); if (node) back = to_data_backref(rb_node_to_extent_backref(node)); return back; } static int do_check_fs_roots(struct btrfs_fs_info *fs_info, struct cache_tree *root_cache) { int ret; if (check_mode == CHECK_MODE_LOWMEM) ret = check_fs_roots_lowmem(fs_info); else ret = check_fs_roots(fs_info, root_cache); return ret; } static int all_backpointers_checked(struct extent_record *rec, int print_errs) { struct extent_backref *back, *tmp; struct tree_backref *tback; struct data_backref *dback; u64 found = 0; int err = 0; rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { if (!back->found_extent_tree) { err = 1; if (!print_errs) goto out; if (back->is_data) { dback = to_data_backref(back); fprintf(stderr, "data backref %llu %s %llu owner %llu offset %llu num_refs %lu not found in extent tree\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)dback->parent : (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, (unsigned long)dback->num_refs); } else { tback = to_tree_backref(back); fprintf(stderr, "tree backref %llu parent %llu root %llu not found in extent tree\n", (unsigned long long)rec->start, (unsigned long long)tback->parent, (unsigned long long)tback->root); } } if (!back->is_data && !back->found_ref) { err = 1; if (!print_errs) goto out; tback = to_tree_backref(back); fprintf(stderr, "backref %llu %s %llu not referenced back %p\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)tback->parent : (unsigned long long)tback->root, back); } if (back->is_data) { dback = to_data_backref(back); if (dback->found_ref != dback->num_refs) { err = 1; if (!print_errs) goto out; fprintf(stderr, "incorrect local backref count on %llu %s %llu owner %llu offset %llu found %u wanted %u back %p\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)dback->parent : (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, dback->found_ref, dback->num_refs, back); } if (dback->disk_bytenr != rec->start) { err = 1; if (!print_errs) goto out; fprintf(stderr, "backref disk bytenr does not match extent record, bytenr=%llu, ref bytenr=%llu\n", (unsigned long long)rec->start, (unsigned long long)dback->disk_bytenr); } if (dback->bytes != rec->nr) { err = 1; if (!print_errs) goto out; fprintf(stderr, "backref bytes do not match extent backref, bytenr=%llu, ref bytes=%llu, backref bytes=%llu\n", (unsigned long long)rec->start, (unsigned long long)rec->nr, (unsigned long long)dback->bytes); } } if (!back->is_data) { found += 1; } else { dback = to_data_backref(back); found += dback->found_ref; } } if (found != rec->refs) { err = 1; if (!print_errs) goto out; fprintf(stderr, "incorrect global backref count on %llu found %llu wanted %llu\n", (unsigned long long)rec->start, (unsigned long long)found, (unsigned long long)rec->refs); } out: return err; } static void __free_one_backref(struct rb_node *node) { struct extent_backref *back = rb_node_to_extent_backref(node); free(back); } static void free_all_extent_backrefs(struct extent_record *rec) { rb_free_nodes(&rec->backref_tree, __free_one_backref); } static void free_extent_record_cache(struct cache_tree *extent_cache) { struct cache_extent *cache; struct extent_record *rec; while (1) { cache = first_cache_extent(extent_cache); if (!cache) break; rec = container_of(cache, struct extent_record, cache); remove_cache_extent(extent_cache, cache); free_all_extent_backrefs(rec); free(rec); } } static int maybe_free_extent_rec(struct cache_tree *extent_cache, struct extent_record *rec) { if (rec->content_checked && rec->owner_ref_checked && rec->extent_item_refs == rec->refs && rec->refs > 0 && rec->num_duplicates == 0 && !all_backpointers_checked(rec, 0) && !rec->bad_full_backref && !rec->crossing_stripes && !rec->wrong_chunk_type) { remove_cache_extent(extent_cache, &rec->cache); free_all_extent_backrefs(rec); list_del_init(&rec->list); free(rec); } return 0; } static int check_owner_ref(struct btrfs_root *root, struct extent_record *rec, struct extent_buffer *buf) { struct extent_backref *node, *tmp; struct tree_backref *back; struct btrfs_root *ref_root; struct btrfs_key key; struct btrfs_path path; struct extent_buffer *parent; int level; int found = 0; int ret; rbtree_postorder_for_each_entry_safe(node, tmp, &rec->backref_tree, node) { if (node->is_data) continue; if (!node->found_ref) continue; if (node->full_backref) continue; back = to_tree_backref(node); if (btrfs_header_owner(buf) == back->root) return 0; } /* * Some unexpected root item referring to this one, return 1 to * indicate owner not found */ if (rec->is_root) return 1; /* try to find the block by search corresponding fs tree */ key.objectid = btrfs_header_owner(buf); key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; ref_root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(ref_root)) return 1; level = btrfs_header_level(buf); if (level == 0) btrfs_item_key_to_cpu(buf, &key, 0); else btrfs_node_key_to_cpu(buf, &key, 0); btrfs_init_path(&path); path.lowest_level = level + 1; ret = btrfs_search_slot(NULL, ref_root, &key, &path, 0, 0); if (ret < 0) return 0; parent = path.nodes[level + 1]; if (parent && buf->start == btrfs_node_blockptr(parent, path.slots[level + 1])) found = 1; btrfs_release_path(&path); return found ? 0 : 1; } static int is_extent_tree_record(struct extent_record *rec) { struct extent_backref *node, *tmp; struct tree_backref *back; int is_extent = 0; rbtree_postorder_for_each_entry_safe(node, tmp, &rec->backref_tree, node) { if (node->is_data) return 0; back = to_tree_backref(node); if (node->full_backref) return 0; if (back->root == BTRFS_EXTENT_TREE_OBJECTID) is_extent = 1; } return is_extent; } static int record_bad_block_io(struct btrfs_fs_info *info, struct cache_tree *extent_cache, u64 start, u64 len) { struct extent_record *rec; struct cache_extent *cache; struct btrfs_key key; cache = lookup_cache_extent(extent_cache, start, len); if (!cache) return 0; rec = container_of(cache, struct extent_record, cache); if (!is_extent_tree_record(rec)) return 0; btrfs_disk_key_to_cpu(&key, &rec->parent_key); return btrfs_add_corrupt_extent_record(info, &key, start, len, 0); } static int swap_values(struct btrfs_root *root, struct btrfs_path *path, struct extent_buffer *buf, int slot) { if (btrfs_header_level(buf)) { struct btrfs_key_ptr ptr1, ptr2; read_extent_buffer(buf, &ptr1, btrfs_node_key_ptr_offset(slot), sizeof(struct btrfs_key_ptr)); read_extent_buffer(buf, &ptr2, btrfs_node_key_ptr_offset(slot + 1), sizeof(struct btrfs_key_ptr)); write_extent_buffer(buf, &ptr1, btrfs_node_key_ptr_offset(slot + 1), sizeof(struct btrfs_key_ptr)); write_extent_buffer(buf, &ptr2, btrfs_node_key_ptr_offset(slot), sizeof(struct btrfs_key_ptr)); if (slot == 0) { struct btrfs_disk_key key; btrfs_node_key(buf, &key, 0); btrfs_fixup_low_keys(root, path, &key, btrfs_header_level(buf) + 1); } } else { struct btrfs_item *item1, *item2; struct btrfs_key k1, k2; char *item1_data, *item2_data; u32 item1_offset, item2_offset, item1_size, item2_size; item1 = btrfs_item_nr(slot); item2 = btrfs_item_nr(slot + 1); btrfs_item_key_to_cpu(buf, &k1, slot); btrfs_item_key_to_cpu(buf, &k2, slot + 1); item1_offset = btrfs_item_offset(buf, item1); item2_offset = btrfs_item_offset(buf, item2); item1_size = btrfs_item_size(buf, item1); item2_size = btrfs_item_size(buf, item2); item1_data = malloc(item1_size); if (!item1_data) return -ENOMEM; item2_data = malloc(item2_size); if (!item2_data) { free(item1_data); return -ENOMEM; } read_extent_buffer(buf, item1_data, item1_offset, item1_size); read_extent_buffer(buf, item2_data, item2_offset, item2_size); write_extent_buffer(buf, item1_data, item2_offset, item2_size); write_extent_buffer(buf, item2_data, item1_offset, item1_size); free(item1_data); free(item2_data); btrfs_set_item_offset(buf, item1, item2_offset); btrfs_set_item_offset(buf, item2, item1_offset); btrfs_set_item_size(buf, item1, item2_size); btrfs_set_item_size(buf, item2, item1_size); path->slots[0] = slot; btrfs_set_item_key_unsafe(root, path, &k2); path->slots[0] = slot + 1; btrfs_set_item_key_unsafe(root, path, &k1); } return 0; } static int fix_key_order(struct btrfs_root *root, struct btrfs_path *path) { struct extent_buffer *buf; struct btrfs_key k1, k2; int i; int level = path->lowest_level; int ret = -EIO; buf = path->nodes[level]; for (i = 0; i < btrfs_header_nritems(buf) - 1; i++) { if (level) { btrfs_node_key_to_cpu(buf, &k1, i); btrfs_node_key_to_cpu(buf, &k2, i + 1); } else { btrfs_item_key_to_cpu(buf, &k1, i); btrfs_item_key_to_cpu(buf, &k2, i + 1); } if (btrfs_comp_cpu_keys(&k1, &k2) < 0) continue; ret = swap_values(root, path, buf, i); if (ret) break; btrfs_mark_buffer_dirty(buf); i = 0; } return ret; } static int delete_bogus_item(struct btrfs_root *root, struct btrfs_path *path, struct extent_buffer *buf, int slot) { struct btrfs_key key; int nritems = btrfs_header_nritems(buf); btrfs_item_key_to_cpu(buf, &key, slot); /* These are all the keys we can deal with missing. */ if (key.type != BTRFS_DIR_INDEX_KEY && key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY && key.type != BTRFS_TREE_BLOCK_REF_KEY && key.type != BTRFS_EXTENT_DATA_REF_KEY) return -1; printf("Deleting bogus item [%llu,%u,%llu] at slot %d on block %llu\n", (unsigned long long)key.objectid, key.type, (unsigned long long)key.offset, slot, buf->start); memmove_extent_buffer(buf, btrfs_item_nr_offset(slot), btrfs_item_nr_offset(slot + 1), sizeof(struct btrfs_item) * (nritems - slot - 1)); btrfs_set_header_nritems(buf, nritems - 1); if (slot == 0) { struct btrfs_disk_key disk_key; btrfs_item_key(buf, &disk_key, 0); btrfs_fixup_low_keys(root, path, &disk_key, 1); } btrfs_mark_buffer_dirty(buf); return 0; } static int fix_item_offset(struct btrfs_root *root, struct btrfs_path *path) { struct extent_buffer *buf; int i; int ret = 0; /* We should only get this for leaves */ BUG_ON(path->lowest_level); buf = path->nodes[0]; again: for (i = 0; i < btrfs_header_nritems(buf); i++) { unsigned int shift = 0, offset; if (i == 0 && btrfs_item_end_nr(buf, i) != BTRFS_LEAF_DATA_SIZE(root->fs_info)) { if (btrfs_item_end_nr(buf, i) > BTRFS_LEAF_DATA_SIZE(root->fs_info)) { ret = delete_bogus_item(root, path, buf, i); if (!ret) goto again; fprintf(stderr, "item is off the end of the leaf, can't fix\n"); ret = -EIO; break; } shift = BTRFS_LEAF_DATA_SIZE(root->fs_info) - btrfs_item_end_nr(buf, i); } else if (i > 0 && btrfs_item_end_nr(buf, i) != btrfs_item_offset_nr(buf, i - 1)) { if (btrfs_item_end_nr(buf, i) > btrfs_item_offset_nr(buf, i - 1)) { ret = delete_bogus_item(root, path, buf, i); if (!ret) goto again; fprintf(stderr, "items overlap, can't fix\n"); ret = -EIO; break; } shift = btrfs_item_offset_nr(buf, i - 1) - btrfs_item_end_nr(buf, i); } if (!shift) continue; printf("Shifting item nr %d by %u bytes in block %llu\n", i, shift, (unsigned long long)buf->start); offset = btrfs_item_offset_nr(buf, i); memmove_extent_buffer(buf, btrfs_leaf_data(buf) + offset + shift, btrfs_leaf_data(buf) + offset, btrfs_item_size_nr(buf, i)); btrfs_set_item_offset(buf, btrfs_item_nr(i), offset + shift); btrfs_mark_buffer_dirty(buf); } /* * We may have moved things, in which case we want to exit so we don't * write those changes out. Once we have proper abort functionality in * progs this can be changed to something nicer. */ BUG_ON(ret); return ret; } /* * Attempt to fix basic block failures. If we can't fix it for whatever reason * then just return -EIO. */ static int try_to_fix_bad_block(struct btrfs_root *root, struct extent_buffer *buf, enum btrfs_tree_block_status status) { struct btrfs_trans_handle *trans; struct ulist *roots; struct ulist_node *node; struct btrfs_root *search_root; struct btrfs_path path; struct ulist_iterator iter; struct btrfs_key root_key, key; int ret; if (status != BTRFS_TREE_BLOCK_BAD_KEY_ORDER && status != BTRFS_TREE_BLOCK_INVALID_OFFSETS) return -EIO; ret = btrfs_find_all_roots(NULL, root->fs_info, buf->start, 0, &roots); if (ret) return -EIO; btrfs_init_path(&path); ULIST_ITER_INIT(&iter); /* * If we found no roots referencing to this tree block, there is no * chance to fix. So our default ret is -EIO. */ ret = -EIO; while ((node = ulist_next(roots, &iter))) { root_key.objectid = node->val; root_key.type = BTRFS_ROOT_ITEM_KEY; root_key.offset = (u64)-1; search_root = btrfs_read_fs_root(root->fs_info, &root_key); if (IS_ERR(root)) { ret = -EIO; break; } trans = btrfs_start_transaction(search_root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); break; } path.lowest_level = btrfs_header_level(buf); path.skip_check_block = 1; if (path.lowest_level) btrfs_node_key_to_cpu(buf, &key, 0); else btrfs_item_key_to_cpu(buf, &key, 0); ret = btrfs_search_slot(trans, search_root, &key, &path, 0, 1); if (ret) { ret = -EIO; btrfs_commit_transaction(trans, search_root); break; } if (status == BTRFS_TREE_BLOCK_BAD_KEY_ORDER) ret = fix_key_order(search_root, &path); else if (status == BTRFS_TREE_BLOCK_INVALID_OFFSETS) ret = fix_item_offset(search_root, &path); if (ret) { btrfs_commit_transaction(trans, search_root); break; } btrfs_release_path(&path); btrfs_commit_transaction(trans, search_root); } ulist_free(roots); btrfs_release_path(&path); return ret; } static int check_block(struct btrfs_root *root, struct cache_tree *extent_cache, struct extent_buffer *buf, u64 flags) { struct extent_record *rec; struct cache_extent *cache; struct btrfs_key key; enum btrfs_tree_block_status status; int ret = 0; int level; cache = lookup_cache_extent(extent_cache, buf->start, buf->len); if (!cache) return 1; rec = container_of(cache, struct extent_record, cache); rec->generation = btrfs_header_generation(buf); level = btrfs_header_level(buf); if (btrfs_header_nritems(buf) > 0) { if (level == 0) btrfs_item_key_to_cpu(buf, &key, 0); else btrfs_node_key_to_cpu(buf, &key, 0); rec->info_objectid = key.objectid; } rec->info_level = level; if (btrfs_is_leaf(buf)) status = btrfs_check_leaf(root->fs_info, &rec->parent_key, buf); else status = btrfs_check_node(root->fs_info, &rec->parent_key, buf); if (status != BTRFS_TREE_BLOCK_CLEAN) { if (repair) status = try_to_fix_bad_block(root, buf, status); if (status != BTRFS_TREE_BLOCK_CLEAN) { ret = -EIO; fprintf(stderr, "bad block %llu\n", (unsigned long long)buf->start); } else { /* * Signal to callers we need to start the scan over * again since we'll have cowed blocks. */ ret = -EAGAIN; } } else { rec->content_checked = 1; if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) rec->owner_ref_checked = 1; else { ret = check_owner_ref(root, rec, buf); if (!ret) rec->owner_ref_checked = 1; } } if (!ret) maybe_free_extent_rec(extent_cache, rec); return ret; } static struct tree_backref *alloc_tree_backref(struct extent_record *rec, u64 parent, u64 root) { struct tree_backref *ref = malloc(sizeof(*ref)); if (!ref) return NULL; memset(&ref->node, 0, sizeof(ref->node)); if (parent > 0) { ref->parent = parent; ref->node.full_backref = 1; } else { ref->root = root; ref->node.full_backref = 0; } return ref; } static struct data_backref *alloc_data_backref(struct extent_record *rec, u64 parent, u64 root, u64 owner, u64 offset, u64 max_size) { struct data_backref *ref = malloc(sizeof(*ref)); if (!ref) return NULL; memset(&ref->node, 0, sizeof(ref->node)); ref->node.is_data = 1; if (parent > 0) { ref->parent = parent; ref->owner = 0; ref->offset = 0; ref->node.full_backref = 1; } else { ref->root = root; ref->owner = owner; ref->offset = offset; ref->node.full_backref = 0; } ref->bytes = max_size; ref->found_ref = 0; ref->num_refs = 0; if (max_size > rec->max_size) rec->max_size = max_size; return ref; } /* Check if the type of extent matches with its chunk */ static void check_extent_type(struct extent_record *rec) { struct btrfs_block_group_cache *bg_cache; bg_cache = btrfs_lookup_first_block_group(global_info, rec->start); if (!bg_cache) return; /* data extent, check chunk directly*/ if (!rec->metadata) { if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA)) rec->wrong_chunk_type = 1; return; } /* metadata extent, check the obvious case first */ if (!(bg_cache->flags & (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA))) { rec->wrong_chunk_type = 1; return; } /* * Check SYSTEM extent, as it's also marked as metadata, we can only * make sure it's a SYSTEM extent by its backref */ if (!RB_EMPTY_ROOT(&rec->backref_tree)) { struct extent_backref *node; struct tree_backref *tback; u64 bg_type; node = rb_node_to_extent_backref(rb_first(&rec->backref_tree)); if (node->is_data) { /* tree block shouldn't have data backref */ rec->wrong_chunk_type = 1; return; } tback = container_of(node, struct tree_backref, node); if (tback->root == BTRFS_CHUNK_TREE_OBJECTID) bg_type = BTRFS_BLOCK_GROUP_SYSTEM; else bg_type = BTRFS_BLOCK_GROUP_METADATA; if (!(bg_cache->flags & bg_type)) rec->wrong_chunk_type = 1; } } /* * Allocate a new extent record, fill default values from @tmpl and insert int * @extent_cache. Caller is supposed to make sure the [start,nr) is not in * the cache, otherwise it fails. */ static int add_extent_rec_nolookup(struct cache_tree *extent_cache, struct extent_record *tmpl) { struct extent_record *rec; int ret = 0; BUG_ON(tmpl->max_size == 0); rec = malloc(sizeof(*rec)); if (!rec) return -ENOMEM; rec->start = tmpl->start; rec->max_size = tmpl->max_size; rec->nr = max(tmpl->nr, tmpl->max_size); rec->found_rec = tmpl->found_rec; rec->content_checked = tmpl->content_checked; rec->owner_ref_checked = tmpl->owner_ref_checked; rec->num_duplicates = 0; rec->metadata = tmpl->metadata; rec->flag_block_full_backref = FLAG_UNSET; rec->bad_full_backref = 0; rec->crossing_stripes = 0; rec->wrong_chunk_type = 0; rec->is_root = tmpl->is_root; rec->refs = tmpl->refs; rec->extent_item_refs = tmpl->extent_item_refs; rec->parent_generation = tmpl->parent_generation; INIT_LIST_HEAD(&rec->backrefs); INIT_LIST_HEAD(&rec->dups); INIT_LIST_HEAD(&rec->list); rec->backref_tree = RB_ROOT; memcpy(&rec->parent_key, &tmpl->parent_key, sizeof(tmpl->parent_key)); rec->cache.start = tmpl->start; rec->cache.size = tmpl->nr; ret = insert_cache_extent(extent_cache, &rec->cache); if (ret) { free(rec); return ret; } bytes_used += rec->nr; if (tmpl->metadata) rec->crossing_stripes = check_crossing_stripes(global_info, rec->start, global_info->nodesize); check_extent_type(rec); return ret; } /* * Lookup and modify an extent, some values of @tmpl are interpreted verbatim, * some are hints: * - refs - if found, increase refs * - is_root - if found, set * - content_checked - if found, set * - owner_ref_checked - if found, set * * If not found, create a new one, initialize and insert. */ static int add_extent_rec(struct cache_tree *extent_cache, struct extent_record *tmpl) { struct extent_record *rec; struct cache_extent *cache; int ret = 0; int dup = 0; cache = lookup_cache_extent(extent_cache, tmpl->start, tmpl->nr); if (cache) { rec = container_of(cache, struct extent_record, cache); if (tmpl->refs) rec->refs++; if (rec->nr == 1) rec->nr = max(tmpl->nr, tmpl->max_size); /* * We need to make sure to reset nr to whatever the extent * record says was the real size, this way we can compare it to * the backrefs. */ if (tmpl->found_rec) { if (tmpl->start != rec->start || rec->found_rec) { struct extent_record *tmp; dup = 1; if (list_empty(&rec->list)) list_add_tail(&rec->list, &duplicate_extents); /* * We have to do this song and dance in case we * find an extent record that falls inside of * our current extent record but does not have * the same objectid. */ tmp = malloc(sizeof(*tmp)); if (!tmp) return -ENOMEM; tmp->start = tmpl->start; tmp->max_size = tmpl->max_size; tmp->nr = tmpl->nr; tmp->found_rec = 1; tmp->metadata = tmpl->metadata; tmp->extent_item_refs = tmpl->extent_item_refs; INIT_LIST_HEAD(&tmp->list); list_add_tail(&tmp->list, &rec->dups); rec->num_duplicates++; } else { rec->nr = tmpl->nr; rec->found_rec = 1; } } if (tmpl->extent_item_refs && !dup) { if (rec->extent_item_refs) { fprintf(stderr, "block %llu rec extent_item_refs %llu, passed %llu\n", (unsigned long long)tmpl->start, (unsigned long long) rec->extent_item_refs, (unsigned long long) tmpl->extent_item_refs); } rec->extent_item_refs = tmpl->extent_item_refs; } if (tmpl->is_root) rec->is_root = 1; if (tmpl->content_checked) rec->content_checked = 1; if (tmpl->owner_ref_checked) rec->owner_ref_checked = 1; memcpy(&rec->parent_key, &tmpl->parent_key, sizeof(tmpl->parent_key)); if (tmpl->parent_generation) rec->parent_generation = tmpl->parent_generation; if (rec->max_size < tmpl->max_size) rec->max_size = tmpl->max_size; /* * A metadata extent can't cross stripe_len boundary, otherwise * kernel scrub won't be able to handle it. * As now stripe_len is fixed to BTRFS_STRIPE_LEN, just check * it. */ if (tmpl->metadata) rec->crossing_stripes = check_crossing_stripes( global_info, rec->start, global_info->nodesize); check_extent_type(rec); maybe_free_extent_rec(extent_cache, rec); return ret; } ret = add_extent_rec_nolookup(extent_cache, tmpl); return ret; } static int add_tree_backref(struct cache_tree *extent_cache, u64 bytenr, u64 parent, u64 root, int found_ref) { struct extent_record *rec; struct tree_backref *back; struct cache_extent *cache; int ret; bool insert = false; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) { struct extent_record tmpl; memset(&tmpl, 0, sizeof(tmpl)); tmpl.start = bytenr; tmpl.nr = 1; tmpl.metadata = 1; tmpl.max_size = 1; ret = add_extent_rec_nolookup(extent_cache, &tmpl); if (ret) return ret; /* really a bug in cache_extent implement now */ cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) return -ENOENT; } rec = container_of(cache, struct extent_record, cache); if (rec->start != bytenr) { /* * Several cause, from unaligned bytenr to over lapping extents */ return -EEXIST; } back = find_tree_backref(rec, parent, root); if (!back) { back = alloc_tree_backref(rec, parent, root); if (!back) return -ENOMEM; insert = true; } if (found_ref) { if (back->node.found_ref) { fprintf(stderr, "Extent back ref already exists for %llu parent %llu root %llu\n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root); } back->node.found_ref = 1; } else { if (back->node.found_extent_tree) { fprintf(stderr, "extent back ref already exists for %llu parent %llu root %llu\n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root); } back->node.found_extent_tree = 1; } if (insert) WARN_ON(rb_insert(&rec->backref_tree, &back->node.node, compare_extent_backref)); check_extent_type(rec); maybe_free_extent_rec(extent_cache, rec); return 0; } static int add_data_backref(struct cache_tree *extent_cache, u64 bytenr, u64 parent, u64 root, u64 owner, u64 offset, u32 num_refs, int found_ref, u64 max_size) { struct extent_record *rec; struct data_backref *back; struct cache_extent *cache; int ret; bool insert = false; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) { struct extent_record tmpl; memset(&tmpl, 0, sizeof(tmpl)); tmpl.start = bytenr; tmpl.nr = 1; tmpl.max_size = max_size; ret = add_extent_rec_nolookup(extent_cache, &tmpl); if (ret) return ret; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (!cache) abort(); } rec = container_of(cache, struct extent_record, cache); if (rec->max_size < max_size) rec->max_size = max_size; /* * If found_ref is set then max_size is the real size and must match the * existing refs. So if we have already found a ref then we need to * make sure that this ref matches the existing one, otherwise we need * to add a new backref so we can notice that the backrefs don't match * and we need to figure out who is telling the truth. This is to * account for that awful fsync bug I introduced where we'd end up with * a btrfs_file_extent_item that would have its length include multiple * prealloc extents or point inside of a prealloc extent. */ back = find_data_backref(rec, parent, root, owner, offset, found_ref, bytenr, max_size); if (!back) { back = alloc_data_backref(rec, parent, root, owner, offset, max_size); BUG_ON(!back); insert = true; } if (found_ref) { BUG_ON(num_refs != 1); if (back->node.found_ref) BUG_ON(back->bytes != max_size); back->node.found_ref = 1; back->found_ref += 1; if (back->bytes != max_size || back->disk_bytenr != bytenr) { back->bytes = max_size; back->disk_bytenr = bytenr; /* Need to reinsert if not already in the tree */ if (!insert) { rb_erase(&back->node.node, &rec->backref_tree); insert = true; } } rec->refs += 1; rec->content_checked = 1; rec->owner_ref_checked = 1; } else { if (back->node.found_extent_tree) { fprintf(stderr, "Extent back ref already exists for %llu parent %llu root %llu owner %llu offset %llu num_refs %lu\n", (unsigned long long)bytenr, (unsigned long long)parent, (unsigned long long)root, (unsigned long long)owner, (unsigned long long)offset, (unsigned long)num_refs); } back->num_refs = num_refs; back->node.found_extent_tree = 1; } if (insert) WARN_ON(rb_insert(&rec->backref_tree, &back->node.node, compare_extent_backref)); maybe_free_extent_rec(extent_cache, rec); return 0; } static int add_pending(struct cache_tree *pending, struct cache_tree *seen, u64 bytenr, u32 size) { int ret; ret = add_cache_extent(seen, bytenr, size); if (ret) return ret; add_cache_extent(pending, bytenr, size); return 0; } static int pick_next_pending(struct cache_tree *pending, struct cache_tree *reada, struct cache_tree *nodes, u64 last, struct block_info *bits, int bits_nr, int *reada_bits) { unsigned long node_start = last; struct cache_extent *cache; int ret; cache = search_cache_extent(reada, 0); if (cache) { bits[0].start = cache->start; bits[0].size = cache->size; *reada_bits = 1; return 1; } *reada_bits = 0; if (node_start > 32768) node_start -= 32768; cache = search_cache_extent(nodes, node_start); if (!cache) cache = search_cache_extent(nodes, 0); if (!cache) { cache = search_cache_extent(pending, 0); if (!cache) return 0; ret = 0; do { bits[ret].start = cache->start; bits[ret].size = cache->size; cache = next_cache_extent(cache); ret++; } while (cache && ret < bits_nr); return ret; } ret = 0; do { bits[ret].start = cache->start; bits[ret].size = cache->size; cache = next_cache_extent(cache); ret++; } while (cache && ret < bits_nr); if (bits_nr - ret > 8) { u64 lookup = bits[0].start + bits[0].size; struct cache_extent *next; next = search_cache_extent(pending, lookup); while (next) { if (next->start - lookup > 32768) break; bits[ret].start = next->start; bits[ret].size = next->size; lookup = next->start + next->size; ret++; if (ret == bits_nr) break; next = next_cache_extent(next); if (!next) break; } } return ret; } static void free_chunk_record(struct cache_extent *cache) { struct chunk_record *rec; rec = container_of(cache, struct chunk_record, cache); list_del_init(&rec->list); list_del_init(&rec->dextents); free(rec); } void free_chunk_cache_tree(struct cache_tree *chunk_cache) { cache_tree_free_extents(chunk_cache, free_chunk_record); } static void free_device_record(struct rb_node *node) { struct device_record *rec; rec = container_of(node, struct device_record, node); free(rec); } FREE_RB_BASED_TREE(device_cache, free_device_record); int insert_block_group_record(struct block_group_tree *tree, struct block_group_record *bg_rec) { int ret; ret = insert_cache_extent(&tree->tree, &bg_rec->cache); if (ret) return ret; list_add_tail(&bg_rec->list, &tree->block_groups); return 0; } static void free_block_group_record(struct cache_extent *cache) { struct block_group_record *rec; rec = container_of(cache, struct block_group_record, cache); list_del_init(&rec->list); free(rec); } void free_block_group_tree(struct block_group_tree *tree) { cache_tree_free_extents(&tree->tree, free_block_group_record); } int insert_device_extent_record(struct device_extent_tree *tree, struct device_extent_record *de_rec) { int ret; /* * Device extent is a bit different from the other extents, because * the extents which belong to the different devices may have the * same start and size, so we need use the special extent cache * search/insert functions. */ ret = insert_cache_extent2(&tree->tree, &de_rec->cache); if (ret) return ret; list_add_tail(&de_rec->chunk_list, &tree->no_chunk_orphans); list_add_tail(&de_rec->device_list, &tree->no_device_orphans); return 0; } static void free_device_extent_record(struct cache_extent *cache) { struct device_extent_record *rec; rec = container_of(cache, struct device_extent_record, cache); if (!list_empty(&rec->chunk_list)) list_del_init(&rec->chunk_list); if (!list_empty(&rec->device_list)) list_del_init(&rec->device_list); free(rec); } void free_device_extent_tree(struct device_extent_tree *tree) { cache_tree_free_extents(&tree->tree, free_device_extent_record); } struct chunk_record *btrfs_new_chunk_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_chunk *ptr; struct chunk_record *rec; int num_stripes, i; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); num_stripes = btrfs_chunk_num_stripes(leaf, ptr); rec = calloc(1, btrfs_chunk_record_size(num_stripes)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } INIT_LIST_HEAD(&rec->list); INIT_LIST_HEAD(&rec->dextents); rec->bg_rec = NULL; rec->cache.start = key->offset; rec->cache.size = btrfs_chunk_length(leaf, ptr); rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; rec->length = rec->cache.size; rec->owner = btrfs_chunk_owner(leaf, ptr); rec->stripe_len = btrfs_chunk_stripe_len(leaf, ptr); rec->type_flags = btrfs_chunk_type(leaf, ptr); rec->io_width = btrfs_chunk_io_width(leaf, ptr); rec->io_align = btrfs_chunk_io_align(leaf, ptr); rec->sector_size = btrfs_chunk_sector_size(leaf, ptr); rec->num_stripes = num_stripes; rec->sub_stripes = btrfs_chunk_sub_stripes(leaf, ptr); for (i = 0; i < rec->num_stripes; ++i) { rec->stripes[i].devid = btrfs_stripe_devid_nr(leaf, ptr, i); rec->stripes[i].offset = btrfs_stripe_offset_nr(leaf, ptr, i); read_extent_buffer(leaf, rec->stripes[i].dev_uuid, (unsigned long)btrfs_stripe_dev_uuid_nr(ptr, i), BTRFS_UUID_SIZE); } return rec; } static int process_chunk_item(struct cache_tree *chunk_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct chunk_record *rec; struct btrfs_chunk *chunk; int ret = 0; chunk = btrfs_item_ptr(eb, slot, struct btrfs_chunk); /* * Do extra check for this chunk item, * * It's still possible one can craft a leaf with CHUNK_ITEM, with * wrong onwer(3) out of chunk tree, to pass both chunk tree check * and owner<->key_type check. */ ret = btrfs_check_chunk_valid(global_info, eb, chunk, slot, key->offset); if (ret < 0) { error("chunk(%llu, %llu) is not valid, ignore it", key->offset, btrfs_chunk_length(eb, chunk)); return 0; } rec = btrfs_new_chunk_record(eb, key, slot); ret = insert_cache_extent(chunk_cache, &rec->cache); if (ret) { fprintf(stderr, "Chunk[%llu, %llu] existed.\n", rec->offset, rec->length); free(rec); } return ret; } static int process_device_item(struct rb_root *dev_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct btrfs_dev_item *ptr; struct device_record *rec; int ret = 0; ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_item); rec = malloc(sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); return -ENOMEM; } rec->devid = key->offset; rec->generation = btrfs_header_generation(eb); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; rec->devid = btrfs_device_id(eb, ptr); rec->total_byte = btrfs_device_total_bytes(eb, ptr); rec->byte_used = btrfs_device_bytes_used(eb, ptr); ret = rb_insert(dev_cache, &rec->node, device_record_compare); if (ret) { fprintf(stderr, "Device[%llu] existed.\n", rec->devid); free(rec); } return ret; } struct block_group_record * btrfs_new_block_group_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct btrfs_block_group_item *ptr; struct block_group_record *rec; rec = calloc(1, sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } rec->cache.start = key->objectid; rec->cache.size = key->offset; rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_block_group_item); rec->flags = btrfs_disk_block_group_flags(leaf, ptr); INIT_LIST_HEAD(&rec->list); return rec; } static int process_block_group_item(struct block_group_tree *block_group_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct block_group_record *rec; int ret = 0; rec = btrfs_new_block_group_record(eb, key, slot); ret = insert_block_group_record(block_group_cache, rec); if (ret) { fprintf(stderr, "Block Group[%llu, %llu] existed.\n", rec->objectid, rec->offset); free(rec); } return ret; } struct device_extent_record * btrfs_new_device_extent_record(struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct device_extent_record *rec; struct btrfs_dev_extent *ptr; rec = calloc(1, sizeof(*rec)); if (!rec) { fprintf(stderr, "memory allocation failed\n"); exit(-1); } rec->cache.objectid = key->objectid; rec->cache.start = key->offset; rec->generation = btrfs_header_generation(leaf); rec->objectid = key->objectid; rec->type = key->type; rec->offset = key->offset; ptr = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); rec->chunk_objectid = btrfs_dev_extent_chunk_objectid(leaf, ptr); rec->chunk_offset = btrfs_dev_extent_chunk_offset(leaf, ptr); rec->length = btrfs_dev_extent_length(leaf, ptr); rec->cache.size = rec->length; INIT_LIST_HEAD(&rec->chunk_list); INIT_LIST_HEAD(&rec->device_list); return rec; } static int process_device_extent_item(struct device_extent_tree *dev_extent_cache, struct btrfs_key *key, struct extent_buffer *eb, int slot) { struct device_extent_record *rec; int ret; rec = btrfs_new_device_extent_record(eb, key, slot); ret = insert_device_extent_record(dev_extent_cache, rec); if (ret) { fprintf(stderr, "Device extent[%llu, %llu, %llu] existed.\n", rec->objectid, rec->offset, rec->length); free(rec); } return ret; } static int process_extent_item(struct btrfs_root *root, struct cache_tree *extent_cache, struct extent_buffer *eb, int slot) { struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_key key; struct extent_record tmpl; unsigned long end; unsigned long ptr; int ret; int type; u32 item_size = btrfs_item_size_nr(eb, slot); u64 refs = 0; u64 offset; u64 num_bytes; int metadata = 0; btrfs_item_key_to_cpu(eb, &key, slot); if (key.type == BTRFS_METADATA_ITEM_KEY) { metadata = 1; num_bytes = root->fs_info->nodesize; } else { num_bytes = key.offset; } if (!IS_ALIGNED(key.objectid, root->fs_info->sectorsize)) { error("ignoring invalid extent, bytenr %llu is not aligned to %u", key.objectid, root->fs_info->sectorsize); return -EIO; } if (item_size < sizeof(*ei)) { error( "corrupted or unsupported extent item found, item size=%u expect minimal size=%lu", item_size, sizeof(*ei)); return -EIO; } ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item); refs = btrfs_extent_refs(eb, ei); if (btrfs_extent_flags(eb, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK) metadata = 1; else metadata = 0; if (metadata && num_bytes != root->fs_info->nodesize) { error("ignore invalid metadata extent, length %llu does not equal to %u", num_bytes, root->fs_info->nodesize); return -EIO; } if (!metadata && !IS_ALIGNED(num_bytes, root->fs_info->sectorsize)) { error("ignore invalid data extent, length %llu is not aligned to %u", num_bytes, root->fs_info->sectorsize); return -EIO; } memset(&tmpl, 0, sizeof(tmpl)); tmpl.start = key.objectid; tmpl.nr = num_bytes; tmpl.extent_item_refs = refs; tmpl.metadata = metadata; tmpl.found_rec = 1; tmpl.max_size = num_bytes; add_extent_rec(extent_cache, &tmpl); ptr = (unsigned long)(ei + 1); if (btrfs_extent_flags(eb, ei) & BTRFS_EXTENT_FLAG_TREE_BLOCK && key.type == BTRFS_EXTENT_ITEM_KEY) ptr += sizeof(struct btrfs_tree_block_info); end = (unsigned long)ei + item_size; while (ptr < end) { iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_extent_inline_ref_type(eb, iref); offset = btrfs_extent_inline_ref_offset(eb, iref); switch (type) { case BTRFS_TREE_BLOCK_REF_KEY: ret = add_tree_backref(extent_cache, key.objectid, 0, offset, 0); if (ret < 0) { errno = -ret; error( "add_tree_backref failed (extent items tree block): %m"); } break; case BTRFS_SHARED_BLOCK_REF_KEY: ret = add_tree_backref(extent_cache, key.objectid, offset, 0, 0); if (ret < 0) { errno = -ret; error( "add_tree_backref failed (extent items shared block): %m"); } break; case BTRFS_EXTENT_DATA_REF_KEY: dref = (struct btrfs_extent_data_ref *)(&iref->offset); add_data_backref(extent_cache, key.objectid, 0, btrfs_extent_data_ref_root(eb, dref), btrfs_extent_data_ref_objectid(eb, dref), btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_count(eb, dref), 0, num_bytes); break; case BTRFS_SHARED_DATA_REF_KEY: sref = (struct btrfs_shared_data_ref *)(iref + 1); add_data_backref(extent_cache, key.objectid, offset, 0, 0, 0, btrfs_shared_data_ref_count(eb, sref), 0, num_bytes); break; default: fprintf(stderr, "corrupt extent record: key [%llu,%u,%llu]\n", key.objectid, key.type, num_bytes); goto out; } ptr += btrfs_extent_inline_ref_size(type); } WARN_ON(ptr > end); out: return 0; } static int check_cache_range(struct btrfs_root *root, struct btrfs_block_group_cache *cache, u64 offset, u64 bytes) { struct btrfs_free_space *entry; u64 *logical; u64 bytenr; int stripe_len; int i, nr, ret; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); ret = btrfs_rmap_block(root->fs_info, cache->key.objectid, bytenr, &logical, &nr, &stripe_len); if (ret) return ret; while (nr--) { if (logical[nr] + stripe_len <= offset) continue; if (offset + bytes <= logical[nr]) continue; if (logical[nr] == offset) { if (stripe_len >= bytes) { free(logical); return 0; } bytes -= stripe_len; offset += stripe_len; } else if (logical[nr] < offset) { if (logical[nr] + stripe_len >= offset + bytes) { free(logical); return 0; } bytes = (offset + bytes) - (logical[nr] + stripe_len); offset = logical[nr] + stripe_len; } else { /* * Could be tricky, the super may land in the * middle of the area we're checking. First * check the easiest case, it's at the end. */ if (logical[nr] + stripe_len >= bytes + offset) { bytes = logical[nr] - offset; continue; } /* Check the left side */ ret = check_cache_range(root, cache, offset, logical[nr] - offset); if (ret) { free(logical); return ret; } /* Now we continue with the right side */ bytes = (offset + bytes) - (logical[nr] + stripe_len); offset = logical[nr] + stripe_len; } } free(logical); } entry = btrfs_find_free_space(cache->free_space_ctl, offset, bytes); if (!entry) { fprintf(stderr, "there is no free space entry for %llu-%llu\n", offset, offset+bytes); return -EINVAL; } if (entry->offset != offset) { fprintf(stderr, "wanted offset %llu, found %llu\n", offset, entry->offset); return -EINVAL; } if (entry->bytes != bytes) { fprintf(stderr, "wanted bytes %llu, found %llu for off %llu\n", bytes, entry->bytes, offset); return -EINVAL; } unlink_free_space(cache->free_space_ctl, entry); free(entry); return 0; } static int verify_space_cache(struct btrfs_root *root, struct btrfs_block_group_cache *cache) { struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key key; u64 last; int ret = 0; root = root->fs_info->extent_root; last = max_t(u64, cache->key.objectid, BTRFS_SUPER_INFO_OFFSET); btrfs_init_path(&path); key.objectid = last; key.offset = 0; key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) goto out; ret = 0; while (1) { if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(root, &path); if (ret < 0) goto out; if (ret > 0) { ret = 0; break; } } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid >= cache->key.offset + cache->key.objectid) break; if (key.type != BTRFS_EXTENT_ITEM_KEY && key.type != BTRFS_METADATA_ITEM_KEY) { path.slots[0]++; continue; } if (last == key.objectid) { if (key.type == BTRFS_EXTENT_ITEM_KEY) last = key.objectid + key.offset; else last = key.objectid + root->fs_info->nodesize; path.slots[0]++; continue; } ret = check_cache_range(root, cache, last, key.objectid - last); if (ret) break; if (key.type == BTRFS_EXTENT_ITEM_KEY) last = key.objectid + key.offset; else last = key.objectid + root->fs_info->nodesize; path.slots[0]++; } if (last < cache->key.objectid + cache->key.offset) ret = check_cache_range(root, cache, last, cache->key.objectid + cache->key.offset - last); out: btrfs_release_path(&path); if (!ret && !RB_EMPTY_ROOT(&cache->free_space_ctl->free_space_offset)) { fprintf(stderr, "There are still entries left in the space " "cache\n"); ret = -EINVAL; } return ret; } static int check_space_cache(struct btrfs_root *root) { struct btrfs_block_group_cache *cache; u64 start = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE; int ret; int error = 0; while (1) { ctx.item_count++; cache = btrfs_lookup_first_block_group(root->fs_info, start); if (!cache) break; start = cache->key.objectid + cache->key.offset; if (!cache->free_space_ctl) { if (btrfs_init_free_space_ctl(cache, root->fs_info->sectorsize)) { ret = -ENOMEM; break; } } else { btrfs_remove_free_space_cache(cache); } if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE)) { ret = exclude_super_stripes(root, cache); if (ret) { errno = -ret; fprintf(stderr, "could not exclude super stripes: %m\n"); error++; continue; } ret = load_free_space_tree(root->fs_info, cache); free_excluded_extents(root, cache); if (ret < 0) { errno = -ret; fprintf(stderr, "could not load free space tree: %m\n"); error++; continue; } error += ret; } else { ret = load_free_space_cache(root->fs_info, cache); if (ret < 0) error++; if (ret <= 0) continue; } ret = verify_space_cache(root, cache); if (ret) { fprintf(stderr, "cache appears valid but isn't %llu\n", cache->key.objectid); error++; } } return error ? -EINVAL : 0; } /* * Check data checksum for [@bytenr, @bytenr + @num_bytes). * * Return <0 for fatal error (fails to read checksum/data or allocate memory). * Return >0 for csum mismatch for any copy. * Return 0 if everything is OK. */ static int check_extent_csums(struct btrfs_root *root, u64 bytenr, u64 num_bytes, unsigned long leaf_offset, struct extent_buffer *eb) { struct btrfs_fs_info *fs_info = root->fs_info; u64 offset = 0; u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); char *data; unsigned long csum_offset; u32 csum; u32 csum_expected; u64 read_len; u64 data_checked = 0; u64 tmp; int ret = 0; int mirror; int num_copies; bool csum_mismatch = false; if (num_bytes % fs_info->sectorsize) return -EINVAL; data = malloc(num_bytes); if (!data) return -ENOMEM; num_copies = btrfs_num_copies(root->fs_info, bytenr, num_bytes); while (offset < num_bytes) { /* * Mirror 0 means 'read from any valid copy', so it's skipped. * The indexes 1-N represent the n-th copy for levels with * redundancy. */ for (mirror = 1; mirror <= num_copies; mirror++) { read_len = num_bytes - offset; /* read as much space once a time */ ret = read_extent_data(fs_info, data + offset, bytenr + offset, &read_len, mirror); if (ret) goto out; data_checked = 0; /* verify every 4k data's checksum */ while (data_checked < read_len) { csum = ~(u32)0; tmp = offset + data_checked; csum = btrfs_csum_data((char *)data + tmp, csum, fs_info->sectorsize); btrfs_csum_final(csum, (u8 *)&csum); csum_offset = leaf_offset + tmp / fs_info->sectorsize * csum_size; read_extent_buffer(eb, (char *)&csum_expected, csum_offset, csum_size); if (csum != csum_expected) { csum_mismatch = true; fprintf(stderr, "mirror %d bytenr %llu csum %u expected csum %u\n", mirror, bytenr + tmp, csum, csum_expected); } data_checked += fs_info->sectorsize; } } offset += read_len; } out: free(data); if (!ret && csum_mismatch) ret = 1; return ret; } static int check_extent_exists(struct btrfs_root *root, u64 bytenr, u64 num_bytes) { struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key key; int ret; btrfs_init_path(&path); key.objectid = bytenr; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = (u64)-1; again: ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, &path, 0, 0); if (ret < 0) { fprintf(stderr, "Error looking up extent record %d\n", ret); btrfs_release_path(&path); return ret; } else if (ret) { if (path.slots[0] > 0) { path.slots[0]--; } else { ret = btrfs_prev_leaf(root, &path); if (ret < 0) { goto out; } else if (ret > 0) { ret = 0; goto out; } } } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); /* * Block group items come before extent items if they have the same * bytenr, so walk back one more just in case. Dear future traveller, * first congrats on mastering time travel. Now if it's not too much * trouble could you go back to 2006 and tell Chris to make the * BLOCK_GROUP_ITEM_KEY (and BTRFS_*_REF_KEY) lower than the * EXTENT_ITEM_KEY please? */ while (key.type > BTRFS_EXTENT_ITEM_KEY) { if (path.slots[0] > 0) { path.slots[0]--; } else { ret = btrfs_prev_leaf(root, &path); if (ret < 0) { goto out; } else if (ret > 0) { ret = 0; goto out; } } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); } while (num_bytes) { if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(root, &path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); btrfs_release_path(&path); return ret; } else if (ret) { break; } } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type != BTRFS_EXTENT_ITEM_KEY) { path.slots[0]++; continue; } if (key.objectid + key.offset < bytenr) { path.slots[0]++; continue; } if (key.objectid > bytenr + num_bytes) break; if (key.objectid == bytenr) { if (key.offset >= num_bytes) { num_bytes = 0; break; } num_bytes -= key.offset; bytenr += key.offset; } else if (key.objectid < bytenr) { if (key.objectid + key.offset >= bytenr + num_bytes) { num_bytes = 0; break; } num_bytes = (bytenr + num_bytes) - (key.objectid + key.offset); bytenr = key.objectid + key.offset; } else { if (key.objectid + key.offset < bytenr + num_bytes) { u64 new_start = key.objectid + key.offset; u64 new_bytes = bytenr + num_bytes - new_start; /* * Weird case, the extent is in the middle of * our range, we'll have to search one side * and then the other. Not sure if this happens * in real life, but no harm in coding it up * anyway just in case. */ btrfs_release_path(&path); ret = check_extent_exists(root, new_start, new_bytes); if (ret) { fprintf(stderr, "Right section didn't " "have a record\n"); break; } num_bytes = key.objectid - bytenr; goto again; } num_bytes = key.objectid - bytenr; } path.slots[0]++; } ret = 0; out: if (num_bytes && !ret) { fprintf(stderr, "there are no extents for csum range %llu-%llu\n", bytenr, bytenr+num_bytes); ret = 1; } btrfs_release_path(&path); return ret; } static int check_csums(struct btrfs_root *root) { struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key key; u64 offset = 0, num_bytes = 0; u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); int errors = 0; int ret; u64 data_len; unsigned long leaf_offset; bool verify_csum = !!check_data_csum; root = root->fs_info->csum_root; if (!extent_buffer_uptodate(root->node)) { fprintf(stderr, "No valid csum tree found\n"); return -ENOENT; } btrfs_init_path(&path); key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.type = BTRFS_EXTENT_CSUM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) { fprintf(stderr, "Error searching csum tree %d\n", ret); btrfs_release_path(&path); return ret; } if (ret > 0 && path.slots[0]) path.slots[0]--; ret = 0; /* * For metadata dump (btrfs-image) all data is wiped so verifying data * csum is meaningless and will always report csum error. */ if (check_data_csum && (btrfs_super_flags(root->fs_info->super_copy) & (BTRFS_SUPER_FLAG_METADUMP | BTRFS_SUPER_FLAG_METADUMP_V2))) { printf("skip data csum verification for metadata dump\n"); verify_csum = false; } while (1) { ctx.item_count++; if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(root, &path); if (ret < 0) { fprintf(stderr, "Error going to next leaf " "%d\n", ret); break; } if (ret) break; } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type != BTRFS_EXTENT_CSUM_KEY) { path.slots[0]++; continue; } data_len = (btrfs_item_size_nr(leaf, path.slots[0]) / csum_size) * root->fs_info->sectorsize; if (!verify_csum) goto skip_csum_check; leaf_offset = btrfs_item_ptr_offset(leaf, path.slots[0]); ret = check_extent_csums(root, key.offset, data_len, leaf_offset, leaf); /* * Only break for fatal errors, if mismatch is found, continue * checking until all extents are checked. */ if (ret < 0) break; if (ret > 0) errors++; skip_csum_check: if (!num_bytes) { offset = key.offset; } else if (key.offset != offset + num_bytes) { ret = check_extent_exists(root, offset, num_bytes); if (ret) { fprintf(stderr, "csum exists for %llu-%llu but there is no extent record\n", offset, offset+num_bytes); errors++; } offset = key.offset; num_bytes = 0; } num_bytes += data_len; path.slots[0]++; } btrfs_release_path(&path); return errors; } static int is_dropped_key(struct btrfs_key *key, struct btrfs_key *drop_key) { if (key->objectid < drop_key->objectid) return 1; else if (key->objectid == drop_key->objectid) { if (key->type < drop_key->type) return 1; else if (key->type == drop_key->type) { if (key->offset < drop_key->offset) return 1; } } return 0; } /* * Here are the rules for FULL_BACKREF. * * 1) If BTRFS_HEADER_FLAG_RELOC is set then we have FULL_BACKREF set. * 2) If btrfs_header_owner(buf) no longer points to buf then we have * FULL_BACKREF set. * 3) We cowed the block walking down a reloc tree. This is impossible to tell * if it happened after the relocation occurred since we'll have dropped the * reloc root, so it's entirely possible to have FULL_BACKREF set on buf and * have no real way to know for sure. * * We process the blocks one root at a time, and we start from the lowest root * objectid and go to the highest. So we can just lookup the owner backref for * the record and if we don't find it then we know it doesn't exist and we have * a FULL BACKREF. * * FIXME: if we ever start reclaiming root objectid's then we need to fix this * assumption and simply indicate that we _think_ that the FULL BACKREF needs to * be set or not and then we can check later once we've gathered all the refs. */ static int calc_extent_flag(struct cache_tree *extent_cache, struct extent_buffer *buf, struct root_item_record *ri, u64 *flags) { struct extent_record *rec; struct cache_extent *cache; struct tree_backref *tback; u64 owner = 0; cache = lookup_cache_extent(extent_cache, buf->start, 1); /* we have added this extent before */ if (!cache) return -ENOENT; rec = container_of(cache, struct extent_record, cache); /* * Except file/reloc tree, we can not have * FULL BACKREF MODE */ if (ri->objectid < BTRFS_FIRST_FREE_OBJECTID) goto normal; /* * root node */ if (buf->start == ri->bytenr) goto normal; if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) goto full_backref; owner = btrfs_header_owner(buf); if (owner == ri->objectid) goto normal; tback = find_tree_backref(rec, 0, owner); if (!tback) goto full_backref; normal: *flags = 0; if (rec->flag_block_full_backref != FLAG_UNSET && rec->flag_block_full_backref != 0) rec->bad_full_backref = 1; return 0; full_backref: *flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; if (rec->flag_block_full_backref != FLAG_UNSET && rec->flag_block_full_backref != 1) rec->bad_full_backref = 1; return 0; } static void report_mismatch_key_root(u8 key_type, u64 rootid) { fprintf(stderr, "Invalid key type("); print_key_type(stderr, 0, key_type); fprintf(stderr, ") found in root("); print_objectid(stderr, rootid, 0); fprintf(stderr, ")\n"); } /* * Check if the key is valid with its extent buffer. * * This is a early check in case invalid key exists in a extent buffer * This is not comprehensive yet, but should prevent wrong key/item passed * further */ static int check_type_with_root(u64 rootid, u8 key_type) { switch (key_type) { /* Only valid in chunk tree */ case BTRFS_DEV_ITEM_KEY: case BTRFS_CHUNK_ITEM_KEY: if (rootid != BTRFS_CHUNK_TREE_OBJECTID) goto err; break; /* valid in csum and log tree */ case BTRFS_CSUM_TREE_OBJECTID: if (!(rootid == BTRFS_TREE_LOG_OBJECTID || is_fstree(rootid))) goto err; break; case BTRFS_EXTENT_ITEM_KEY: case BTRFS_METADATA_ITEM_KEY: case BTRFS_BLOCK_GROUP_ITEM_KEY: if (rootid != BTRFS_EXTENT_TREE_OBJECTID) goto err; break; case BTRFS_ROOT_ITEM_KEY: if (rootid != BTRFS_ROOT_TREE_OBJECTID) goto err; break; case BTRFS_DEV_EXTENT_KEY: if (rootid != BTRFS_DEV_TREE_OBJECTID) goto err; break; } return 0; err: report_mismatch_key_root(key_type, rootid); return -EINVAL; } static int run_next_block(struct btrfs_root *root, struct block_info *bits, int bits_nr, u64 *last, struct cache_tree *pending, struct cache_tree *seen, struct cache_tree *reada, struct cache_tree *nodes, struct cache_tree *extent_cache, struct cache_tree *chunk_cache, struct rb_root *dev_cache, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, struct root_item_record *ri) { struct btrfs_fs_info *fs_info = root->fs_info; struct extent_buffer *buf; struct extent_record *rec = NULL; u64 bytenr; u32 size; u64 parent; u64 owner; u64 flags; u64 ptr; u64 gen = 0; int ret = 0; int i; int nritems; struct btrfs_key key; struct cache_extent *cache; int reada_bits; nritems = pick_next_pending(pending, reada, nodes, *last, bits, bits_nr, &reada_bits); if (nritems == 0) return 1; if (!reada_bits) { for (i = 0; i < nritems; i++) { ret = add_cache_extent(reada, bits[i].start, bits[i].size); if (ret == -EEXIST) continue; /* fixme, get the parent transid */ readahead_tree_block(fs_info, bits[i].start, 0); } } *last = bits[0].start; bytenr = bits[0].start; size = bits[0].size; cache = lookup_cache_extent(pending, bytenr, size); if (cache) { remove_cache_extent(pending, cache); free(cache); } cache = lookup_cache_extent(reada, bytenr, size); if (cache) { remove_cache_extent(reada, cache); free(cache); } cache = lookup_cache_extent(nodes, bytenr, size); if (cache) { remove_cache_extent(nodes, cache); free(cache); } cache = lookup_cache_extent(extent_cache, bytenr, size); if (cache) { rec = container_of(cache, struct extent_record, cache); gen = rec->parent_generation; } /* fixme, get the real parent transid */ buf = read_tree_block(root->fs_info, bytenr, gen); if (!extent_buffer_uptodate(buf)) { record_bad_block_io(root->fs_info, extent_cache, bytenr, size); goto out; } nritems = btrfs_header_nritems(buf); flags = 0; if (!init_extent_tree) { ret = btrfs_lookup_extent_info(NULL, fs_info, bytenr, btrfs_header_level(buf), 1, NULL, &flags); if (ret < 0) { ret = calc_extent_flag(extent_cache, buf, ri, &flags); if (ret < 0) { fprintf(stderr, "Couldn't calc extent flags\n"); flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; } } } else { flags = 0; ret = calc_extent_flag(extent_cache, buf, ri, &flags); if (ret < 0) { fprintf(stderr, "Couldn't calc extent flags\n"); flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; } } if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { if (ri != NULL && ri->objectid != BTRFS_TREE_RELOC_OBJECTID && ri->objectid == btrfs_header_owner(buf)) { /* * Ok we got to this block from it's original owner and * we have FULL_BACKREF set. Relocation can leave * converted blocks over so this is altogether possible, * however it's not possible if the generation > the * last snapshot, so check for this case. */ if (!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC) && btrfs_header_generation(buf) > ri->last_snapshot) { flags &= ~BTRFS_BLOCK_FLAG_FULL_BACKREF; rec->bad_full_backref = 1; } } } else { if (ri != NULL && (ri->objectid == BTRFS_TREE_RELOC_OBJECTID || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) { flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; rec->bad_full_backref = 1; } } if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { rec->flag_block_full_backref = 1; parent = bytenr; owner = 0; } else { rec->flag_block_full_backref = 0; parent = 0; owner = btrfs_header_owner(buf); } ret = check_block(root, extent_cache, buf, flags); if (ret) goto out; if (btrfs_is_leaf(buf)) { btree_space_waste += btrfs_leaf_free_space(buf); for (i = 0; i < nritems; i++) { struct btrfs_file_extent_item *fi; btrfs_item_key_to_cpu(buf, &key, i); /* * Check key type against the leaf owner. * Could filter quite a lot of early error if * owner is correct */ if (check_type_with_root(btrfs_header_owner(buf), key.type)) { fprintf(stderr, "ignoring invalid key\n"); continue; } if (key.type == BTRFS_EXTENT_ITEM_KEY) { process_extent_item(root, extent_cache, buf, i); continue; } if (key.type == BTRFS_METADATA_ITEM_KEY) { process_extent_item(root, extent_cache, buf, i); continue; } if (key.type == BTRFS_EXTENT_CSUM_KEY) { total_csum_bytes += btrfs_item_size_nr(buf, i); continue; } if (key.type == BTRFS_CHUNK_ITEM_KEY) { process_chunk_item(chunk_cache, &key, buf, i); continue; } if (key.type == BTRFS_DEV_ITEM_KEY) { process_device_item(dev_cache, &key, buf, i); continue; } if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { process_block_group_item(block_group_cache, &key, buf, i); continue; } if (key.type == BTRFS_DEV_EXTENT_KEY) { process_device_extent_item(dev_extent_cache, &key, buf, i); continue; } /* Skip deprecated extent ref */ if (key.type == BTRFS_EXTENT_REF_V0_KEY) continue; if (key.type == BTRFS_TREE_BLOCK_REF_KEY) { ret = add_tree_backref(extent_cache, key.objectid, 0, key.offset, 0); if (ret < 0) { errno = -ret; error( "add_tree_backref failed (leaf tree block): %m"); } continue; } if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { ret = add_tree_backref(extent_cache, key.objectid, key.offset, 0, 0); if (ret < 0) { errno = -ret; error( "add_tree_backref failed (leaf shared block): %m"); } continue; } if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { struct btrfs_extent_data_ref *ref; ref = btrfs_item_ptr(buf, i, struct btrfs_extent_data_ref); add_data_backref(extent_cache, key.objectid, 0, btrfs_extent_data_ref_root(buf, ref), btrfs_extent_data_ref_objectid(buf, ref), btrfs_extent_data_ref_offset(buf, ref), btrfs_extent_data_ref_count(buf, ref), 0, root->fs_info->sectorsize); continue; } if (key.type == BTRFS_SHARED_DATA_REF_KEY) { struct btrfs_shared_data_ref *ref; ref = btrfs_item_ptr(buf, i, struct btrfs_shared_data_ref); add_data_backref(extent_cache, key.objectid, key.offset, 0, 0, 0, btrfs_shared_data_ref_count(buf, ref), 0, root->fs_info->sectorsize); continue; } if (key.type == BTRFS_ORPHAN_ITEM_KEY) { struct bad_item *bad; if (key.objectid == BTRFS_ORPHAN_OBJECTID) continue; if (!owner) continue; bad = malloc(sizeof(struct bad_item)); if (!bad) continue; INIT_LIST_HEAD(&bad->list); memcpy(&bad->key, &key, sizeof(struct btrfs_key)); bad->root_id = owner; list_add_tail(&bad->list, &delete_items); continue; } if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(buf, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(buf, fi) == BTRFS_FILE_EXTENT_INLINE) continue; if (btrfs_file_extent_disk_bytenr(buf, fi) == 0) continue; data_bytes_allocated += btrfs_file_extent_disk_num_bytes(buf, fi); if (data_bytes_allocated < root->fs_info->sectorsize) abort(); data_bytes_referenced += btrfs_file_extent_num_bytes(buf, fi); add_data_backref(extent_cache, btrfs_file_extent_disk_bytenr(buf, fi), parent, owner, key.objectid, key.offset - btrfs_file_extent_offset(buf, fi), 1, 1, btrfs_file_extent_disk_num_bytes(buf, fi)); } } else { int level; level = btrfs_header_level(buf); for (i = 0; i < nritems; i++) { struct extent_record tmpl; ptr = btrfs_node_blockptr(buf, i); size = root->fs_info->nodesize; btrfs_node_key_to_cpu(buf, &key, i); if (ri != NULL) { if ((level == ri->drop_level) && is_dropped_key(&key, &ri->drop_key)) { continue; } } memset(&tmpl, 0, sizeof(tmpl)); btrfs_cpu_key_to_disk(&tmpl.parent_key, &key); tmpl.parent_generation = btrfs_node_ptr_generation(buf, i); tmpl.start = ptr; tmpl.nr = size; tmpl.refs = 1; tmpl.metadata = 1; tmpl.max_size = size; ret = add_extent_rec(extent_cache, &tmpl); if (ret < 0) goto out; ret = add_tree_backref(extent_cache, ptr, parent, owner, 1); if (ret < 0) { errno = -ret; error( "add_tree_backref failed (non-leaf block): %m"); continue; } if (level > 1) add_pending(nodes, seen, ptr, size); else add_pending(pending, seen, ptr, size); } btree_space_waste += (BTRFS_NODEPTRS_PER_BLOCK(fs_info) - nritems) * sizeof(struct btrfs_key_ptr); } total_btree_bytes += buf->len; if (fs_root_objectid(btrfs_header_owner(buf))) total_fs_tree_bytes += buf->len; if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) total_extent_tree_bytes += buf->len; out: free_extent_buffer(buf); return ret; } static int add_root_to_pending(struct extent_buffer *buf, struct cache_tree *extent_cache, struct cache_tree *pending, struct cache_tree *seen, struct cache_tree *nodes, u64 objectid) { struct extent_record tmpl; int ret; if (btrfs_header_level(buf) > 0) add_pending(nodes, seen, buf->start, buf->len); else add_pending(pending, seen, buf->start, buf->len); memset(&tmpl, 0, sizeof(tmpl)); tmpl.start = buf->start; tmpl.nr = buf->len; tmpl.is_root = 1; tmpl.refs = 1; tmpl.metadata = 1; tmpl.max_size = buf->len; add_extent_rec(extent_cache, &tmpl); if (objectid == BTRFS_TREE_RELOC_OBJECTID || btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) ret = add_tree_backref(extent_cache, buf->start, buf->start, 0, 1); else ret = add_tree_backref(extent_cache, buf->start, 0, objectid, 1); return ret; } /* as we fix the tree, we might be deleting blocks that * we're tracking for repair. This hook makes sure we * remove any backrefs for blocks as we are fixing them. */ static int free_extent_hook(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset, int refs_to_drop) { struct extent_record *rec; struct cache_extent *cache; int is_data; struct cache_tree *extent_cache = fs_info->fsck_extent_cache; is_data = owner >= BTRFS_FIRST_FREE_OBJECTID; cache = lookup_cache_extent(extent_cache, bytenr, num_bytes); if (!cache) return 0; rec = container_of(cache, struct extent_record, cache); if (is_data) { struct data_backref *back; back = find_data_backref(rec, parent, root_objectid, owner, offset, 1, bytenr, num_bytes); if (!back) goto out; if (back->node.found_ref) { back->found_ref -= refs_to_drop; if (rec->refs) rec->refs -= refs_to_drop; } if (back->node.found_extent_tree) { back->num_refs -= refs_to_drop; if (rec->extent_item_refs) rec->extent_item_refs -= refs_to_drop; } if (back->found_ref == 0) back->node.found_ref = 0; if (back->num_refs == 0) back->node.found_extent_tree = 0; if (!back->node.found_extent_tree && back->node.found_ref) { rb_erase(&back->node.node, &rec->backref_tree); free(back); } } else { struct tree_backref *back; back = find_tree_backref(rec, parent, root_objectid); if (!back) goto out; if (back->node.found_ref) { if (rec->refs) rec->refs--; back->node.found_ref = 0; } if (back->node.found_extent_tree) { if (rec->extent_item_refs) rec->extent_item_refs--; back->node.found_extent_tree = 0; } if (!back->node.found_extent_tree && back->node.found_ref) { rb_erase(&back->node.node, &rec->backref_tree); free(back); } } maybe_free_extent_rec(extent_cache, rec); out: return 0; } static int delete_extent_records(struct btrfs_trans_handle *trans, struct btrfs_path *path, u64 bytenr) { struct btrfs_fs_info *fs_info = trans->fs_info; struct btrfs_key key; struct btrfs_key found_key; struct extent_buffer *leaf; int ret; int slot; key.objectid = bytenr; key.type = (u8)-1; key.offset = (u64)-1; while (1) { ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); if (ret < 0) break; if (ret > 0) { ret = 0; if (path->slots[0] == 0) break; path->slots[0]--; } ret = 0; leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != bytenr) break; if (found_key.type != BTRFS_EXTENT_ITEM_KEY && found_key.type != BTRFS_METADATA_ITEM_KEY && found_key.type != BTRFS_TREE_BLOCK_REF_KEY && found_key.type != BTRFS_EXTENT_DATA_REF_KEY && found_key.type != BTRFS_EXTENT_REF_V0_KEY && found_key.type != BTRFS_SHARED_BLOCK_REF_KEY && found_key.type != BTRFS_SHARED_DATA_REF_KEY) { btrfs_release_path(path); if (found_key.type == 0) { if (found_key.offset == 0) break; key.offset = found_key.offset - 1; key.type = found_key.type; } key.type = found_key.type - 1; key.offset = (u64)-1; continue; } fprintf(stderr, "repair deleting extent record: key [%llu,%u,%llu]\n", found_key.objectid, found_key.type, found_key.offset); ret = btrfs_del_item(trans, fs_info->extent_root, path); if (ret) break; btrfs_release_path(path); if (found_key.type == BTRFS_EXTENT_ITEM_KEY || found_key.type == BTRFS_METADATA_ITEM_KEY) { u64 bytes = (found_key.type == BTRFS_EXTENT_ITEM_KEY) ? found_key.offset : fs_info->nodesize; ret = btrfs_update_block_group(fs_info->extent_root, bytenr, bytes, 0, 0); if (ret) break; } } btrfs_release_path(path); return ret; } /* * for a single backref, this will allocate a new extent * and add the backref to it. */ static int record_extent(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_path *path, struct extent_record *rec, struct extent_backref *back, int allocated, u64 flags) { int ret = 0; struct btrfs_root *extent_root = info->extent_root; struct extent_buffer *leaf; struct btrfs_key ins_key; struct btrfs_extent_item *ei; struct data_backref *dback; struct btrfs_tree_block_info *bi; if (!back->is_data) rec->max_size = max_t(u64, rec->max_size, info->nodesize); if (!allocated) { u32 item_size = sizeof(*ei); if (!back->is_data) item_size += sizeof(*bi); ins_key.objectid = rec->start; ins_key.offset = rec->max_size; ins_key.type = BTRFS_EXTENT_ITEM_KEY; ret = btrfs_insert_empty_item(trans, extent_root, path, &ins_key, item_size); if (ret) goto fail; leaf = path->nodes[0]; ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); btrfs_set_extent_refs(leaf, ei, 0); btrfs_set_extent_generation(leaf, ei, rec->generation); if (back->is_data) { btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_DATA); } else { struct btrfs_disk_key copy_key; bi = (struct btrfs_tree_block_info *)(ei + 1); memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); btrfs_set_disk_key_objectid(©_key, rec->info_objectid); btrfs_set_disk_key_type(©_key, 0); btrfs_set_disk_key_offset(©_key, 0); btrfs_set_tree_block_level(leaf, bi, rec->info_level); btrfs_set_tree_block_key(leaf, bi, ©_key); btrfs_set_extent_flags(leaf, ei, flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); } btrfs_mark_buffer_dirty(leaf); ret = btrfs_update_block_group(extent_root, rec->start, rec->max_size, 1, 0); if (ret) goto fail; btrfs_release_path(path); } if (back->is_data) { u64 parent; int i; dback = to_data_backref(back); if (back->full_backref) parent = dback->parent; else parent = 0; for (i = 0; i < dback->found_ref; i++) { /* if parent != 0, we're doing a full backref * passing BTRFS_FIRST_FREE_OBJECTID as the owner * just makes the backref allocator create a data * backref */ ret = btrfs_inc_extent_ref(trans, info->extent_root, rec->start, rec->max_size, parent, dback->root, parent ? BTRFS_FIRST_FREE_OBJECTID : dback->owner, dback->offset); if (ret) break; } fprintf(stderr, "adding new data backref on %llu %s %llu owner %llu offset %llu found %d\n", (unsigned long long)rec->start, back->full_backref ? "parent" : "root", back->full_backref ? (unsigned long long)parent : (unsigned long long)dback->root, (unsigned long long)dback->owner, (unsigned long long)dback->offset, dback->found_ref); } else { u64 parent; struct tree_backref *tback; tback = to_tree_backref(back); if (back->full_backref) parent = tback->parent; else parent = 0; ret = btrfs_inc_extent_ref(trans, info->extent_root, rec->start, rec->max_size, parent, tback->root, 0, 0); fprintf(stderr, "adding new tree backref on start %llu len %llu parent %llu root %llu\n", rec->start, rec->max_size, parent, tback->root); } fail: btrfs_release_path(path); return ret; } static struct extent_entry *find_entry(struct list_head *entries, u64 bytenr, u64 bytes) { struct extent_entry *entry = NULL; list_for_each_entry(entry, entries, list) { if (entry->bytenr == bytenr && entry->bytes == bytes) return entry; } return NULL; } static struct extent_entry *find_most_right_entry(struct list_head *entries) { struct extent_entry *entry, *best = NULL, *prev = NULL; list_for_each_entry(entry, entries, list) { /* * If there are as many broken entries as entries then we know * not to trust this particular entry. */ if (entry->broken == entry->count) continue; /* * Special case, when there are only two entries and 'best' is * the first one */ if (!prev) { best = entry; prev = entry; continue; } /* * If our current entry == best then we can't be sure our best * is really the best, so we need to keep searching. */ if (best && best->count == entry->count) { prev = entry; best = NULL; continue; } /* Prev == entry, not good enough, have to keep searching */ if (!prev->broken && prev->count == entry->count) continue; if (!best) best = (prev->count > entry->count) ? prev : entry; else if (best->count < entry->count) best = entry; prev = entry; } return best; } static int repair_ref(struct btrfs_fs_info *info, struct btrfs_path *path, struct data_backref *dback, struct extent_entry *entry) { struct btrfs_trans_handle *trans; struct btrfs_root *root; struct btrfs_file_extent_item *fi; struct extent_buffer *leaf; struct btrfs_key key; u64 bytenr, bytes; int ret, err; key.objectid = dback->root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find root for our ref\n"); return -EINVAL; } /* * The backref points to the original offset of the extent if it was * split, so we need to search down to the offset we have and then walk * forward until we find the backref we're looking for. */ key.objectid = dback->owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = dback->offset; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { fprintf(stderr, "Error looking up ref %d\n", ret); return ret; } while (1) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret) { fprintf(stderr, "Couldn't find our ref, next\n"); return -EINVAL; } } leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); if (key.objectid != dback->owner || key.type != BTRFS_EXTENT_DATA_KEY) { fprintf(stderr, "Couldn't find our ref, search\n"); return -EINVAL; } fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); if (bytenr == dback->disk_bytenr && bytes == dback->bytes) break; path->slots[0]++; } btrfs_release_path(path); trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); /* * Ok we have the key of the file extent we want to fix, now we can cow * down to the thing and fix it. */ ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) { fprintf(stderr, "error cowing down to ref [%llu,%u,%llu]: %d\n", key.objectid, key.type, key.offset, ret); goto out; } if (ret > 0) { fprintf(stderr, "well that's odd, we just found this key [%llu,%u,%llu]\n", key.objectid, key.type, key.offset); ret = -EINVAL; goto out; } leaf = path->nodes[0]; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_compression(leaf, fi) && dback->disk_bytenr != entry->bytenr) { fprintf(stderr, "ref doesn't match the record start and is compressed, please take a btrfs-image of this file system and send it to a btrfs developer so they can complete this functionality for bytenr %llu\n", dback->disk_bytenr); ret = -EINVAL; goto out; } if (dback->node.broken && dback->disk_bytenr != entry->bytenr) { btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); } else if (dback->disk_bytenr > entry->bytenr) { u64 off_diff, offset; off_diff = dback->disk_bytenr - entry->bytenr; offset = btrfs_file_extent_offset(leaf, fi); if (dback->disk_bytenr + offset + btrfs_file_extent_num_bytes(leaf, fi) > entry->bytenr + entry->bytes) { fprintf(stderr, "ref is past the entry end, please take a btrfs-image of this file system and send it to a btrfs developer, ref %llu\n", dback->disk_bytenr); ret = -EINVAL; goto out; } offset += off_diff; btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); btrfs_set_file_extent_offset(leaf, fi, offset); } else if (dback->disk_bytenr < entry->bytenr) { u64 offset; offset = btrfs_file_extent_offset(leaf, fi); if (dback->disk_bytenr + offset < entry->bytenr) { fprintf(stderr, "ref is before the entry start, please take a btrfs-image of this file system and send it to a btrfs developer, ref %llu\n", dback->disk_bytenr); ret = -EINVAL; goto out; } offset += dback->disk_bytenr; offset -= entry->bytenr; btrfs_set_file_extent_disk_bytenr(leaf, fi, entry->bytenr); btrfs_set_file_extent_offset(leaf, fi, offset); } btrfs_set_file_extent_disk_num_bytes(leaf, fi, entry->bytes); /* * Chances are if disk_num_bytes were wrong then so is ram_bytes, but * only do this if we aren't using compression, otherwise it's a * trickier case. */ if (!btrfs_file_extent_compression(leaf, fi)) btrfs_set_file_extent_ram_bytes(leaf, fi, entry->bytes); else printf("ram bytes may be wrong?\n"); btrfs_mark_buffer_dirty(leaf); out: err = btrfs_commit_transaction(trans, root); btrfs_release_path(path); return ret ? ret : err; } static int verify_backrefs(struct btrfs_fs_info *info, struct btrfs_path *path, struct extent_record *rec) { struct extent_backref *back, *tmp; struct data_backref *dback; struct extent_entry *entry, *best = NULL; LIST_HEAD(entries); int nr_entries = 0; int broken_entries = 0; int ret = 0; short mismatch = 0; /* * Metadata is easy and the backrefs should always agree on bytenr and * size, if not we've got bigger issues. */ if (rec->metadata) return 0; rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { if (back->full_backref || !back->is_data) continue; dback = to_data_backref(back); /* * We only pay attention to backrefs that we found a real * backref for. */ if (dback->found_ref == 0) continue; /* * For now we only catch when the bytes don't match, not the * bytenr. We can easily do this at the same time, but I want * to have a fs image to test on before we just add repair * functionality willy-nilly so we know we won't screw up the * repair. */ entry = find_entry(&entries, dback->disk_bytenr, dback->bytes); if (!entry) { entry = malloc(sizeof(struct extent_entry)); if (!entry) { ret = -ENOMEM; goto out; } memset(entry, 0, sizeof(*entry)); entry->bytenr = dback->disk_bytenr; entry->bytes = dback->bytes; list_add_tail(&entry->list, &entries); nr_entries++; } /* * If we only have on entry we may think the entries agree when * in reality they don't so we have to do some extra checking. */ if (dback->disk_bytenr != rec->start || dback->bytes != rec->nr || back->broken) mismatch = 1; if (back->broken) { entry->broken++; broken_entries++; } entry->count++; } /* Yay all the backrefs agree, carry on good sir */ if (nr_entries <= 1 && !mismatch) goto out; fprintf(stderr, "attempting to repair backref discrepancy for bytenr %llu\n", rec->start); /* * First we want to see if the backrefs can agree amongst themselves who * is right, so figure out which one of the entries has the highest * count. */ best = find_most_right_entry(&entries); /* * Ok so we may have an even split between what the backrefs think, so * this is where we use the extent ref to see what it thinks. */ if (!best) { entry = find_entry(&entries, rec->start, rec->nr); if (!entry && (!broken_entries || !rec->found_rec)) { fprintf(stderr, "backrefs don't agree with each other and extent record doesn't agree with anybody, so we can't fix bytenr %llu bytes %llu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } else if (!entry) { /* * Ok our backrefs were broken, we'll assume this is the * correct value and add an entry for this range. */ entry = malloc(sizeof(struct extent_entry)); if (!entry) { ret = -ENOMEM; goto out; } memset(entry, 0, sizeof(*entry)); entry->bytenr = rec->start; entry->bytes = rec->nr; list_add_tail(&entry->list, &entries); nr_entries++; } entry->count++; best = find_most_right_entry(&entries); if (!best) { fprintf(stderr, "backrefs and extent record evenly split on who is right, this is going to require user input to fix bytenr %llu bytes %llu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } } /* * I don't think this can happen currently as we'll abort() if we catch * this case higher up, but in case somebody removes that we still can't * deal with it properly here yet, so just bail out of that's the case. */ if (best->bytenr != rec->start) { fprintf(stderr, "extent start and backref starts don't match, please use btrfs-image on this file system and send it to a btrfs developer so they can make fsck fix this particular case. bytenr is %llu, bytes is %llu\n", rec->start, rec->nr); ret = -EINVAL; goto out; } /* * Ok great we all agreed on an extent record, let's go find the real * references and fix up the ones that don't match. */ rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { if (back->full_backref || !back->is_data) continue; dback = to_data_backref(back); /* * Still ignoring backrefs that don't have a real ref attached * to them. */ if (dback->found_ref == 0) continue; if (dback->bytes == best->bytes && dback->disk_bytenr == best->bytenr) continue; ret = repair_ref(info, path, dback, best); if (ret) goto out; } /* * Ok we messed with the actual refs, which means we need to drop our * entire cache and go back and rescan. I know this is a huge pain and * adds a lot of extra work, but it's the only way to be safe. Once all * the backrefs agree we may not need to do anything to the extent * record itself. */ ret = -EAGAIN; out: while (!list_empty(&entries)) { entry = list_entry(entries.next, struct extent_entry, list); list_del_init(&entry->list); free(entry); } return ret; } static int process_duplicates(struct cache_tree *extent_cache, struct extent_record *rec) { struct extent_record *good, *tmp; struct cache_extent *cache; int ret; /* * If we found a extent record for this extent then return, or if we * have more than one duplicate we are likely going to need to delete * something. */ if (rec->found_rec || rec->num_duplicates > 1) return 0; /* Shouldn't happen but just in case */ BUG_ON(!rec->num_duplicates); /* * So this happens if we end up with a backref that doesn't match the * actual extent entry. So either the backref is bad or the extent * entry is bad. Either way we want to have the extent_record actually * reflect what we found in the extent_tree, so we need to take the * duplicate out and use that as the extent_record since the only way we * get a duplicate is if we find a real life BTRFS_EXTENT_ITEM_KEY. */ remove_cache_extent(extent_cache, &rec->cache); good = to_extent_record(rec->dups.next); list_del_init(&good->list); INIT_LIST_HEAD(&good->backrefs); INIT_LIST_HEAD(&good->dups); good->cache.start = good->start; good->cache.size = good->nr; good->content_checked = 0; good->owner_ref_checked = 0; good->num_duplicates = 0; good->refs = rec->refs; list_splice_init(&rec->backrefs, &good->backrefs); while (1) { cache = lookup_cache_extent(extent_cache, good->start, good->nr); if (!cache) break; tmp = container_of(cache, struct extent_record, cache); /* * If we find another overlapping extent and it's found_rec is * set then it's a duplicate and we need to try and delete * something. */ if (tmp->found_rec || tmp->num_duplicates > 0) { if (list_empty(&good->list)) list_add_tail(&good->list, &duplicate_extents); good->num_duplicates += tmp->num_duplicates + 1; list_splice_init(&tmp->dups, &good->dups); list_del_init(&tmp->list); list_add_tail(&tmp->list, &good->dups); remove_cache_extent(extent_cache, &tmp->cache); continue; } /* * Ok we have another non extent item backed extent rec, so lets * just add it to this extent and carry on like we did above. */ good->refs += tmp->refs; list_splice_init(&tmp->backrefs, &good->backrefs); remove_cache_extent(extent_cache, &tmp->cache); free(tmp); } ret = insert_cache_extent(extent_cache, &good->cache); BUG_ON(ret); free(rec); return good->num_duplicates ? 0 : 1; } static int delete_duplicate_records(struct btrfs_root *root, struct extent_record *rec) { struct btrfs_trans_handle *trans; LIST_HEAD(delete_list); struct btrfs_path path; struct extent_record *tmp, *good, *n; int nr_del = 0; int ret = 0, err; struct btrfs_key key; btrfs_init_path(&path); good = rec; /* Find the record that covers all of the duplicates. */ list_for_each_entry(tmp, &rec->dups, list) { if (good->start < tmp->start) continue; if (good->nr > tmp->nr) continue; if (tmp->start + tmp->nr < good->start + good->nr) { fprintf(stderr, "Ok we have overlapping extents that aren't completely covered by each other, this is going to require more careful thought. The extents are [%llu-%llu] and [%llu-%llu]\n", tmp->start, tmp->nr, good->start, good->nr); abort(); } good = tmp; } if (good != rec) list_add_tail(&rec->list, &delete_list); list_for_each_entry_safe(tmp, n, &rec->dups, list) { if (tmp == good) continue; list_move_tail(&tmp->list, &delete_list); } root = root->fs_info->extent_root; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } list_for_each_entry(tmp, &delete_list, list) { if (tmp->found_rec == 0) continue; key.objectid = tmp->start; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = tmp->nr; /* Shouldn't happen but just in case */ if (tmp->metadata) { fprintf(stderr, "well this shouldn't happen, extent record overlaps but is metadata? [%llu, %llu]\n", tmp->start, tmp->nr); abort(); } ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret) { if (ret > 0) ret = -EINVAL; break; } ret = btrfs_del_item(trans, root, &path); if (ret) break; btrfs_release_path(&path); nr_del++; } err = btrfs_commit_transaction(trans, root); if (err && !ret) ret = err; out: while (!list_empty(&delete_list)) { tmp = to_extent_record(delete_list.next); list_del_init(&tmp->list); if (tmp == rec) continue; free(tmp); } while (!list_empty(&rec->dups)) { tmp = to_extent_record(rec->dups.next); list_del_init(&tmp->list); free(tmp); } btrfs_release_path(&path); if (!ret && !nr_del) rec->num_duplicates = 0; return ret ? ret : nr_del; } /* * Based extent backref item, we find all file extent items in the fs tree. By * the info we can rebuild the extent backref item */ static int __find_possible_backrefs(struct btrfs_root *root, u64 owner, u64 offset, u64 bytenr, u64 *refs_ret, u64 *bytes_ret) { int ret = 0; struct btrfs_path path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_file_extent_item *fi; struct extent_buffer *leaf; u64 backref_offset, disk_bytenr; int slot; btrfs_init_path(&path); key.objectid = owner; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret > 0) ret = -ENOENT; if (ret) { btrfs_release_path(&path); return ret; } btrfs_release_path(&path); key.objectid = owner; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) { btrfs_release_path(&path); return ret; } while (1) { leaf = path.nodes[0]; slot = path.slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, &path); if (ret) { if (ret > 0) ret = 0; break; } leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if ((found_key.objectid != owner) || (found_key.type != BTRFS_EXTENT_DATA_KEY)) break; fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); backref_offset = found_key.offset - btrfs_file_extent_offset(leaf, fi); disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); *bytes_ret = btrfs_file_extent_disk_num_bytes(leaf, fi); if ((disk_bytenr == bytenr) && (backref_offset == offset)) { (*refs_ret)++; } path.slots[0]++; } btrfs_release_path(&path); return ret; } static int find_possible_backrefs(struct btrfs_fs_info *info, struct btrfs_path *path, struct cache_tree *extent_cache, struct extent_record *rec) { struct btrfs_root *root; struct extent_backref *back, *tmp; struct data_backref *dback; struct cache_extent *cache; struct btrfs_key key; u64 bytenr, bytes; u64 refs; int ret; rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { /* Don't care about full backrefs (poor unloved backrefs) */ if (back->full_backref || !back->is_data) continue; dback = to_data_backref(back); /* We found this one, we don't need to do a lookup */ if (dback->found_ref) continue; key.objectid = dback->root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(info, &key); /* No root, definitely a bad ref, skip */ if (IS_ERR(root) && PTR_ERR(root) == -ENOENT) continue; /* Other err, exit */ if (IS_ERR(root)) return PTR_ERR(root); refs = 0; bytes = 0; ret = __find_possible_backrefs(root, dback->owner, dback->offset, rec->start, &refs, &bytes); if (ret) continue; bytenr = rec->start; cache = lookup_cache_extent(extent_cache, bytenr, 1); if (cache) { struct extent_record *tmp; tmp = container_of(cache, struct extent_record, cache); /* * If we found an extent record for the bytenr for this * particular backref then we can't add it to our * current extent record. We only want to add backrefs * that don't have a corresponding extent item in the * extent tree since they likely belong to this record * and we need to fix it if it doesn't match bytenrs. */ if (tmp->found_rec) continue; } dback->found_ref += refs; dback->disk_bytenr = bytenr; dback->bytes = bytes; /* * Set this so the verify backref code knows not to trust the * values in this backref. */ back->broken = 1; } return 0; } /* * when an incorrect extent item is found, this will delete * all of the existing entries for it and recreate them * based on what the tree scan found. */ static int fixup_extent_refs(struct btrfs_fs_info *info, struct cache_tree *extent_cache, struct extent_record *rec) { struct btrfs_trans_handle *trans = NULL; int ret; struct btrfs_path path; struct cache_extent *cache; struct extent_backref *back, *tmp; int allocated = 0; u64 flags = 0; if (rec->flag_block_full_backref) flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; btrfs_init_path(&path); if (rec->refs != rec->extent_item_refs && !rec->metadata) { /* * Sometimes the backrefs themselves are so broken they don't * get attached to any meaningful rec, so first go back and * check any of our backrefs that we couldn't find and throw * them into the list if we find the backref so that * verify_backrefs can figure out what to do. */ ret = find_possible_backrefs(info, &path, extent_cache, rec); if (ret < 0) goto out; } /* step one, make sure all of the backrefs agree */ ret = verify_backrefs(info, &path, rec); if (ret < 0) goto out; trans = btrfs_start_transaction(info->extent_root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } /* step two, delete all the existing records */ ret = delete_extent_records(trans, &path, rec->start); if (ret < 0) goto out; /* was this block corrupt? If so, don't add references to it */ cache = lookup_cache_extent(info->corrupt_blocks, rec->start, rec->max_size); if (cache) { ret = 0; goto out; } /* step three, recreate all the refs we did find */ rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { /* * if we didn't find any references, don't create a * new extent record */ if (!back->found_ref) continue; rec->bad_full_backref = 0; ret = record_extent(trans, info, &path, rec, back, allocated, flags); allocated = 1; if (ret) goto out; } out: if (trans) { int err = btrfs_commit_transaction(trans, info->extent_root); if (!ret) ret = err; } if (!ret) fprintf(stderr, "Repaired extent references for %llu\n", (unsigned long long)rec->start); btrfs_release_path(&path); return ret; } static int fixup_extent_flags(struct btrfs_fs_info *fs_info, struct extent_record *rec) { struct btrfs_trans_handle *trans; struct btrfs_root *root = fs_info->extent_root; struct btrfs_path path; struct btrfs_extent_item *ei; struct btrfs_key key; u64 flags; int ret = 0; bool metadata_item = rec->metadata; if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) metadata_item = false; retry: key.objectid = rec->start; if (metadata_item) { key.type = BTRFS_METADATA_ITEM_KEY; key.offset = rec->info_level; } else { key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = rec->max_size; } trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, &key, &path, 0, 1); if (ret < 0) { btrfs_release_path(&path); btrfs_commit_transaction(trans, root); return ret; } else if (ret) { if (key.type == BTRFS_METADATA_ITEM_KEY) { metadata_item = false; goto retry; } fprintf(stderr, "Didn't find extent for %llu\n", (unsigned long long)rec->start); btrfs_release_path(&path); btrfs_commit_transaction(trans, root); return -ENOENT; } ei = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_extent_item); flags = btrfs_extent_flags(path.nodes[0], ei); if (rec->flag_block_full_backref) { fprintf(stderr, "setting full backref on %llu\n", (unsigned long long)key.objectid); flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; } else { fprintf(stderr, "clearing full backref on %llu\n", (unsigned long long)key.objectid); flags &= ~BTRFS_BLOCK_FLAG_FULL_BACKREF; } btrfs_set_extent_flags(path.nodes[0], ei, flags); btrfs_mark_buffer_dirty(path.nodes[0]); btrfs_release_path(&path); ret = btrfs_commit_transaction(trans, root); if (!ret) fprintf(stderr, "Repaired extent flags for %llu\n", (unsigned long long)rec->start); return ret; } /* right now we only prune from the extent allocation tree */ static int prune_one_block(struct btrfs_trans_handle *trans, struct btrfs_fs_info *info, struct btrfs_corrupt_block *corrupt) { int ret; struct btrfs_path path; struct extent_buffer *eb; u64 found; int slot; int nritems; int level = corrupt->level + 1; btrfs_init_path(&path); again: /* we want to stop at the parent to our busted block */ path.lowest_level = level; ret = btrfs_search_slot(trans, info->extent_root, &corrupt->key, &path, -1, 1); if (ret < 0) goto out; eb = path.nodes[level]; if (!eb) { ret = -ENOENT; goto out; } /* * hopefully the search gave us the block we want to prune, * lets try that first */ slot = path.slots[level]; found = btrfs_node_blockptr(eb, slot); if (found == corrupt->cache.start) goto del_ptr; nritems = btrfs_header_nritems(eb); /* the search failed, lets scan this node and hope we find it */ for (slot = 0; slot < nritems; slot++) { found = btrfs_node_blockptr(eb, slot); if (found == corrupt->cache.start) goto del_ptr; } /* * We couldn't find the bad block. * TODO: search all the nodes for pointers to this block */ if (eb == info->extent_root->node) { ret = -ENOENT; goto out; } else { level++; btrfs_release_path(&path); goto again; } del_ptr: printk("deleting pointer to block %llu\n", corrupt->cache.start); ret = btrfs_del_ptr(info->extent_root, &path, level, slot); out: btrfs_release_path(&path); return ret; } static int prune_corrupt_blocks(struct btrfs_fs_info *info) { struct btrfs_trans_handle *trans = NULL; struct cache_extent *cache; struct btrfs_corrupt_block *corrupt; while (1) { cache = search_cache_extent(info->corrupt_blocks, 0); if (!cache) break; if (!trans) { trans = btrfs_start_transaction(info->extent_root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); } corrupt = container_of(cache, struct btrfs_corrupt_block, cache); prune_one_block(trans, info, corrupt); remove_cache_extent(info->corrupt_blocks, cache); } if (trans) return btrfs_commit_transaction(trans, info->extent_root); return 0; } static int record_unaligned_extent_rec(struct btrfs_fs_info *fs_info, struct extent_record *rec) { struct extent_backref *back, *tmp; struct data_backref *dback; struct btrfs_root *dest_root; struct btrfs_key key; struct unaligned_extent_rec_t *urec; LIST_HEAD(entries); int ret = 0; fprintf(stderr, "record unaligned extent record on %llu %llu\n", rec->start, rec->nr); /* * Metadata is easy and the backrefs should always agree on bytenr and * size, if not we've got bigger issues. */ if (rec->metadata) return 0; rbtree_postorder_for_each_entry_safe(back, tmp, &rec->backref_tree, node) { if (back->full_backref || !back->is_data) continue; dback = to_data_backref(back); key.objectid = dback->root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; dest_root = btrfs_read_fs_root(fs_info, &key); /* For non-exist root we just skip it */ if (IS_ERR_OR_NULL(dest_root)) continue; urec = malloc(sizeof(struct unaligned_extent_rec_t)); if (!urec) return -ENOMEM; INIT_LIST_HEAD(&urec->list); urec->objectid = dest_root->objectid; urec->owner = dback->owner; urec->offset = 0; urec->bytenr = rec->start; ret = find_file_extent_offset_by_bytenr(dest_root, dback->owner, rec->start, &urec->offset); if (ret) { free(urec); return ret; } list_add(&urec->list, &dest_root->unaligned_extent_recs); } return ret; } static int check_extent_refs(struct btrfs_root *root, struct cache_tree *extent_cache) { struct extent_record *rec; struct cache_extent *cache; int ret = 0; int had_dups = 0; int err = 0; if (repair) { /* * if we're doing a repair, we have to make sure * we don't allocate from the problem extents. * In the worst case, this will be all the * extents in the FS */ cache = search_cache_extent(extent_cache, 0); while (cache) { rec = container_of(cache, struct extent_record, cache); set_extent_dirty(root->fs_info->excluded_extents, rec->start, rec->start + rec->max_size - 1); cache = next_cache_extent(cache); } /* pin down all the corrupted blocks too */ cache = search_cache_extent(root->fs_info->corrupt_blocks, 0); while (cache) { set_extent_dirty(root->fs_info->excluded_extents, cache->start, cache->start + cache->size - 1); cache = next_cache_extent(cache); } prune_corrupt_blocks(root->fs_info); reset_cached_block_groups(root->fs_info); } reset_cached_block_groups(root->fs_info); /* * We need to delete any duplicate entries we find first otherwise we * could mess up the extent tree when we have backrefs that actually * belong to a different extent item and not the weird duplicate one. */ while (repair && !list_empty(&duplicate_extents)) { rec = to_extent_record(duplicate_extents.next); list_del_init(&rec->list); /* Sometimes we can find a backref before we find an actual * extent, so we need to process it a little bit to see if there * truly are multiple EXTENT_ITEM_KEY's for the same range, or * if this is a backref screwup. If we need to delete stuff * process_duplicates() will return 0, otherwise it will return * 1 and we */ if (process_duplicates(extent_cache, rec)) continue; ret = delete_duplicate_records(root, rec); if (ret < 0) return ret; /* * delete_duplicate_records will return the number of entries * deleted, so if it's greater than 0 then we know we actually * did something and we need to remove. */ if (ret) had_dups = 1; } if (had_dups) return -EAGAIN; while (1) { int cur_err = 0; int fix = 0; cache = search_cache_extent(extent_cache, 0); if (!cache) break; rec = container_of(cache, struct extent_record, cache); if (rec->num_duplicates) { fprintf(stderr, "extent item %llu has multiple extent items\n", (unsigned long long)rec->start); cur_err = 1; } if (rec->refs != rec->extent_item_refs) { fprintf(stderr, "ref mismatch on [%llu %llu] ", (unsigned long long)rec->start, (unsigned long long)rec->nr); fprintf(stderr, "extent item %llu, found %llu\n", (unsigned long long)rec->extent_item_refs, (unsigned long long)rec->refs); fix = 1; cur_err = 1; } if (!IS_ALIGNED(rec->start, root->fs_info->sectorsize)) { fprintf(stderr, "unaligned extent rec on [%llu %llu]\n", (unsigned long long)rec->start, (unsigned long long)rec->nr); ret = record_unaligned_extent_rec(root->fs_info, rec); if (ret) goto repair_abort; /* No need to check backref */ goto next; } if (all_backpointers_checked(rec, 1)) { fprintf(stderr, "backpointer mismatch on [%llu %llu]\n", (unsigned long long)rec->start, (unsigned long long)rec->nr); fix = 1; cur_err = 1; } if (!rec->owner_ref_checked) { fprintf(stderr, "owner ref check failed [%llu %llu]\n", (unsigned long long)rec->start, (unsigned long long)rec->nr); fix = 1; cur_err = 1; } if (repair && fix) { ret = fixup_extent_refs(root->fs_info, extent_cache, rec); if (ret) goto repair_abort; } if (rec->bad_full_backref) { fprintf(stderr, "bad full backref, on [%llu]\n", (unsigned long long)rec->start); if (repair) { ret = fixup_extent_flags(root->fs_info, rec); if (ret) goto repair_abort; fix = 1; } cur_err = 1; } /* * Although it's not a extent ref's problem, we reuse this * routine for error reporting. * No repair function yet. */ if (rec->crossing_stripes) { fprintf(stderr, "bad metadata [%llu, %llu) crossing stripe boundary\n", rec->start, rec->start + rec->max_size); cur_err = 1; } if (rec->wrong_chunk_type) { fprintf(stderr, "bad extent [%llu, %llu), type mismatch with chunk\n", rec->start, rec->start + rec->max_size); cur_err = 1; } next: err = cur_err; remove_cache_extent(extent_cache, cache); free_all_extent_backrefs(rec); if (!init_extent_tree && repair && (!cur_err || fix)) clear_extent_dirty(root->fs_info->excluded_extents, rec->start, rec->start + rec->max_size - 1); free(rec); } repair_abort: if (repair) { if (ret && ret != -EAGAIN) { fprintf(stderr, "failed to repair damaged filesystem, aborting\n"); exit(1); } else if (!ret) { struct btrfs_trans_handle *trans; root = root->fs_info->extent_root; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto repair_abort; } ret = btrfs_fix_block_accounting(trans); if (ret) goto repair_abort; ret = btrfs_commit_transaction(trans, root); if (ret) goto repair_abort; } return ret; } if (err) err = -EIO; return err; } /* * Check the chunk with its block group/dev list ref: * Return 0 if all refs seems valid. * Return 1 if part of refs seems valid, need later check for rebuild ref * like missing block group and needs to search extent tree to rebuild them. * Return -1 if essential refs are missing and unable to rebuild. */ static int check_chunk_refs(struct chunk_record *chunk_rec, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, int silent) { struct cache_extent *block_group_item; struct block_group_record *block_group_rec; struct cache_extent *dev_extent_item; struct device_extent_record *dev_extent_rec; u64 devid; u64 offset; u64 length; int metadump_v2 = 0; int i; int ret = 0; block_group_item = lookup_cache_extent(&block_group_cache->tree, chunk_rec->offset, chunk_rec->length); if (block_group_item) { block_group_rec = container_of(block_group_item, struct block_group_record, cache); if (chunk_rec->length != block_group_rec->offset || chunk_rec->offset != block_group_rec->objectid || (!metadump_v2 && chunk_rec->type_flags != block_group_rec->flags)) { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu]: length(%llu), offset(%llu), type(%llu) mismatch with block group[%llu, %u, %llu]: offset(%llu), objectid(%llu), flags(%llu)\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->length, chunk_rec->offset, chunk_rec->type_flags, block_group_rec->objectid, block_group_rec->type, block_group_rec->offset, block_group_rec->offset, block_group_rec->objectid, block_group_rec->flags); ret = -1; } else { list_del_init(&block_group_rec->list); chunk_rec->bg_rec = block_group_rec; } } else { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu]: length(%llu), offset(%llu), type(%llu) is not found in block group\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->length, chunk_rec->offset, chunk_rec->type_flags); ret = 1; } if (metadump_v2) return ret; length = calc_stripe_length(chunk_rec->type_flags, chunk_rec->length, chunk_rec->num_stripes); for (i = 0; i < chunk_rec->num_stripes; ++i) { devid = chunk_rec->stripes[i].devid; offset = chunk_rec->stripes[i].offset; dev_extent_item = lookup_cache_extent2(&dev_extent_cache->tree, devid, offset, length); if (dev_extent_item) { dev_extent_rec = container_of(dev_extent_item, struct device_extent_record, cache); if (dev_extent_rec->objectid != devid || dev_extent_rec->offset != offset || dev_extent_rec->chunk_offset != chunk_rec->offset || dev_extent_rec->length != length) { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu] stripe[%llu, %llu] mismatch dev extent[%llu, %llu, %llu]\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->stripes[i].devid, chunk_rec->stripes[i].offset, dev_extent_rec->objectid, dev_extent_rec->offset, dev_extent_rec->length); ret = -1; } else { list_move(&dev_extent_rec->chunk_list, &chunk_rec->dextents); } } else { if (!silent) fprintf(stderr, "Chunk[%llu, %u, %llu] stripe[%llu, %llu] is not found in dev extent\n", chunk_rec->objectid, chunk_rec->type, chunk_rec->offset, chunk_rec->stripes[i].devid, chunk_rec->stripes[i].offset); ret = -1; } } return ret; } /* check btrfs_chunk -> btrfs_dev_extent / btrfs_block_group_item */ int check_chunks(struct cache_tree *chunk_cache, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache, struct list_head *good, struct list_head *bad, struct list_head *rebuild, int silent) { struct cache_extent *chunk_item; struct chunk_record *chunk_rec; struct block_group_record *bg_rec; struct device_extent_record *dext_rec; int err; int ret = 0; chunk_item = first_cache_extent(chunk_cache); while (chunk_item) { chunk_rec = container_of(chunk_item, struct chunk_record, cache); err = check_chunk_refs(chunk_rec, block_group_cache, dev_extent_cache, silent); if (err < 0) ret = err; if (err == 0 && good) list_add_tail(&chunk_rec->list, good); if (err > 0 && rebuild) list_add_tail(&chunk_rec->list, rebuild); if (err < 0 && bad) list_add_tail(&chunk_rec->list, bad); chunk_item = next_cache_extent(chunk_item); } list_for_each_entry(bg_rec, &block_group_cache->block_groups, list) { if (!silent) fprintf(stderr, "Block group[%llu, %llu] (flags = %llu) didn't find the relative chunk.\n", bg_rec->objectid, bg_rec->offset, bg_rec->flags); if (!ret) ret = 1; } list_for_each_entry(dext_rec, &dev_extent_cache->no_chunk_orphans, chunk_list) { if (!silent) fprintf(stderr, "Device extent[%llu, %llu, %llu] didn't find the relative chunk.\n", dext_rec->objectid, dext_rec->offset, dext_rec->length); if (!ret) ret = 1; } return ret; } static int check_device_used(struct device_record *dev_rec, struct device_extent_tree *dext_cache) { struct cache_extent *cache; struct device_extent_record *dev_extent_rec; u64 total_byte = 0; if (dev_rec->byte_used > dev_rec->total_byte) { error( "device %llu has incorrect used bytes %llu > total bytes %llu", dev_rec->devid, dev_rec->byte_used, dev_rec->total_byte); return -EUCLEAN; } cache = search_cache_extent2(&dext_cache->tree, dev_rec->devid, 0); while (cache) { dev_extent_rec = container_of(cache, struct device_extent_record, cache); if (dev_extent_rec->objectid != dev_rec->devid) break; list_del_init(&dev_extent_rec->device_list); total_byte += dev_extent_rec->length; cache = next_cache_extent(cache); } if (total_byte != dev_rec->byte_used) { fprintf(stderr, "Dev extent's total-byte(%llu) is not equal to byte-used(%llu) in dev[%llu, %u, %llu]\n", total_byte, dev_rec->byte_used, dev_rec->objectid, dev_rec->type, dev_rec->offset); return -1; } else { return 0; } } /* * Unlike device size alignment check above, some super total_bytes check * failure can lead to mount failure for newer kernel. * * So this function will return the error for a fatal super total_bytes problem. */ static bool is_super_size_valid(struct btrfs_fs_info *fs_info) { struct btrfs_device *dev; struct list_head *dev_list = &fs_info->fs_devices->devices; u64 total_bytes = 0; u64 super_bytes = btrfs_super_total_bytes(fs_info->super_copy); list_for_each_entry(dev, dev_list, dev_list) total_bytes += dev->total_bytes; /* Important check, which can cause unmountable fs */ if (super_bytes < total_bytes) { error("super total bytes %llu smaller than real device(s) size %llu", super_bytes, total_bytes); error("mounting this fs may fail for newer kernels"); error("this can be fixed by 'btrfs rescue fix-device-size'"); return false; } /* * Optional check, just to make everything aligned and match with each * other. * * For a btrfs-image restored fs, we don't need to check it anyway. */ if (btrfs_super_flags(fs_info->super_copy) & (BTRFS_SUPER_FLAG_METADUMP | BTRFS_SUPER_FLAG_METADUMP_V2)) return true; if (!IS_ALIGNED(super_bytes, fs_info->sectorsize) || !IS_ALIGNED(total_bytes, fs_info->sectorsize) || super_bytes != total_bytes) { warning("minor unaligned/mismatch device size detected"); warning( "recommended to use 'btrfs rescue fix-device-size' to fix it"); } return true; } /* check btrfs_dev_item -> btrfs_dev_extent */ static int check_devices(struct rb_root *dev_cache, struct device_extent_tree *dev_extent_cache) { struct rb_node *dev_node; struct device_record *dev_rec; struct device_extent_record *dext_rec; int err; int ret = 0; dev_node = rb_first(dev_cache); while (dev_node) { dev_rec = container_of(dev_node, struct device_record, node); err = check_device_used(dev_rec, dev_extent_cache); if (err) ret = err; check_dev_size_alignment(dev_rec->devid, dev_rec->total_byte, global_info->sectorsize); dev_node = rb_next(dev_node); } list_for_each_entry(dext_rec, &dev_extent_cache->no_device_orphans, device_list) { fprintf(stderr, "Device extent[%llu, %llu, %llu] didn't find its device.\n", dext_rec->objectid, dext_rec->offset, dext_rec->length); if (!ret) ret = 1; } return ret; } static int add_root_item_to_list(struct list_head *head, u64 objectid, u64 bytenr, u64 last_snapshot, u8 level, u8 drop_level, struct btrfs_key *drop_key) { struct root_item_record *ri_rec; ri_rec = malloc(sizeof(*ri_rec)); if (!ri_rec) return -ENOMEM; ri_rec->bytenr = bytenr; ri_rec->objectid = objectid; ri_rec->level = level; ri_rec->drop_level = drop_level; ri_rec->last_snapshot = last_snapshot; if (drop_key) memcpy(&ri_rec->drop_key, drop_key, sizeof(*drop_key)); list_add_tail(&ri_rec->list, head); return 0; } static void free_root_item_list(struct list_head *list) { struct root_item_record *ri_rec; while (!list_empty(list)) { ri_rec = list_first_entry(list, struct root_item_record, list); list_del_init(&ri_rec->list); free(ri_rec); } } static int deal_root_from_list(struct list_head *list, struct btrfs_root *root, struct block_info *bits, int bits_nr, struct cache_tree *pending, struct cache_tree *seen, struct cache_tree *reada, struct cache_tree *nodes, struct cache_tree *extent_cache, struct cache_tree *chunk_cache, struct rb_root *dev_cache, struct block_group_tree *block_group_cache, struct device_extent_tree *dev_extent_cache) { int ret = 0; u64 last; while (!list_empty(list)) { struct root_item_record *rec; struct extent_buffer *buf; rec = list_entry(list->next, struct root_item_record, list); last = 0; buf = read_tree_block(root->fs_info, rec->bytenr, 0); if (!extent_buffer_uptodate(buf)) { free_extent_buffer(buf); ret = -EIO; break; } ret = add_root_to_pending(buf, extent_cache, pending, seen, nodes, rec->objectid); if (ret < 0) break; /* * To rebuild extent tree, we need deal with snapshot * one by one, otherwise we deal with node firstly which * can maximize readahead. */ while (1) { ctx.item_count++; ret = run_next_block(root, bits, bits_nr, &last, pending, seen, reada, nodes, extent_cache, chunk_cache, dev_cache, block_group_cache, dev_extent_cache, rec); if (ret != 0) break; } free_extent_buffer(buf); list_del(&rec->list); free(rec); if (ret < 0) break; } while (ret >= 0) { ret = run_next_block(root, bits, bits_nr, &last, pending, seen, reada, nodes, extent_cache, chunk_cache, dev_cache, block_group_cache, dev_extent_cache, NULL); if (ret != 0) { if (ret > 0) ret = 0; break; } } return ret; } /** * parse_tree_roots - Go over all roots in the tree root and add each one to * a list. * * @fs_info - pointer to fs_info struct of the file system. * * @normal_trees - list to contains all roots which don't have a drop * operation in progress * * @dropping_trees - list containing all roots which have a drop operation * pending * * Returns 0 on success or a negative value indicating an error. */ static int parse_tree_roots(struct btrfs_fs_info *fs_info, struct list_head *normal_trees, struct list_head *dropping_trees) { struct btrfs_path path; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root_item ri; struct extent_buffer *leaf; int slot; int ret = 0; btrfs_init_path(&path); key.offset = 0; key.objectid = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, &path, 0, 0); if (ret < 0) goto out; while (1) { leaf = path.nodes[0]; slot = path.slots[0]; if (slot >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(fs_info->tree_root, &path); if (ret != 0) break; leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &found_key, path.slots[0]); if (found_key.type == BTRFS_ROOT_ITEM_KEY) { unsigned long offset; u64 last_snapshot; u8 level; offset = btrfs_item_ptr_offset(leaf, path.slots[0]); read_extent_buffer(leaf, &ri, offset, sizeof(ri)); last_snapshot = btrfs_root_last_snapshot(&ri); level = btrfs_root_level(&ri); if (btrfs_disk_key_objectid(&ri.drop_progress) == 0) { ret = add_root_item_to_list(normal_trees, found_key.objectid, btrfs_root_bytenr(&ri), last_snapshot, level, 0, NULL); if (ret < 0) break; } else { u64 objectid = found_key.objectid; btrfs_disk_key_to_cpu(&found_key, &ri.drop_progress); ret = add_root_item_to_list(dropping_trees, objectid, btrfs_root_bytenr(&ri), last_snapshot, level, ri.drop_level, &found_key); if (ret < 0) break; } } path.slots[0]++; } out: btrfs_release_path(&path); return ret; } /* * Check if all dev extents are valid (not overlapping nor beyond device * boundary). * * Dev extents <-> chunk cross checking is already done in check_chunks(). */ static int check_dev_extents(struct btrfs_fs_info *fs_info) { struct btrfs_path path; struct btrfs_key key; struct btrfs_root *dev_root = fs_info->dev_root; int ret; u64 prev_devid = 0; u64 prev_dev_ext_end = 0; btrfs_init_path(&path); key.objectid = 1; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0); if (ret < 0) { errno = -ret; error("failed to search device tree: %m"); goto out; } if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(dev_root, &path); if (ret < 0) { errno = -ret; error("failed to find next leaf: %m"); goto out; } if (ret > 0) { ret = 0; goto out; } } while (1) { struct btrfs_dev_extent *dev_ext; struct btrfs_device *dev; u64 devid; u64 physical_offset; u64 physical_len; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); if (key.type != BTRFS_DEV_EXTENT_KEY) break; dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_extent); devid = key.objectid; physical_offset = key.offset; physical_len = btrfs_dev_extent_length(path.nodes[0], dev_ext); dev = btrfs_find_device(fs_info, devid, NULL, NULL); if (!dev) { error("failed to find device with devid %llu", devid); ret = -EUCLEAN; goto out; } if (prev_devid == devid && prev_dev_ext_end > physical_offset) { error( "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", devid, physical_offset, prev_dev_ext_end); ret = -EUCLEAN; goto out; } if (physical_offset + physical_len > dev->total_bytes) { error( "dev extent devid %llu physical offset %llu len %llu is beyond device boudnary %llu", devid, physical_offset, physical_len, dev->total_bytes); ret = -EUCLEAN; goto out; } prev_devid = devid; prev_dev_ext_end = physical_offset + physical_len; ret = btrfs_next_item(dev_root, &path); if (ret < 0) { errno = -ret; error("failed to find next leaf: %m"); goto out; } if (ret > 0) { ret = 0; break; } } out: btrfs_release_path(&path); return ret; } static int check_chunks_and_extents(struct btrfs_fs_info *fs_info) { struct rb_root dev_cache; struct cache_tree chunk_cache; struct block_group_tree block_group_cache; struct device_extent_tree dev_extent_cache; struct cache_tree extent_cache; struct cache_tree seen; struct cache_tree pending; struct cache_tree reada; struct cache_tree nodes; struct extent_io_tree excluded_extents; struct cache_tree corrupt_blocks; int ret, err = 0; struct block_info *bits; int bits_nr; struct list_head dropping_trees; struct list_head normal_trees; struct btrfs_root *root1; struct btrfs_root *root; u8 level; root = fs_info->fs_root; dev_cache = RB_ROOT; cache_tree_init(&chunk_cache); block_group_tree_init(&block_group_cache); device_extent_tree_init(&dev_extent_cache); cache_tree_init(&extent_cache); cache_tree_init(&seen); cache_tree_init(&pending); cache_tree_init(&nodes); cache_tree_init(&reada); cache_tree_init(&corrupt_blocks); extent_io_tree_init(&excluded_extents); INIT_LIST_HEAD(&dropping_trees); INIT_LIST_HEAD(&normal_trees); if (repair) { fs_info->excluded_extents = &excluded_extents; fs_info->fsck_extent_cache = &extent_cache; fs_info->free_extent_hook = free_extent_hook; fs_info->corrupt_blocks = &corrupt_blocks; } bits_nr = 1024; bits = malloc(bits_nr * sizeof(struct block_info)); if (!bits) { perror("malloc"); exit(1); } again: root1 = fs_info->tree_root; level = btrfs_header_level(root1->node); ret = add_root_item_to_list(&normal_trees, root1->root_key.objectid, root1->node->start, 0, level, 0, NULL); if (ret < 0) goto out; root1 = fs_info->chunk_root; level = btrfs_header_level(root1->node); ret = add_root_item_to_list(&normal_trees, root1->root_key.objectid, root1->node->start, 0, level, 0, NULL); if (ret < 0) goto out; ret = parse_tree_roots(fs_info, &normal_trees, &dropping_trees); if (ret < 0) goto out; /* * check_block can return -EAGAIN if it fixes something, please keep * this in mind when dealing with return values from these functions, if * we get -EAGAIN we want to fall through and restart the loop. */ ret = deal_root_from_list(&normal_trees, root, bits, bits_nr, &pending, &seen, &reada, &nodes, &extent_cache, &chunk_cache, &dev_cache, &block_group_cache, &dev_extent_cache); if (ret < 0) { if (ret == -EAGAIN) goto loop; goto out; } ret = deal_root_from_list(&dropping_trees, root, bits, bits_nr, &pending, &seen, &reada, &nodes, &extent_cache, &chunk_cache, &dev_cache, &block_group_cache, &dev_extent_cache); if (ret < 0) { if (ret == -EAGAIN) goto loop; goto out; } ret = check_dev_extents(fs_info); if (ret < 0) { err = ret; goto out; } ret = check_chunks(&chunk_cache, &block_group_cache, &dev_extent_cache, NULL, NULL, NULL, 0); if (ret) { if (ret == -EAGAIN) goto loop; err = ret; } ret = check_extent_refs(root, &extent_cache); if (ret < 0) { if (ret == -EAGAIN) goto loop; goto out; } ret = check_devices(&dev_cache, &dev_extent_cache); if (ret && err) ret = err; out: if (repair) { free_corrupt_blocks_tree(fs_info->corrupt_blocks); extent_io_tree_cleanup(&excluded_extents); fs_info->fsck_extent_cache = NULL; fs_info->free_extent_hook = NULL; fs_info->corrupt_blocks = NULL; fs_info->excluded_extents = NULL; } free(bits); free_chunk_cache_tree(&chunk_cache); free_device_cache_tree(&dev_cache); free_block_group_tree(&block_group_cache); free_device_extent_tree(&dev_extent_cache); free_extent_cache_tree(&seen); free_extent_cache_tree(&pending); free_extent_cache_tree(&reada); free_extent_cache_tree(&nodes); free_root_item_list(&normal_trees); free_root_item_list(&dropping_trees); return ret; loop: free_corrupt_blocks_tree(fs_info->corrupt_blocks); free_extent_cache_tree(&seen); free_extent_cache_tree(&pending); free_extent_cache_tree(&reada); free_extent_cache_tree(&nodes); free_chunk_cache_tree(&chunk_cache); free_block_group_tree(&block_group_cache); free_device_cache_tree(&dev_cache); free_device_extent_tree(&dev_extent_cache); free_extent_record_cache(&extent_cache); free_root_item_list(&normal_trees); free_root_item_list(&dropping_trees); extent_io_tree_cleanup(&excluded_extents); goto again; } static int do_check_chunks_and_extents(struct btrfs_fs_info *fs_info) { int ret; if (check_mode == CHECK_MODE_LOWMEM) ret = check_chunks_and_extents_lowmem(fs_info); else ret = check_chunks_and_extents(fs_info); /* Also repair device size related problems */ if (repair && !ret) { ret = btrfs_fix_device_and_super_size(fs_info); if (ret > 0) ret = 0; } return ret; } static int btrfs_fsck_reinit_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct extent_buffer *c; struct extent_buffer *old = root->node; int level; int ret; struct btrfs_disk_key disk_key = {0,0,0}; level = 0; c = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize, root->root_key.objectid, &disk_key, level, 0, 0); if (IS_ERR(c)) return PTR_ERR(c); memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); btrfs_set_header_level(c, level); btrfs_set_header_bytenr(c, c->start); btrfs_set_header_generation(c, trans->transid); btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(c, root->root_key.objectid); write_extent_buffer(c, root->fs_info->fs_devices->metadata_uuid, btrfs_header_fsid(), BTRFS_FSID_SIZE); write_extent_buffer(c, root->fs_info->chunk_tree_uuid, btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); btrfs_mark_buffer_dirty(c); /* * this case can happen in the following case: * * reinit reloc data root, this is because we skip pin * down reloc data tree before which means we can allocate * same block bytenr here. */ if (old->start == c->start) { btrfs_set_root_generation(&root->root_item, trans->transid); root->root_item.level = btrfs_header_level(root->node); ret = btrfs_update_root(trans, root->fs_info->tree_root, &root->root_key, &root->root_item); if (ret) { free_extent_buffer(c); return ret; } } free_extent_buffer(old); root->node = c; add_root_to_dirty_list(root); return 0; } static int reset_block_groups(struct btrfs_fs_info *fs_info) { struct btrfs_block_group_cache *cache; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_chunk *chunk; struct btrfs_key key; int ret; u64 start; btrfs_init_path(&path); key.objectid = 0; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, &path, 0, 0); if (ret < 0) { btrfs_release_path(&path); return ret; } /* * We do this in case the block groups were screwed up and had alloc * bits that aren't actually set on the chunks. This happens with * restored images every time and could happen in real life I guess. */ fs_info->avail_data_alloc_bits = 0; fs_info->avail_metadata_alloc_bits = 0; fs_info->avail_system_alloc_bits = 0; /* First we need to create the in-memory block groups */ while (1) { if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(fs_info->chunk_root, &path); if (ret < 0) { btrfs_release_path(&path); return ret; } if (ret) { ret = 0; break; } } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type != BTRFS_CHUNK_ITEM_KEY) { path.slots[0]++; continue; } chunk = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_chunk); btrfs_add_block_group(fs_info, 0, btrfs_chunk_type(leaf, chunk), key.offset, btrfs_chunk_length(leaf, chunk)); set_extent_dirty(&fs_info->free_space_cache, key.offset, key.offset + btrfs_chunk_length(leaf, chunk)); path.slots[0]++; } start = 0; while (1) { cache = btrfs_lookup_first_block_group(fs_info, start); if (!cache) break; cache->cached = 1; start = cache->key.objectid + cache->key.offset; } btrfs_release_path(&path); return 0; } static int reset_balance(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key key; int del_slot, del_nr = 0; int ret; int found = 0; btrfs_init_path(&path); key.objectid = BTRFS_BALANCE_OBJECTID; key.type = BTRFS_BALANCE_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret) { if (ret > 0) ret = 0; if (!ret) goto reinit_data_reloc; else goto out; } ret = btrfs_del_item(trans, root, &path); if (ret) goto out; btrfs_release_path(&path); key.objectid = BTRFS_TREE_RELOC_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) goto out; while (1) { if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { if (!found) break; if (del_nr) { ret = btrfs_del_items(trans, root, &path, del_slot, del_nr); del_nr = 0; if (ret) goto out; } key.offset++; btrfs_release_path(&path); found = 0; ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) goto out; continue; } found = 1; leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.objectid > BTRFS_TREE_RELOC_OBJECTID) break; if (key.objectid != BTRFS_TREE_RELOC_OBJECTID) { path.slots[0]++; continue; } if (!del_nr) { del_slot = path.slots[0]; del_nr = 1; } else { del_nr++; } path.slots[0]++; } if (del_nr) { ret = btrfs_del_items(trans, root, &path, del_slot, del_nr); if (ret) goto out; } btrfs_release_path(&path); reinit_data_reloc: key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Error reading data reloc tree\n"); ret = PTR_ERR(root); goto out; } record_root_in_trans(trans, root); ret = btrfs_fsck_reinit_root(trans, root); if (ret) goto out; ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID); out: btrfs_release_path(&path); return ret; } static int reinit_extent_tree(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, bool pin) { u64 start = 0; int ret; /* * The only reason we don't do this is because right now we're just * walking the trees we find and pinning down their bytes, we don't look * at any of the leaves. In order to do mixed groups we'd have to check * the leaves of any fs roots and pin down the bytes for any file * extents we find. Not hard but why do it if we don't have to? */ if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { fprintf(stderr, "We don't support re-initing the extent tree " "for mixed block groups yet, please notify a btrfs " "developer you want to do this so they can add this " "functionality.\n"); return -EINVAL; } /* * first we need to walk all of the trees except the extent tree and pin * down/exclude the bytes that are in use so we don't overwrite any * existing metadata. * If pinned, unpin will be done in the end of transaction. * If excluded, cleanup will be done in check_chunks_and_extents_lowmem. */ again: if (pin) { ret = pin_metadata_blocks(fs_info); if (ret) { fprintf(stderr, "error pinning down used bytes\n"); return ret; } } else { ret = exclude_metadata_blocks(fs_info); if (ret) { fprintf(stderr, "error excluding used bytes\n"); printf("try to pin down used bytes\n"); pin = true; goto again; } } /* * Need to drop all the block groups since we're going to recreate all * of them again. */ btrfs_free_block_groups(fs_info); ret = reset_block_groups(fs_info); if (ret) { fprintf(stderr, "error resetting the block groups\n"); return ret; } /* Ok we can allocate now, reinit the extent root */ ret = btrfs_fsck_reinit_root(trans, fs_info->extent_root); if (ret) { fprintf(stderr, "extent root initialization failed\n"); /* * When the transaction code is updated we should end the * transaction, but for now progs only knows about commit so * just return an error. */ return ret; } /* * Now we have all the in-memory block groups setup so we can make * allocations properly, and the metadata we care about is safe since we * pinned all of it above. */ while (1) { struct btrfs_block_group_cache *cache; cache = btrfs_lookup_first_block_group(fs_info, start); if (!cache) break; start = cache->key.objectid + cache->key.offset; ret = btrfs_insert_item(trans, fs_info->extent_root, &cache->key, &cache->item, sizeof(cache->item)); if (ret) { fprintf(stderr, "Error adding block group\n"); return ret; } btrfs_run_delayed_refs(trans, -1); } ret = reset_balance(trans, fs_info); if (ret) fprintf(stderr, "error resetting the pending balance\n"); return ret; } static int recow_extent_buffer(struct btrfs_root *root, struct extent_buffer *eb) { struct btrfs_path path; struct btrfs_trans_handle *trans; struct btrfs_key key; int ret; printf("Recowing metadata block %llu\n", eb->start); key.objectid = btrfs_header_owner(eb); key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find owner root %llu\n", key.objectid); return PTR_ERR(root); } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_init_path(&path); path.lowest_level = btrfs_header_level(eb); if (path.lowest_level) btrfs_node_key_to_cpu(eb, &key, 0); else btrfs_item_key_to_cpu(eb, &key, 0); ret = btrfs_search_slot(trans, root, &key, &path, 0, 1); btrfs_commit_transaction(trans, root); btrfs_release_path(&path); return ret; } static int delete_bad_item(struct btrfs_root *root, struct bad_item *bad) { struct btrfs_path path; struct btrfs_trans_handle *trans; struct btrfs_key key; int ret; printf("Deleting bad item [%llu,%u,%llu]\n", bad->key.objectid, bad->key.type, bad->key.offset); key.objectid = bad->root_id; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; root = btrfs_read_fs_root(root->fs_info, &key); if (IS_ERR(root)) { fprintf(stderr, "Couldn't find owner root %llu\n", key.objectid); return PTR_ERR(root); } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, &bad->key, &path, -1, 1); if (ret) { if (ret > 0) ret = 0; goto out; } ret = btrfs_del_item(trans, root, &path); out: btrfs_commit_transaction(trans, root); btrfs_release_path(&path); return ret; } static int zero_log_tree(struct btrfs_root *root) { struct btrfs_trans_handle *trans; int ret; trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); return ret; } btrfs_set_super_log_root(root->fs_info->super_copy, 0); btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); ret = btrfs_commit_transaction(trans, root); return ret; } static int populate_csum(struct btrfs_trans_handle *trans, struct btrfs_root *csum_root, char *buf, u64 start, u64 len) { struct btrfs_fs_info *fs_info = csum_root->fs_info; u64 offset = 0; u64 sectorsize; int ret = 0; while (offset < len) { sectorsize = fs_info->sectorsize; ret = read_extent_data(fs_info, buf, start + offset, §orsize, 0); if (ret) break; ret = btrfs_csum_file_block(trans, csum_root, start + len, start + offset, buf, sectorsize); if (ret) break; offset += sectorsize; } return ret; } static int fill_csum_tree_from_one_fs_root(struct btrfs_trans_handle *trans, struct btrfs_root *csum_root, struct btrfs_root *cur_root) { struct btrfs_path path; struct btrfs_key key; struct extent_buffer *node; struct btrfs_file_extent_item *fi; char *buf = NULL; u64 start = 0; u64 len = 0; int slot = 0; int ret = 0; buf = malloc(cur_root->fs_info->sectorsize); if (!buf) return -ENOMEM; btrfs_init_path(&path); key.objectid = 0; key.offset = 0; key.type = 0; ret = btrfs_search_slot(NULL, cur_root, &key, &path, 0, 0); if (ret < 0) goto out; /* Iterate all regular file extents and fill its csum */ while (1) { btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); if (key.type != BTRFS_EXTENT_DATA_KEY) goto next; node = path.nodes[0]; slot = path.slots[0]; fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item); if (btrfs_file_extent_type(node, fi) != BTRFS_FILE_EXTENT_REG) goto next; start = btrfs_file_extent_disk_bytenr(node, fi); len = btrfs_file_extent_disk_num_bytes(node, fi); ret = populate_csum(trans, csum_root, buf, start, len); if (ret == -EEXIST) ret = 0; if (ret < 0) goto out; next: /* * TODO: if next leaf is corrupted, jump to nearest next valid * leaf. */ ret = btrfs_next_item(cur_root, &path); if (ret < 0) goto out; if (ret > 0) { ret = 0; goto out; } } out: btrfs_release_path(&path); free(buf); return ret; } static int fill_csum_tree_from_fs(struct btrfs_trans_handle *trans, struct btrfs_root *csum_root) { struct btrfs_fs_info *fs_info = csum_root->fs_info; struct btrfs_path path; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *cur_root; struct extent_buffer *node; struct btrfs_key key; int slot = 0; int ret = 0; btrfs_init_path(&path); key.objectid = BTRFS_FS_TREE_OBJECTID; key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_search_slot(NULL, tree_root, &key, &path, 0, 0); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } while (1) { node = path.nodes[0]; slot = path.slots[0]; btrfs_item_key_to_cpu(node, &key, slot); if (key.objectid > BTRFS_LAST_FREE_OBJECTID) goto out; if (key.type != BTRFS_ROOT_ITEM_KEY) goto next; if (!is_fstree(key.objectid)) goto next; key.offset = (u64)-1; cur_root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(cur_root) || !cur_root) { fprintf(stderr, "Fail to read fs/subvol tree: %lld\n", key.objectid); goto out; } ret = fill_csum_tree_from_one_fs_root(trans, csum_root, cur_root); if (ret < 0) goto out; next: ret = btrfs_next_item(tree_root, &path); if (ret > 0) { ret = 0; goto out; } if (ret < 0) goto out; } out: btrfs_release_path(&path); return ret; } static int fill_csum_tree_from_extent(struct btrfs_trans_handle *trans, struct btrfs_root *csum_root) { struct btrfs_root *extent_root = csum_root->fs_info->extent_root; struct btrfs_path path; struct btrfs_extent_item *ei; struct extent_buffer *leaf; char *buf; struct btrfs_key key; int ret; btrfs_init_path(&path); key.objectid = 0; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0); if (ret < 0) { btrfs_release_path(&path); return ret; } buf = malloc(csum_root->fs_info->sectorsize); if (!buf) { btrfs_release_path(&path); return -ENOMEM; } while (1) { if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { ret = btrfs_next_leaf(extent_root, &path); if (ret < 0) break; if (ret) { ret = 0; break; } } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, path.slots[0]); if (key.type != BTRFS_EXTENT_ITEM_KEY) { path.slots[0]++; continue; } ei = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_extent_item); if (!(btrfs_extent_flags(leaf, ei) & BTRFS_EXTENT_FLAG_DATA)) { path.slots[0]++; continue; } ret = populate_csum(trans, csum_root, buf, key.objectid, key.offset); if (ret) break; path.slots[0]++; } btrfs_release_path(&path); free(buf); return ret; } /* * Recalculate the csum and put it into the csum tree. * * Extent tree init will wipe out all the extent info, so in that case, we * can't depend on extent tree, but use fs tree. If search_fs_tree is set, we * will use fs/subvol trees to init the csum tree. */ static int fill_csum_tree(struct btrfs_trans_handle *trans, struct btrfs_root *csum_root, int search_fs_tree) { if (search_fs_tree) return fill_csum_tree_from_fs(trans, csum_root); else return fill_csum_tree_from_extent(trans, csum_root); } static void free_roots_info_cache(void) { if (!roots_info_cache) return; while (!cache_tree_empty(roots_info_cache)) { struct cache_extent *entry; struct root_item_info *rii; entry = first_cache_extent(roots_info_cache); if (!entry) break; remove_cache_extent(roots_info_cache, entry); rii = container_of(entry, struct root_item_info, cache_extent); free(rii); } free(roots_info_cache); roots_info_cache = NULL; } static int build_roots_info_cache(struct btrfs_fs_info *info) { int ret = 0; struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_path path; if (!roots_info_cache) { roots_info_cache = malloc(sizeof(*roots_info_cache)); if (!roots_info_cache) return -ENOMEM; cache_tree_init(roots_info_cache); } btrfs_init_path(&path); key.objectid = 0; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, info->extent_root, &key, &path, 0, 0); if (ret < 0) goto out; leaf = path.nodes[0]; while (1) { struct btrfs_key found_key; struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; unsigned long item_end; int slot = path.slots[0]; int type; u64 flags; u64 root_id; u8 level; struct cache_extent *entry; struct root_item_info *rii; ctx.item_count++; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(info->extent_root, &path); if (ret < 0) { break; } else if (ret) { ret = 0; break; } leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &found_key, path.slots[0]); if (found_key.type != BTRFS_EXTENT_ITEM_KEY && found_key.type != BTRFS_METADATA_ITEM_KEY) goto next; ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(leaf, ei); item_end = (unsigned long)ei + btrfs_item_size_nr(leaf, slot); if (found_key.type == BTRFS_EXTENT_ITEM_KEY && !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) goto next; if (found_key.type == BTRFS_METADATA_ITEM_KEY) { iref = (struct btrfs_extent_inline_ref *)(ei + 1); level = found_key.offset; } else { struct btrfs_tree_block_info *binfo; binfo = (struct btrfs_tree_block_info *)(ei + 1); iref = (struct btrfs_extent_inline_ref *)(binfo + 1); level = btrfs_tree_block_level(leaf, binfo); } /* * It's a valid extent/metadata item that has no inline ref, * but SHARED_BLOCK_REF or other shared references. * So we need to do extra check to avoid reading beyond leaf * boundary. */ if ((unsigned long)iref >= item_end) goto next; /* * For a root extent, it must be of the following type and the * first (and only one) iref in the item. */ type = btrfs_extent_inline_ref_type(leaf, iref); if (type != BTRFS_TREE_BLOCK_REF_KEY) goto next; root_id = btrfs_extent_inline_ref_offset(leaf, iref); entry = lookup_cache_extent(roots_info_cache, root_id, 1); if (!entry) { rii = malloc(sizeof(struct root_item_info)); if (!rii) { ret = -ENOMEM; goto out; } rii->cache_extent.start = root_id; rii->cache_extent.size = 1; rii->level = (u8)-1; entry = &rii->cache_extent; ret = insert_cache_extent(roots_info_cache, entry); ASSERT(ret == 0); } else { rii = container_of(entry, struct root_item_info, cache_extent); } ASSERT(rii->cache_extent.start == root_id); ASSERT(rii->cache_extent.size == 1); if (level > rii->level || rii->level == (u8)-1) { rii->level = level; rii->bytenr = found_key.objectid; rii->gen = btrfs_extent_generation(leaf, ei); rii->node_count = 1; } else if (level == rii->level) { rii->node_count++; } next: path.slots[0]++; } out: btrfs_release_path(&path); return ret; } static int maybe_repair_root_item(struct btrfs_path *path, const struct btrfs_key *root_key, const int read_only_mode) { const u64 root_id = root_key->objectid; struct cache_extent *entry; struct root_item_info *rii; struct btrfs_root_item ri; unsigned long offset; entry = lookup_cache_extent(roots_info_cache, root_id, 1); if (!entry) { fprintf(stderr, "Error: could not find extent items for root %llu\n", root_key->objectid); return -ENOENT; } rii = container_of(entry, struct root_item_info, cache_extent); ASSERT(rii->cache_extent.start == root_id); ASSERT(rii->cache_extent.size == 1); if (rii->node_count != 1) { fprintf(stderr, "Error: could not find btree root extent for root %llu\n", root_id); return -ENOENT; } offset = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); read_extent_buffer(path->nodes[0], &ri, offset, sizeof(ri)); if (btrfs_root_bytenr(&ri) != rii->bytenr || btrfs_root_level(&ri) != rii->level || btrfs_root_generation(&ri) != rii->gen) { /* * If we're in repair mode but our caller told us to not update * the root item, i.e. just check if it needs to be updated, don't * print this message, since the caller will call us again shortly * for the same root item without read only mode (the caller will * open a transaction first). */ if (!(read_only_mode && repair)) fprintf(stderr, "%sroot item for root %llu," " current bytenr %llu, current gen %llu, current level %u," " new bytenr %llu, new gen %llu, new level %u\n", (read_only_mode ? "" : "fixing "), root_id, btrfs_root_bytenr(&ri), btrfs_root_generation(&ri), btrfs_root_level(&ri), rii->bytenr, rii->gen, rii->level); if (btrfs_root_generation(&ri) > rii->gen) { fprintf(stderr, "root %llu has a root item with a more recent gen (%llu) compared to the found root node (%llu)\n", root_id, btrfs_root_generation(&ri), rii->gen); return -EINVAL; } if (!read_only_mode) { btrfs_set_root_bytenr(&ri, rii->bytenr); btrfs_set_root_level(&ri, rii->level); btrfs_set_root_generation(&ri, rii->gen); write_extent_buffer(path->nodes[0], &ri, offset, sizeof(ri)); } return 1; } return 0; } /* * A regression introduced in the 3.17 kernel (more specifically in 3.17-rc2), * caused read-only snapshots to be corrupted if they were created at a moment * when the source subvolume/snapshot had orphan items. The issue was that the * on-disk root items became incorrect, referring to the pre orphan cleanup root * node instead of the post orphan cleanup root node. * So this function, and its callees, just detects and fixes those cases. Even * though the regression was for read-only snapshots, this function applies to * any snapshot/subvolume root. * This must be run before any other repair code - not doing it so, makes other * repair code delete or modify backrefs in the extent tree for example, which * will result in an inconsistent fs after repairing the root items. */ static int repair_root_items(struct btrfs_fs_info *info) { struct btrfs_path path; struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_trans_handle *trans = NULL; int ret = 0; int bad_roots = 0; int need_trans = 0; btrfs_init_path(&path); ret = build_roots_info_cache(info); if (ret) goto out; key.objectid = BTRFS_FIRST_FREE_OBJECTID; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = 0; again: /* * Avoid opening and committing transactions if a leaf doesn't have * any root items that need to be fixed, so that we avoid rotating * backup roots unnecessarily. */ if (need_trans) { trans = btrfs_start_transaction(info->tree_root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } } ret = btrfs_search_slot(trans, info->tree_root, &key, &path, 0, trans ? 1 : 0); if (ret < 0) goto out; leaf = path.nodes[0]; while (1) { struct btrfs_key found_key; if (path.slots[0] >= btrfs_header_nritems(leaf)) { int no_more_keys = find_next_key(&path, &key); btrfs_release_path(&path); if (trans) { ret = btrfs_commit_transaction(trans, info->tree_root); trans = NULL; if (ret < 0) goto out; } need_trans = 0; if (no_more_keys) break; goto again; } btrfs_item_key_to_cpu(leaf, &found_key, path.slots[0]); if (found_key.type != BTRFS_ROOT_ITEM_KEY) goto next; if (found_key.objectid == BTRFS_TREE_RELOC_OBJECTID) goto next; ret = maybe_repair_root_item(&path, &found_key, trans ? 0 : 1); if (ret < 0) goto out; if (ret) { if (!trans && repair) { need_trans = 1; key = found_key; btrfs_release_path(&path); goto again; } bad_roots++; } next: path.slots[0]++; } ret = 0; out: free_roots_info_cache(); btrfs_release_path(&path); if (trans) btrfs_commit_transaction(trans, info->tree_root); if (ret < 0) return ret; return bad_roots; } static int clear_free_space_cache(struct btrfs_fs_info *fs_info) { struct btrfs_trans_handle *trans; struct btrfs_block_group_cache *bg_cache; u64 current = 0; int ret = 0; /* Clear all free space cache inodes and its extent data */ while (1) { bg_cache = btrfs_lookup_first_block_group(fs_info, current); if (!bg_cache) break; ret = btrfs_clear_free_space_cache(fs_info, bg_cache); if (ret < 0) return ret; current = bg_cache->key.objectid + bg_cache->key.offset; } /* Don't forget to set cache_generation to -1 */ trans = btrfs_start_transaction(fs_info->tree_root, 0); if (IS_ERR(trans)) { error("failed to update super block cache generation"); return PTR_ERR(trans); } btrfs_set_super_cache_generation(fs_info->super_copy, (u64)-1); btrfs_commit_transaction(trans, fs_info->tree_root); return ret; } static int do_clear_free_space_cache(struct btrfs_fs_info *fs_info, int clear_version) { int ret = 0; if (clear_version == 1) { if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { error( "free space cache v2 detected, use --clear-space-cache v2"); ret = 1; goto close_out; } ret = clear_free_space_cache(fs_info); if (ret) { error("failed to clear free space cache"); ret = 1; } else { printf("Free space cache cleared\n"); } } else if (clear_version == 2) { if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { printf("no free space cache v2 to clear\n"); ret = 0; goto close_out; } printf("Clear free space cache v2\n"); ret = btrfs_clear_free_space_tree(fs_info); if (ret) { error("failed to clear free space cache v2: %d", ret); ret = 1; } else { printf("free space cache v2 cleared\n"); } } close_out: return ret; } static int validate_free_space_cache(struct btrfs_root *root) { int ret; if (btrfs_super_cache_generation(root->fs_info->super_copy) != -1ULL && btrfs_super_generation(root->fs_info->super_copy) != btrfs_super_cache_generation(root->fs_info->super_copy)) { printf( "cache and super generation don't match, space cache will be invalidated\n"); return 0; } ret = check_space_cache(root); if (ret && btrfs_fs_compat_ro(global_info, FREE_SPACE_TREE) && repair) { ret = do_clear_free_space_cache(global_info, 2); if (ret) goto out; ret = btrfs_create_free_space_tree(global_info); if (ret) error("couldn't repair freespace tree"); } out: return ret ? -EINVAL : 0; } static const char * const cmd_check_usage[] = { "btrfs check [options] ", "Check structural integrity of a filesystem (unmounted).", "Check structural integrity of an unmounted filesystem. Verify internal", "trees' consistency and item connectivity. In the repair mode try to", "fix the problems found. ", "WARNING: the repair mode is considered dangerous and should not be used", " without prior analysis of problems found on the filesystem." "", "Options:", " starting point selection:", " -s|--super use this superblock copy", " -b|--backup use the first valid backup root copy", " -r|--tree-root use the given bytenr for the tree root", " --chunk-root use the given bytenr for the chunk tree root", " operation modes:", " --readonly run in read-only mode (default)", " --repair try to repair the filesystem", " --force skip mount checks, repair is not possible", " --mode allows choice of memory/IO trade-offs", " where MODE is one of:", " original - read inodes and extents to memory (requires", " more memory, does less IO)", " lowmem - try to use less memory but read blocks again", " when needed (experimental)", " repair options:", " --init-csum-tree create a new CRC tree", " --init-extent-tree create a new extent tree", " --clear-space-cache v1|v2 clear space cache for v1 or v2", " check and reporting options:", " --check-data-csum verify checksums of data blocks", " -Q|--qgroup-report print a report on qgroup consistency", " -E|--subvol-extents ", " print subvolume extents and sharing state", " -p|--progress indicate progress", NULL }; static int cmd_check(const struct cmd_struct *cmd, int argc, char **argv) { struct cache_tree root_cache; struct btrfs_root *root; struct btrfs_fs_info *info; u64 bytenr = 0; u64 subvolid = 0; u64 tree_root_bytenr = 0; u64 chunk_root_bytenr = 0; char uuidbuf[BTRFS_UUID_UNPARSED_SIZE]; int ret = 0; int err = 0; u64 num; int init_csum_tree = 0; int readonly = 0; int clear_space_cache = 0; int qgroup_report = 0; int qgroups_repaired = 0; int qgroup_report_ret; unsigned ctree_flags = OPEN_CTREE_EXCLUSIVE; int force = 0; while(1) { int c; enum { GETOPT_VAL_REPAIR = 257, GETOPT_VAL_INIT_CSUM, GETOPT_VAL_INIT_EXTENT, GETOPT_VAL_CHECK_CSUM, GETOPT_VAL_READONLY, GETOPT_VAL_CHUNK_TREE, GETOPT_VAL_MODE, GETOPT_VAL_CLEAR_SPACE_CACHE, GETOPT_VAL_FORCE }; static const struct option long_options[] = { { "super", required_argument, NULL, 's' }, { "repair", no_argument, NULL, GETOPT_VAL_REPAIR }, { "readonly", no_argument, NULL, GETOPT_VAL_READONLY }, { "init-csum-tree", no_argument, NULL, GETOPT_VAL_INIT_CSUM }, { "init-extent-tree", no_argument, NULL, GETOPT_VAL_INIT_EXTENT }, { "check-data-csum", no_argument, NULL, GETOPT_VAL_CHECK_CSUM }, { "backup", no_argument, NULL, 'b' }, { "subvol-extents", required_argument, NULL, 'E' }, { "qgroup-report", no_argument, NULL, 'Q' }, { "tree-root", required_argument, NULL, 'r' }, { "chunk-root", required_argument, NULL, GETOPT_VAL_CHUNK_TREE }, { "progress", no_argument, NULL, 'p' }, { "mode", required_argument, NULL, GETOPT_VAL_MODE }, { "clear-space-cache", required_argument, NULL, GETOPT_VAL_CLEAR_SPACE_CACHE}, { "force", no_argument, NULL, GETOPT_VAL_FORCE }, { NULL, 0, NULL, 0} }; c = getopt_long(argc, argv, "as:br:pEQ", long_options, NULL); if (c < 0) break; switch(c) { case 'a': /* ignored */ break; case 'b': ctree_flags |= OPEN_CTREE_BACKUP_ROOT; break; case 's': num = arg_strtou64(optarg); if (num >= BTRFS_SUPER_MIRROR_MAX) { error( "super mirror should be less than %d", BTRFS_SUPER_MIRROR_MAX); exit(1); } bytenr = btrfs_sb_offset(((int)num)); printf("using SB copy %llu, bytenr %llu\n", num, (unsigned long long)bytenr); break; case 'Q': qgroup_report = 1; break; case 'E': subvolid = arg_strtou64(optarg); break; case 'r': tree_root_bytenr = arg_strtou64(optarg); break; case GETOPT_VAL_CHUNK_TREE: chunk_root_bytenr = arg_strtou64(optarg); break; case 'p': ctx.progress_enabled = true; break; case '?': case 'h': usage(cmd); case GETOPT_VAL_REPAIR: printf("enabling repair mode\n"); repair = 1; ctree_flags |= OPEN_CTREE_WRITES; break; case GETOPT_VAL_READONLY: readonly = 1; break; case GETOPT_VAL_INIT_CSUM: printf("Creating a new CRC tree\n"); init_csum_tree = 1; repair = 1; ctree_flags |= OPEN_CTREE_WRITES; break; case GETOPT_VAL_INIT_EXTENT: init_extent_tree = 1; ctree_flags |= (OPEN_CTREE_WRITES | OPEN_CTREE_NO_BLOCK_GROUPS); repair = 1; break; case GETOPT_VAL_CHECK_CSUM: check_data_csum = 1; break; case GETOPT_VAL_MODE: check_mode = parse_check_mode(optarg); if (check_mode == CHECK_MODE_UNKNOWN) { error("unknown mode: %s", optarg); exit(1); } break; case GETOPT_VAL_CLEAR_SPACE_CACHE: if (strcmp(optarg, "v1") == 0) { clear_space_cache = 1; } else if (strcmp(optarg, "v2") == 0) { clear_space_cache = 2; ctree_flags |= OPEN_CTREE_INVALIDATE_FST; } else { error( "invalid argument to --clear-space-cache, must be v1 or v2"); exit(1); } ctree_flags |= OPEN_CTREE_WRITES; break; case GETOPT_VAL_FORCE: force = 1; break; } } if (check_argc_exact(argc - optind, 1)) usage(cmd); if (ctx.progress_enabled) { ctx.tp = TASK_NOTHING; ctx.info = task_init(print_status_check, print_status_return, &ctx); } /* This check is the only reason for --readonly to exist */ if (readonly && repair) { error("repair options are not compatible with --readonly"); exit(1); } /* * experimental and dangerous */ if (repair && check_mode == CHECK_MODE_LOWMEM) warning("low-memory mode repair support is only partial"); printf("Opening filesystem to check...\n"); radix_tree_init(); cache_tree_init(&root_cache); ret = check_mounted(argv[optind]); if (!force) { if (ret < 0) { errno = -ret; error("could not check mount status: %m"); err |= !!ret; goto err_out; } else if (ret) { error( "%s is currently mounted, use --force if you really intend to check the filesystem", argv[optind]); ret = -EBUSY; err |= !!ret; goto err_out; } } else { if (repair) { error("repair and --force is not yet supported"); ret = 1; err |= !!ret; goto err_out; } if (ret < 0) { warning( "cannot check mount status of %s, the filesystem could be mounted, continuing because of --force", argv[optind]); } else if (ret) { warning( "filesystem mounted, continuing because of --force"); } /* A block device is mounted in exclusive mode by kernel */ ctree_flags &= ~OPEN_CTREE_EXCLUSIVE; } /* only allow partial opening under repair mode */ if (repair) ctree_flags |= OPEN_CTREE_PARTIAL; info = open_ctree_fs_info(argv[optind], bytenr, tree_root_bytenr, chunk_root_bytenr, ctree_flags); if (!info) { error("cannot open file system"); ret = -EIO; err |= !!ret; goto err_out; } global_info = info; root = info->fs_root; uuid_unparse(info->super_copy->fsid, uuidbuf); printf("Checking filesystem on %s\nUUID: %s\n", argv[optind], uuidbuf); /* * Check the bare minimum before starting anything else that could rely * on it, namely the tree roots, any local consistency checks */ if (!extent_buffer_uptodate(info->tree_root->node) || !extent_buffer_uptodate(info->dev_root->node) || !extent_buffer_uptodate(info->chunk_root->node)) { error("critical roots corrupted, unable to check the filesystem"); err |= !!ret; ret = -EIO; goto close_out; } if (clear_space_cache) { ret = do_clear_free_space_cache(info, clear_space_cache); err |= !!ret; goto close_out; } /* * repair mode will force us to commit transaction which * will make us fail to load log tree when mounting. */ if (repair && btrfs_super_log_root(info->super_copy)) { ret = ask_user("repair mode will force to clear out log tree, are you sure?"); if (!ret) { ret = 1; err |= !!ret; goto close_out; } ret = zero_log_tree(root); err |= !!ret; if (ret) { error("failed to zero log tree: %d", ret); goto close_out; } } if (qgroup_report) { printf("Print quota groups for %s\nUUID: %s\n", argv[optind], uuidbuf); ret = qgroup_verify_all(info); err |= !!ret; if (ret == 0) err |= !!report_qgroups(1); goto close_out; } if (subvolid) { printf("Print extent state for subvolume %llu on %s\nUUID: %s\n", subvolid, argv[optind], uuidbuf); ret = print_extent_state(info, subvolid); err |= !!ret; goto close_out; } if (init_extent_tree || init_csum_tree) { struct btrfs_trans_handle *trans; trans = btrfs_start_transaction(info->extent_root, 0); if (IS_ERR(trans)) { error("error starting transaction"); ret = PTR_ERR(trans); err |= !!ret; goto close_out; } trans->reinit_extent_tree = true; if (init_extent_tree) { printf("Creating a new extent tree\n"); ret = reinit_extent_tree(trans, info, check_mode == CHECK_MODE_ORIGINAL); err |= !!ret; if (ret) goto close_out; } if (init_csum_tree) { printf("Reinitialize checksum tree\n"); ret = btrfs_fsck_reinit_root(trans, info->csum_root); if (ret) { error("checksum tree initialization failed: %d", ret); ret = -EIO; err |= !!ret; goto close_out; } ret = fill_csum_tree(trans, info->csum_root, init_extent_tree); err |= !!ret; if (ret) { error("checksum tree refilling failed: %d", ret); return -EIO; } } /* * Ok now we commit and run the normal fsck, which will add * extent entries for all of the items it finds. */ ret = btrfs_commit_transaction(trans, info->extent_root); err |= !!ret; if (ret) goto close_out; } if (!extent_buffer_uptodate(info->extent_root->node)) { error("critical: extent_root, unable to check the filesystem"); ret = -EIO; err |= !!ret; goto close_out; } if (!extent_buffer_uptodate(info->csum_root->node)) { error("critical: csum_root, unable to check the filesystem"); ret = -EIO; err |= !!ret; goto close_out; } if (!init_extent_tree) { if (!ctx.progress_enabled) { fprintf(stderr, "[1/7] checking root items\n"); } else { ctx.tp = TASK_ROOT_ITEMS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = repair_root_items(info); task_stop(ctx.info); if (ret < 0) { err = !!ret; errno = -ret; error("failed to repair root items: %m"); goto close_out; } if (repair) { fprintf(stderr, "Fixed %d roots.\n", ret); ret = 0; } else if (ret > 0) { fprintf(stderr, "Found %d roots with an outdated root item.\n", ret); fprintf(stderr, "Please run a filesystem check with the option --repair to fix them.\n"); ret = 1; err |= ret; goto close_out; } } else { fprintf(stderr, "[1/7] checking root items... skipped\n"); } if (!ctx.progress_enabled) { fprintf(stderr, "[2/7] checking extents\n"); } else { ctx.tp = TASK_EXTENTS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = do_check_chunks_and_extents(info); task_stop(ctx.info); err |= !!ret; if (ret) error( "errors found in extent allocation tree or chunk allocation"); /* Only re-check super size after we checked and repaired the fs */ err |= !is_super_size_valid(info); is_free_space_tree = btrfs_fs_compat_ro(info, FREE_SPACE_TREE); if (!ctx.progress_enabled) { if (is_free_space_tree) fprintf(stderr, "[3/7] checking free space tree\n"); else fprintf(stderr, "[3/7] checking free space cache\n"); } else { ctx.tp = TASK_FREE_SPACE; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = validate_free_space_cache(root); task_stop(ctx.info); err |= !!ret; /* * We used to have to have these hole extents in between our real * extents so if we don't have this flag set we need to make sure there * are no gaps in the file extents for inodes, otherwise we can just * ignore it when this happens. */ no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); if (!ctx.progress_enabled) { fprintf(stderr, "[4/7] checking fs roots\n"); } else { ctx.tp = TASK_FS_ROOTS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = do_check_fs_roots(info, &root_cache); task_stop(ctx.info); err |= !!ret; if (ret) { error("errors found in fs roots"); goto out; } if (!ctx.progress_enabled) { if (check_data_csum) fprintf(stderr, "[5/7] checking csums against data\n"); else fprintf(stderr, "[5/7] checking only csums items (without verifying data)\n"); } else { ctx.tp = TASK_CSUMS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = check_csums(root); task_stop(ctx.info); /* * Data csum error is not fatal, and it may indicate more serious * corruption, continue checking. */ if (ret) error("errors found in csum tree"); err |= !!ret; /* For low memory mode, check_fs_roots_v2 handles root refs */ if (check_mode != CHECK_MODE_LOWMEM) { if (!ctx.progress_enabled) { fprintf(stderr, "[6/7] checking root refs\n"); } else { ctx.tp = TASK_ROOT_REFS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = check_root_refs(root, &root_cache); task_stop(ctx.info); err |= !!ret; if (ret) { error("errors found in root refs"); goto out; } } else { fprintf(stderr, "[6/7] checking root refs done with fs roots in lowmem mode, skipping\n"); } while (repair && !list_empty(&root->fs_info->recow_ebs)) { struct extent_buffer *eb; eb = list_first_entry(&root->fs_info->recow_ebs, struct extent_buffer, recow); list_del_init(&eb->recow); ret = recow_extent_buffer(root, eb); err |= !!ret; if (ret) { error("fails to fix transid errors"); break; } } while (!list_empty(&delete_items)) { struct bad_item *bad; bad = list_first_entry(&delete_items, struct bad_item, list); list_del_init(&bad->list); if (repair) { ret = delete_bad_item(root, bad); err |= !!ret; } free(bad); } if (info->quota_enabled) { qgroup_set_item_count_ptr(&ctx.item_count); if (!ctx.progress_enabled) { fprintf(stderr, "[7/7] checking quota groups\n"); } else { ctx.tp = TASK_QGROUPS; task_start(ctx.info, &ctx.start_time, &ctx.item_count); } ret = qgroup_verify_all(info); task_stop(ctx.info); err |= !!ret; if (ret) { error("failed to check quota groups"); goto out; } qgroup_report_ret = report_qgroups(0); ret = repair_qgroups(info, &qgroups_repaired); if (ret) { error("failed to repair quota groups"); goto out; } if (qgroup_report_ret && (!qgroups_repaired || ret)) err |= qgroup_report_ret; ret = 0; } else { fprintf(stderr, "[7/7] checking quota groups skipped (not enabled on this FS)\n"); } if (!list_empty(&root->fs_info->recow_ebs)) { error("transid errors in file system"); ret = 1; err |= !!ret; } out: printf("found %llu bytes used, ", (unsigned long long)bytes_used); if (err) printf("error(s) found\n"); else printf("no error found\n"); printf("total csum bytes: %llu\n",(unsigned long long)total_csum_bytes); printf("total tree bytes: %llu\n", (unsigned long long)total_btree_bytes); printf("total fs tree bytes: %llu\n", (unsigned long long)total_fs_tree_bytes); printf("total extent tree bytes: %llu\n", (unsigned long long)total_extent_tree_bytes); printf("btree space waste bytes: %llu\n", (unsigned long long)btree_space_waste); printf("file data blocks allocated: %llu\n referenced %llu\n", (unsigned long long)data_bytes_allocated, (unsigned long long)data_bytes_referenced); free_qgroup_counts(); free_root_recs_tree(&root_cache); close_out: close_ctree(root); err_out: if (ctx.progress_enabled) task_deinit(ctx.info); return err; } DEFINE_SIMPLE_COMMAND(check, "check");