/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include "kerncompat.h"
#include <sys/stat.h>
#include <linux/fs.h>
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <pthread.h>
#include <zlib.h>
#include "kernel-lib/list.h"
#include "kernel-lib/rbtree.h"
#include "kernel-lib/rbtree_types.h"
#include "kernel-lib/sizes.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/uapi/btrfs_tree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/tree-checker.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/extent-cache.h"
#include "image/common.h"
#include "image/metadump.h"

static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
{
	struct rb_node *n;
	int i;

	while ((n = rb_first(&mdres->chunk_tree))) {
		struct fs_chunk *entry;

		entry = rb_entry(n, struct fs_chunk, l);
		rb_erase(n, &mdres->chunk_tree);
		rb_erase(&entry->p, &mdres->physical_tree);
		free(entry);
	}
	free_extent_cache_tree(&mdres->sys_chunks);
	pthread_mutex_lock(&mdres->mutex);
	mdres->done = 1;
	pthread_cond_broadcast(&mdres->cond);
	pthread_mutex_unlock(&mdres->mutex);

	for (i = 0; i < num_threads; i++)
		pthread_join(mdres->threads[i], NULL);

	pthread_cond_destroy(&mdres->cond);
	pthread_mutex_destroy(&mdres->mutex);
	free(mdres->original_super);
}

static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
{
	u32 nritems;
	u32 old_size;
	u32 old_data_start;
	u32 size_diff;
	u32 data_end;
	int i;

	old_size = btrfs_item_size(eb, slot);
	if (old_size == new_size)
		return;

	nritems = btrfs_header_nritems(eb);
	data_end = btrfs_item_offset(eb, nritems - 1);

	old_data_start = btrfs_item_offset(eb, slot);
	size_diff = old_size - new_size;

	for (i = slot; i < nritems; i++) {
		u32 ioff;
		ioff = btrfs_item_offset(eb, i);
		btrfs_set_item_offset(eb, i, ioff + size_diff);
	}

	memmove_extent_buffer(eb, btrfs_item_nr_offset(eb, 0) + data_end + size_diff,
			      btrfs_item_nr_offset(eb, 0) + data_end,
			      old_data_start + new_size - data_end);
	btrfs_set_item_size(eb, slot, new_size);
}

static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
{
	struct extent_buffer *eb;

	eb = calloc(1, sizeof(struct extent_buffer) + size);
	if (!eb)
		return NULL;

	eb->start = bytenr;
	eb->len = size;
	return eb;
}

static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
	struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
	struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);

	if (fuzz && ins->logical >= entry->logical &&
	    ins->logical < entry->logical + entry->bytes)
		return 0;

	if (ins->logical < entry->logical)
		return -1;
	else if (ins->logical > entry->logical)
		return 1;
	return 0;
}

static struct rb_node *tree_search(struct rb_root *root,
				   struct rb_node *search,
				   int (*cmp)(struct rb_node *a,
					      struct rb_node *b, int fuzz),
				   int fuzz)
{
	struct rb_node *n = root->rb_node;
	int dir;

	while (n) {
		dir = cmp(n, search, fuzz);
		if (dir < 0)
			n = n->rb_left;
		else if (dir > 0)
			n = n->rb_right;
		else
			return n;
	}

	return NULL;
}

static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical,
			       u64 *size, u64 *physical_dup)
{
	struct fs_chunk *fs_chunk;
	struct rb_node *entry;
	struct fs_chunk search;
	u64 offset;

	if (logical == BTRFS_SUPER_INFO_OFFSET)
		return logical;

	search.logical = logical;
	entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
	if (!entry) {
		if (mdres->in != stdin)
			warning("cannot find a chunk, using logical");
		return logical;
	}
	fs_chunk = rb_entry(entry, struct fs_chunk, l);
	if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
		BUG();
	offset = search.logical - fs_chunk->logical;

	if (physical_dup) {
		/* Only in dup case, physical_dup is not equal to 0 */
		if (fs_chunk->physical_dup)
			*physical_dup = fs_chunk->physical_dup + offset;
		else
			*physical_dup = 0;
	}

	*size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
	return fs_chunk->physical + offset;
}

static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
				  struct async_work *async, u8 *buffer,
				  size_t size)
{
	struct extent_buffer *eb;
	size_t size_left = size;
	u64 bytenr = async->start;
	int i;

	if (btrfs_super_num_devices(mdres->original_super) == 1)
		return 0;
	if (size_left % mdres->nodesize)
		return 0;

	eb = alloc_dummy_eb(bytenr, mdres->nodesize);
	if (!eb)
		return -ENOMEM;

	while (size_left) {
		eb->start = bytenr;
		memcpy(eb->data, buffer, mdres->nodesize);

		if (btrfs_header_bytenr(eb) != bytenr)
			break;
		if (memcmp(mdres->fsid,
			   eb->data + offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE))
			break;

		if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
			goto next;

		if (btrfs_header_level(eb) != 0)
			goto next;

		for (i = 0; i < btrfs_header_nritems(eb); i++) {
			struct btrfs_chunk *chunk;
			struct btrfs_key key;
			u64 type, physical, physical_dup;
			u64 found_size = (u64)-1;

			btrfs_item_key_to_cpu(eb, &key, i);
			if (key.type != BTRFS_CHUNK_ITEM_KEY)
				continue;

			physical = logical_to_physical(mdres, key.offset,
						       &found_size, &physical_dup);

			if (!physical_dup)
				truncate_item(eb, i, sizeof(*chunk));
			chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);


			/* Zero out the RAID profile */
			type = btrfs_chunk_type(eb, chunk);
			type &= (BTRFS_BLOCK_GROUP_DATA |
				 BTRFS_BLOCK_GROUP_SYSTEM |
				 BTRFS_BLOCK_GROUP_METADATA |
				 BTRFS_BLOCK_GROUP_DUP);
			btrfs_set_chunk_type(eb, chunk, type);

			if (!physical_dup)
				btrfs_set_chunk_num_stripes(eb, chunk, 1);
			btrfs_set_chunk_sub_stripes(eb, chunk, 0);
			btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid);
			btrfs_set_stripe_offset_nr(eb, chunk, 0, physical);
			/* update stripe 2 offset */
			if (physical_dup)
				btrfs_set_stripe_offset_nr(eb, chunk, 1,
							   physical_dup);

			write_extent_buffer(eb, mdres->uuid,
					(unsigned long)btrfs_stripe_dev_uuid_nr(
						chunk, 0),
					BTRFS_UUID_SIZE);
		}
		memcpy(buffer, eb->data, eb->len);
		csum_block(buffer, eb->len);
next:
		size_left -= mdres->nodesize;
		buffer += mdres->nodesize;
		bytenr += mdres->nodesize;
	}

	free(eb);
	return 0;
}

static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
{
	struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
	struct btrfs_chunk *chunk;
	struct btrfs_disk_key *disk_key;
	struct btrfs_key key;
	u64 flags = btrfs_super_flags(super);
	u32 new_array_size = 0;
	u32 array_size;
	u32 cur = 0;
	u8 *ptr, *write_ptr;
	int old_num_stripes;

	/* No need to fix, use all data as is */
	if (btrfs_super_num_devices(mdres->original_super) == 1) {
		new_array_size = btrfs_super_sys_array_size(super);
		goto finish;
	}

	write_ptr = ptr = super->sys_chunk_array;
	array_size = btrfs_super_sys_array_size(super);

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		new_array_size += sizeof(*disk_key);
		memmove(write_ptr, ptr, sizeof(*disk_key));

		write_ptr += sizeof(*disk_key);
		ptr += sizeof(*disk_key);
		cur += sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			u64 type, physical, physical_dup, size = 0;

			chunk = (struct btrfs_chunk *)ptr;
			old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			chunk = (struct btrfs_chunk *)write_ptr;

			memmove(write_ptr, ptr, sizeof(*chunk));
			btrfs_set_stack_chunk_sub_stripes(chunk, 0);
			type = btrfs_stack_chunk_type(chunk);
			if (type & BTRFS_BLOCK_GROUP_DUP) {
				new_array_size += sizeof(struct btrfs_stripe);
				write_ptr += sizeof(struct btrfs_stripe);
			} else {
				btrfs_set_stack_chunk_num_stripes(chunk, 1);
				btrfs_set_stack_chunk_type(chunk,
						BTRFS_BLOCK_GROUP_SYSTEM);
			}
			chunk->stripe.devid = super->dev_item.devid;
			physical = logical_to_physical(mdres, key.offset,
						       &size, &physical_dup);
			if (size != (u64)-1)
				btrfs_set_stack_stripe_offset(&chunk->stripe,
							      physical);
			memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
			       BTRFS_UUID_SIZE);
			new_array_size += sizeof(*chunk);
		} else {
			error("bogus key in the sys array %d", key.type);
			return -EIO;
		}
		write_ptr += sizeof(*chunk);
		ptr += btrfs_chunk_item_size(old_num_stripes);
		cur += btrfs_chunk_item_size(old_num_stripes);
	}

finish:
	if (mdres->clear_space_cache)
		btrfs_set_super_cache_generation(super, 0);

	if (current_version->extra_sb_flags)
		flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
	btrfs_set_super_flags(super, flags);
	btrfs_set_super_sys_array_size(super, new_array_size);
	btrfs_set_super_num_devices(super, 1);
	csum_block(buffer, BTRFS_SUPER_INFO_SIZE);

	return 0;
}

static void update_super_old(u8 *buffer)
{
	struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
	struct btrfs_chunk *chunk;
	struct btrfs_disk_key *key;
	u32 sectorsize = btrfs_super_sectorsize(super);
	u64 flags = btrfs_super_flags(super);

	if (current_version->extra_sb_flags)
		flags |= BTRFS_SUPER_FLAG_METADUMP;
	btrfs_set_super_flags(super, flags);

	key = (struct btrfs_disk_key *)(super->sys_chunk_array);
	chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
				       sizeof(struct btrfs_disk_key));

	btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
	btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
	btrfs_set_disk_key_offset(key, 0);

	btrfs_set_stack_chunk_length(chunk, (u64)-1);
	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
	btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
	btrfs_set_stack_chunk_io_align(chunk, sectorsize);
	btrfs_set_stack_chunk_io_width(chunk, sectorsize);
	btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
	btrfs_set_stack_chunk_num_stripes(chunk, 1);
	btrfs_set_stack_chunk_sub_stripes(chunk, 0);
	chunk->stripe.devid = super->dev_item.devid;
	btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
	memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
	btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
	csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
}

/*
 * Restore one item.
 *
 * For uncompressed data, it's just reading from work->buf then write to output.
 * For compressed data, since we can have very large decompressed data
 * (up to 256M), we need to consider memory usage. So here we will fill buffer
 * then write the decompressed buffer to output.
 */
static int restore_one_work(struct mdrestore_struct *mdres,
			    struct async_work *async, u8 *buffer, int bufsize)
{
	z_stream strm;
	/* Offset inside work->buffer */
	int buf_offset = 0;
	/* Offset for output */
	int out_offset = 0;
	int out_len;
	int outfd = fileno(mdres->out);
	int compress_method = mdres->compress_method;
	int ret;

	UASSERT(is_power_of_2(bufsize));

	if (compress_method == COMPRESS_ZLIB) {
		strm.zalloc = Z_NULL;
		strm.zfree = Z_NULL;
		strm.opaque = Z_NULL;
		strm.avail_in = async->bufsize;
		strm.next_in = async->buffer;
		strm.avail_out = 0;
		strm.next_out = Z_NULL;
		ret = inflateInit(&strm);
		if (ret != Z_OK) {
			error("failed to initialize decompress parameters: %d", ret);
			return ret;
		}
	}
	while (buf_offset < async->bufsize) {
		bool compress_end = false;
		int read_size = min_t(u64, async->bufsize - buf_offset, bufsize);

		/* Read part */
		if (compress_method == COMPRESS_ZLIB) {
			if (strm.avail_out == 0) {
				strm.avail_out = bufsize;
				strm.next_out = buffer;
			}
			pthread_mutex_unlock(&mdres->mutex);
			ret = inflate(&strm, Z_NO_FLUSH);
			pthread_mutex_lock(&mdres->mutex);
			switch (ret) {
			case Z_NEED_DICT:
				ret = Z_DATA_ERROR;
				fallthrough;
			case Z_DATA_ERROR:
			case Z_MEM_ERROR:
				goto out;
			}
			if (ret == Z_STREAM_END) {
				ret = 0;
				compress_end = true;
			}
			out_len = bufsize - strm.avail_out;
		} else {
			/* No compress, read as much data as possible */
			memcpy(buffer, async->buffer + buf_offset, read_size);

			buf_offset += read_size;
			out_len = read_size;
		}

		/* Fixup part */
		if (!mdres->multi_devices) {
			if (async->start == BTRFS_SUPER_INFO_OFFSET) {
				memcpy(mdres->original_super, buffer,
				       BTRFS_SUPER_INFO_SIZE);
				if (mdres->old_restore) {
					update_super_old(buffer);
				} else {
					ret = update_super(mdres, buffer);
					if (ret < 0)
						goto out;
				}
			} else if (!mdres->old_restore) {
				ret = fixup_chunk_tree_block(mdres, async,
							     buffer, out_len);
				if (ret)
					goto out;
			}
		}

		/* Write part */
		if (!mdres->fixup_offset) {
			int size = out_len;
			off_t offset = 0;

			while (size) {
				u64 logical = async->start + out_offset + offset;
				u64 chunk_size = size;
				u64 physical_dup = 0;
				u64 bytenr;

				if (!mdres->multi_devices && !mdres->old_restore)
					bytenr = logical_to_physical(mdres,
							logical, &chunk_size,
							&physical_dup);
				else
					bytenr = logical;

				ret = pwrite(outfd, buffer + offset, chunk_size, bytenr);
				if (ret != chunk_size)
					goto write_error;

				if (physical_dup)
					ret = pwrite(outfd, buffer + offset,
						       chunk_size, physical_dup);
				if (ret != chunk_size)
					goto write_error;

				size -= chunk_size;
				offset += chunk_size;
				continue;
			}
		} else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
			ret = write_data_to_disk(mdres->info, buffer,
						 async->start, out_len);
			if (ret) {
				error("failed to write data");
				exit(1);
			}
		}

		/* backup super blocks are already there at fixup_offset stage */
		if (async->start == BTRFS_SUPER_INFO_OFFSET &&
		    !mdres->multi_devices)
			write_backup_supers(outfd, buffer);
		out_offset += out_len;
		if (compress_end) {
			inflateEnd(&strm);
			break;
		}
	}
	return ret;

write_error:
	if (ret < 0) {
		error("unable to write to device: %m");
		ret = -errno;
	} else {
		error("short write");
		ret = -EIO;
	}
out:
	if (compress_method == COMPRESS_ZLIB)
		inflateEnd(&strm);
	return ret;
}

static void *restore_worker(void *data)
{
	struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
	struct async_work *async;
	u8 *buffer;
	int ret;
	int buffer_size = SZ_512K;

	buffer = malloc(buffer_size);
	if (!buffer) {
		error_msg(ERROR_MSG_MEMORY, "restore worker buffer");
		pthread_mutex_lock(&mdres->mutex);
		if (!mdres->error)
			mdres->error = -ENOMEM;
		pthread_mutex_unlock(&mdres->mutex);
		pthread_exit(NULL);
	}

	while (1) {
		pthread_mutex_lock(&mdres->mutex);
		while (!mdres->nodesize || list_empty(&mdres->list)) {
			if (mdres->done) {
				pthread_mutex_unlock(&mdres->mutex);
				goto out;
			}
			pthread_cond_wait(&mdres->cond, &mdres->mutex);
		}
		async = list_entry(mdres->list.next, struct async_work, list);
		list_del_init(&async->list);

		ret = restore_one_work(mdres, async, buffer, buffer_size);
		if (ret < 0) {
			mdres->error = ret;
			pthread_mutex_unlock(&mdres->mutex);
			goto out;
		}
		mdres->num_items--;
		pthread_mutex_unlock(&mdres->mutex);

		free(async->buffer);
		free(async);
	}
out:
	free(buffer);
	pthread_exit(NULL);
}

static int mdrestore_init(struct mdrestore_struct *mdres,
			  FILE *in, FILE *out, int old_restore,
			  int num_threads, int fixup_offset,
			  struct btrfs_fs_info *info, int multi_devices)
{
	int i, ret = 0;

	ret = detect_version(in);
	if (ret < 0)
		return ret;
	memset(mdres, 0, sizeof(*mdres));
	pthread_cond_init(&mdres->cond, NULL);
	pthread_mutex_init(&mdres->mutex, NULL);
	INIT_LIST_HEAD(&mdres->list);
	INIT_LIST_HEAD(&mdres->overlapping_chunks);
	cache_tree_init(&mdres->sys_chunks);
	mdres->in = in;
	mdres->out = out;
	mdres->old_restore = old_restore;
	mdres->chunk_tree.rb_node = NULL;
	mdres->fixup_offset = fixup_offset;
	mdres->info = info;
	mdres->multi_devices = multi_devices;
	mdres->clear_space_cache = 0;
	mdres->last_physical_offset = 0;
	mdres->alloced_chunks = 0;

	mdres->original_super = malloc(BTRFS_SUPER_INFO_SIZE);
	if (!mdres->original_super)
		return -ENOMEM;

	if (!num_threads)
		return 0;

	mdres->num_threads = num_threads;
	for (i = 0; i < num_threads; i++) {
		ret = pthread_create(&mdres->threads[i], NULL, restore_worker,
				     mdres);
		if (ret) {
			/* pthread_create returns errno directly */
			ret = -ret;
			break;
		}
	}
	if (ret)
		mdrestore_destroy(mdres, i + 1);
	return ret;
}

/*
 * Add system chunks in super blocks into mdres->sys_chunks, so later we can
 * determine if an item is a chunk tree block.
 */
static int add_sys_array(struct mdrestore_struct *mdres,
			 struct btrfs_super_block *sb)
{
	struct btrfs_disk_key *disk_key;
	struct btrfs_key key;
	struct btrfs_chunk *chunk;
	struct cache_extent *cache;
	u32 cur_offset;
	u32 len = 0;
	u32 array_size;
	u8 *array_ptr;
	int ret = 0;

	array_size = btrfs_super_sys_array_size(sb);
	array_ptr = sb->sys_chunk_array;
	cur_offset = 0;

	while (cur_offset < array_size) {
		u32 num_stripes;

		disk_key = (struct btrfs_disk_key *)array_ptr;
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;
		btrfs_disk_key_to_cpu(&key, disk_key);

		array_ptr += len;
		cur_offset += len;

		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
			error("unexpected item type %u in sys_array offset %u",
			      key.type, cur_offset);
			ret = -EUCLEAN;
			break;
		}
		chunk = (struct btrfs_chunk *)array_ptr;

		/*
		 * At least one btrfs_chunk with one stripe must be present,
		 * exact stripe count check comes afterwards
		 */
		len = btrfs_chunk_item_size(1);
		if (cur_offset + len > array_size)
			goto out_short_read;
		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
		if (!num_stripes) {
			error(
			"invalid number of stripes %u in sys_array at offset %u",
				num_stripes, cur_offset);
			ret = -EIO;
			break;
		}
		len = btrfs_chunk_item_size(num_stripes);
		if (cur_offset + len > array_size)
			goto out_short_read;
		if (btrfs_stack_chunk_type(chunk) &
		    BTRFS_BLOCK_GROUP_SYSTEM) {
			ret = add_merge_cache_extent(&mdres->sys_chunks,
				key.offset,
				btrfs_stack_chunk_length(chunk));
			if (ret < 0)
				break;
		}
		array_ptr += len;
		cur_offset += len;
	}

	/* Get the last system chunk end as a quicker check */
	cache = last_cache_extent(&mdres->sys_chunks);
	if (!cache) {
		error("no system chunk found in super block");
		return -EUCLEAN;
	}
	mdres->sys_chunk_end = cache->start + cache->size - 1;
	return ret;
out_short_read:
	error("sys_array too short to read %u bytes at offset %u",
		len, cur_offset);
	return -EUCLEAN;
}

static void tree_insert(struct rb_root *root, struct rb_node *ins,
			int (*cmp)(struct rb_node *a, struct rb_node *b,
				   int fuzz))
{
	struct rb_node ** p = &root->rb_node;
	struct rb_node * parent = NULL;
	int dir;

	while(*p) {
		parent = *p;

		dir = cmp(*p, ins, 1);
		if (dir < 0)
			p = &(*p)->rb_left;
		else if (dir > 0)
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(ins, parent, p);
	rb_insert_color(ins, root);
}

static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
	struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
	struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);

	if (fuzz && ins->physical >= entry->physical &&
	    ins->physical < entry->physical + entry->bytes)
		return 0;

	if (fuzz && entry->physical >= ins->physical &&
	    entry->physical < ins->physical + ins->bytes)
		return 0;

	if (ins->physical < entry->physical)
		return -1;
	else if (ins->physical > entry->physical)
		return 1;
	return 0;
}
static int read_chunk_tree_block(struct mdrestore_struct *mdres,
				 struct extent_buffer *eb)
{
	int i;

	for (i = 0; i < btrfs_header_nritems(eb); i++) {
		struct btrfs_chunk *chunk;
		struct fs_chunk *fs_chunk;
		struct btrfs_key key;
		u64 type;

		btrfs_item_key_to_cpu(eb, &key, i);
		if (key.type != BTRFS_CHUNK_ITEM_KEY)
			continue;

		fs_chunk = malloc(sizeof(struct fs_chunk));
		if (!fs_chunk) {
			error_msg(ERROR_MSG_MEMORY, "allocate chunk");
			return -ENOMEM;
		}
		memset(fs_chunk, 0, sizeof(*fs_chunk));
		chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);

		fs_chunk->logical = key.offset;
		fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0);
		fs_chunk->bytes = btrfs_chunk_length(eb, chunk);
		INIT_LIST_HEAD(&fs_chunk->list);

		if (tree_search(&mdres->physical_tree, &fs_chunk->p,
				physical_cmp, 1) != NULL)
			list_add(&fs_chunk->list, &mdres->overlapping_chunks);
		else
			tree_insert(&mdres->physical_tree, &fs_chunk->p,
				    physical_cmp);
		type = btrfs_chunk_type(eb, chunk);
		if (type & BTRFS_BLOCK_GROUP_DUP) {
			fs_chunk->physical_dup =
					btrfs_stripe_offset_nr(eb, chunk, 1);
		}
		if (fs_chunk->physical_dup + fs_chunk->bytes >
		    mdres->last_physical_offset)
			mdres->last_physical_offset = fs_chunk->physical_dup +
				fs_chunk->bytes;
		else if (fs_chunk->physical + fs_chunk->bytes >
		    mdres->last_physical_offset)
			mdres->last_physical_offset = fs_chunk->physical +
				fs_chunk->bytes;
		mdres->alloced_chunks += fs_chunk->bytes;
		/* in dup case, fs_chunk->bytes should add twice */
		if (fs_chunk->physical_dup)
			mdres->alloced_chunks += fs_chunk->bytes;
		tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
	}
	return 0;
}

/*
 * Check if a range [start, start + len] has ANY bytes covered by system chunk
 * ranges.
 */
static bool is_in_sys_chunks(struct mdrestore_struct *mdres, u64 start, u64 len)
{
	struct rb_node *node = mdres->sys_chunks.root.rb_node;
	struct cache_extent *entry;
	struct cache_extent *next;
	struct cache_extent *prev;

	if (start > mdres->sys_chunk_end)
		return false;

	while (node) {
		entry = rb_entry(node, struct cache_extent, rb_node);
		if (start > entry->start) {
			if (!node->rb_right)
				break;
			node = node->rb_right;
		} else if (start < entry->start) {
			if (!node->rb_left)
				break;
			node = node->rb_left;
		} else {
			/* Already in a system chunk */
			return true;
		}
	}
	if (!node)
		return false;
	entry = rb_entry(node, struct cache_extent, rb_node);
	/* Now we have entry which is the nearst chunk around @start */
	if (start > entry->start) {
		prev = entry;
		next = next_cache_extent(entry);
	} else {
		prev = prev_cache_extent(entry);
		next = entry;
	}
	if (prev && prev->start + prev->size > start)
		return true;
	if (next && start + len > next->start)
		return true;
	return false;
}

static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
			    u64 item_bytenr, u32 bufsize,
			    u64 cluster_bytenr)
{
	struct extent_buffer *eb;
	u32 nodesize = mdres->nodesize;
	u64 bytenr;
	size_t cur_offset;
	int ret = 0;

	eb = alloc_dummy_eb(0, mdres->nodesize);
	if (!eb)
		return -ENOMEM;

	for (cur_offset = 0; cur_offset < bufsize; cur_offset += nodesize) {
		bytenr = item_bytenr + cur_offset;
		if (!is_in_sys_chunks(mdres, bytenr, nodesize))
			continue;
		memcpy(eb->data, buffer + cur_offset, nodesize);
		if (btrfs_header_bytenr(eb) != bytenr) {
			error(
			"eb bytenr does not match found bytenr: %llu != %llu",
				btrfs_header_bytenr(eb), bytenr);
			ret = -EUCLEAN;
			break;
		}
		if (memcmp(mdres->fsid, eb->data +
			   offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE)) {
			error(
			"filesystem metadata UUID of eb %llu does not match",
				bytenr);
			ret = -EUCLEAN;
			break;
		}
		if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
			error("wrong eb %llu owner %llu",
				bytenr, btrfs_header_owner(eb));
			ret = -EUCLEAN;
			break;
		}
		/*
		 * No need to search node, as we will iterate all tree blocks
		 * in chunk tree, only need to bother leaves.
		 */
		if (btrfs_header_level(eb))
			continue;
		ret = read_chunk_tree_block(mdres, eb);
		if (ret < 0)
			break;
	}
	free(eb);
	return ret;
}

/*
 * This function will try to find all chunk items in the dump image.
 *
 * This function will iterate all clusters, and find any item inside system
 * chunk ranges.  For such item, it will try to read them as tree blocks, and
 * find CHUNK_ITEMs, add them to @mdres.
 */
static int search_for_chunk_blocks(struct mdrestore_struct *mdres)
{
	struct meta_cluster *cluster;
	struct meta_cluster_header *header;
	struct meta_cluster_item *item;
	u64 current_cluster = 0, bytenr;
	u64 item_bytenr;
	u32 bufsize, nritems, i;
	u32 max_size = current_version->max_pending_size * 2;
	u8 *buffer, *tmp = NULL;
	int ret = 0;

	cluster = malloc(IMAGE_BLOCK_SIZE);
	if (!cluster) {
		error_msg(ERROR_MSG_MEMORY, NULL);
		return -ENOMEM;
	}

	buffer = malloc(max_size);
	if (!buffer) {
		error_msg(ERROR_MSG_MEMORY, NULL);
		free(cluster);
		return -ENOMEM;
	}

	if (mdres->compress_method == COMPRESS_ZLIB) {
		tmp = malloc(max_size);
		if (!tmp) {
			error_msg(ERROR_MSG_MEMORY, NULL);
			free(cluster);
			free(buffer);
			return -ENOMEM;
		}
	}

	bytenr = current_cluster;
	/* Main loop, iterating all clusters */
	while (1) {
		if (fseek(mdres->in, current_cluster, SEEK_SET)) {
			error("seek failed: %m");
			ret = -EIO;
			goto out;
		}

		ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, mdres->in);
		if (ret == 0) {
			if (feof(mdres->in))
				goto out;
			error(
	"unknown state after reading cluster at %llu, probably corrupted data",
					current_cluster);
			ret = -EIO;
			goto out;
		} else if (ret < 0) {
			error("unable to read image at %llu: %m",
					current_cluster);
			goto out;
		}
		ret = 0;

		header = &cluster->header;
		if (get_unaligned_le64(&header->magic) != current_version->magic_cpu ||
		    get_unaligned_le64(&header->bytenr) != current_cluster) {
			error("bad header in metadump image");
			ret = -EIO;
			goto out;
		}

		/* We're already over the system chunk end, no need to search*/
		if (current_cluster > mdres->sys_chunk_end)
			goto out;

		bytenr += IMAGE_BLOCK_SIZE;
		nritems = get_unaligned_le32(&header->nritems);

		/* Search items for tree blocks in sys chunks */
		for (i = 0; i < nritems; i++) {
			size_t size;

			item = &cluster->items[i];
			bufsize = get_unaligned_le32(&item->size);
			item_bytenr = get_unaligned_le64(&item->bytenr);

			/*
			 * Only data extent/free space cache can be that big,
			 * adjacent tree blocks won't be able to be merged
			 * beyond max_size.  Also, we can skip super block.
			 */
			if (bufsize > max_size ||
			    !is_in_sys_chunks(mdres, item_bytenr, bufsize) ||
			    item_bytenr == BTRFS_SUPER_INFO_OFFSET) {
				ret = fseek(mdres->in, bufsize, SEEK_CUR);
				if (ret < 0) {
					error("failed to seek: %m");
					ret = -errno;
					goto out;
				}
				bytenr += bufsize;
				continue;
			}

			if (mdres->compress_method == COMPRESS_ZLIB) {
				ret = fread(tmp, bufsize, 1, mdres->in);
				if (ret != 1) {
					error("read error: %m");
					ret = -EIO;
					goto out;
				}

				size = max_size;
				ret = uncompress(buffer,
						 (unsigned long *)&size, tmp,
						 bufsize);
				if (ret != Z_OK) {
					error("decompression failed with %d",
							ret);
					ret = -EIO;
					goto out;
				}
			} else {
				ret = fread(buffer, bufsize, 1, mdres->in);
				if (ret != 1) {
					error("read error: %m");
					ret = -EIO;
					goto out;
				}
				size = bufsize;
			}
			ret = 0;

			ret = read_chunk_block(mdres, buffer, item_bytenr, size,
					       current_cluster);
			if (ret < 0) {
				error(
			"failed to search tree blocks in item bytenr %llu size %zu",
					item_bytenr, size);
				goto out;
			}
			bytenr += bufsize;
		}
		if (bytenr & IMAGE_BLOCK_MASK)
			bytenr += IMAGE_BLOCK_SIZE - (bytenr & IMAGE_BLOCK_MASK);
		current_cluster = bytenr;
	}

out:
	free(tmp);
	free(buffer);
	free(cluster);
	return ret;
}

static int build_chunk_tree(struct mdrestore_struct *mdres,
			    struct meta_cluster *cluster)
{
	struct btrfs_super_block *super;
	struct meta_cluster_header *header;
	struct meta_cluster_item *item = NULL;
	u32 i, nritems;
	u8 *buffer;
	int ret;

	/* We can't seek with stdin so don't bother doing this */
	if (mdres->in == stdin)
		return 0;

	ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, mdres->in);
	if (ret <= 0) {
		error("unable to read cluster: %m");
		return -EIO;
	}
	ret = 0;

	header = &cluster->header;
	if (get_unaligned_le64(&header->magic) != current_version->magic_cpu ||
	    get_unaligned_le64(&header->bytenr) != 0) {
		error("bad header in metadump image");
		return -EIO;
	}

	mdres->compress_method = header->compress;
	nritems = get_unaligned_le32(&header->nritems);
	for (i = 0; i < nritems; i++) {
		item = &cluster->items[i];

		if (get_unaligned_le64(&item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
			break;
		if (fseek(mdres->in, get_unaligned_le32(&item->size), SEEK_CUR)) {
			error("seek failed: %m");
			return -EIO;
		}
	}

	if (!item || get_unaligned_le64(&item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
		error("did not find superblock at %llu", get_unaligned_le64(&item->bytenr));
		return -EINVAL;
	}

	buffer = malloc(get_unaligned_le32(&item->size));
	if (!buffer) {
		error_msg(ERROR_MSG_MEMORY, NULL);
		return -ENOMEM;
	}

	ret = fread(buffer, get_unaligned_le32(&item->size), 1, mdres->in);
	if (ret != 1) {
		error("unable to read buffer: %m");
		free(buffer);
		return -EIO;
	}

	if (mdres->compress_method == COMPRESS_ZLIB) {
		size_t size = BTRFS_SUPER_INFO_SIZE;
		u8 *tmp;

		tmp = malloc(size);
		if (!tmp) {
			free(buffer);
			return -ENOMEM;
		}
		ret = uncompress(tmp, (unsigned long *)&size, buffer, get_unaligned_le32(&item->size));
		if (ret != Z_OK) {
			error("decompression failed with %d", ret);
			free(buffer);
			free(tmp);
			return -EIO;
		}
		free(buffer);
		buffer = tmp;
	}

	pthread_mutex_lock(&mdres->mutex);
	super = (struct btrfs_super_block *)buffer;
	ret = btrfs_check_super(super, 0);
	if (ret < 0) {
		error("invalid superblock");
		return ret;
	}
	ret = add_sys_array(mdres, super);
	if (ret < 0) {
		error("failed to read system chunk array");
		free(buffer);
		pthread_mutex_unlock(&mdres->mutex);
		return ret;
	}
	mdres->nodesize = btrfs_super_nodesize(super);
	if (btrfs_super_incompat_flags(super) &
	    BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
		memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
	else
		memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);

	memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
	mdres->devid = get_unaligned_le64(&super->dev_item.devid);
	free(buffer);
	pthread_mutex_unlock(&mdres->mutex);

	return search_for_chunk_blocks(mdres);
}

static bool range_contains_super(u64 physical, u64 bytes)
{
	u64 super_bytenr;
	int i;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		super_bytenr = btrfs_sb_offset(i);
		if (super_bytenr >= physical &&
		    super_bytenr < physical + bytes)
			return true;
	}

	return false;
}

static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
{
	struct fs_chunk *fs_chunk;

	while (!list_empty(&mdres->overlapping_chunks)) {
		fs_chunk = list_first_entry(&mdres->overlapping_chunks,
					    struct fs_chunk, list);
		list_del_init(&fs_chunk->list);
		if (range_contains_super(fs_chunk->physical,
					 fs_chunk->bytes)) {
			warning(
"remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption");
			mdres->clear_space_cache = 1;
		}
		fs_chunk->physical = mdres->last_physical_offset;
		tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
		mdres->last_physical_offset += fs_chunk->bytes;
	}
}

static int fill_mdres_info(struct mdrestore_struct *mdres,
			   struct async_work *async)
{
	struct btrfs_super_block *super;
	u8 *buffer = NULL;
	u8 *outbuf;
	int ret;

	/* We've already been initialized */
	if (mdres->nodesize)
		return 0;

	if (mdres->compress_method == COMPRESS_ZLIB) {
		/*
		 * We know this item is superblock, its should only be 4K.
		 * Don't need to waste memory following max_pending_size as it
		 * can be as large as 256M.
		 */
		size_t size = BTRFS_SUPER_INFO_SIZE;

		buffer = malloc(size);
		if (!buffer)
			return -ENOMEM;
		ret = uncompress(buffer, (unsigned long *)&size,
				 async->buffer, async->bufsize);
		if (ret != Z_OK) {
			error("decompression failed with %d", ret);
			free(buffer);
			return -EIO;
		}
		outbuf = buffer;
	} else {
		outbuf = async->buffer;
	}

	super = (struct btrfs_super_block *)outbuf;
	mdres->nodesize = btrfs_super_nodesize(super);
	if (btrfs_super_incompat_flags(super) &
	    BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
		memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
	else
		memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
	memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
	mdres->devid = get_unaligned_le64(&super->dev_item.devid);
	free(buffer);
	return 0;
}

static int add_cluster(struct meta_cluster *cluster,
		       struct mdrestore_struct *mdres, u64 *next)
{
	struct meta_cluster_item *item;
	struct meta_cluster_header *header = &cluster->header;
	struct async_work *async;
	u64 bytenr;
	u32 i, nritems;
	int ret;

	pthread_mutex_lock(&mdres->mutex);
	mdres->compress_method = header->compress;
	pthread_mutex_unlock(&mdres->mutex);

	bytenr = get_unaligned_le64(&header->bytenr) + IMAGE_BLOCK_SIZE;
	nritems = get_unaligned_le32(&header->nritems);
	for (i = 0; i < nritems; i++) {
		item = &cluster->items[i];
		async = calloc(1, sizeof(*async));
		if (!async) {
			error_msg(ERROR_MSG_MEMORY, "async data");
			return -ENOMEM;
		}
		async->start = get_unaligned_le64(&item->bytenr);
		async->bufsize = get_unaligned_le32(&item->size);
		async->buffer = malloc(async->bufsize);
		if (!async->buffer) {
			error_msg(ERROR_MSG_MEMORY, "async buffer");
			free(async);
			return -ENOMEM;
		}
		ret = fread(async->buffer, async->bufsize, 1, mdres->in);
		if (ret != 1) {
			error("unable to read buffer: %m");
			free(async->buffer);
			free(async);
			return -EIO;
		}
		bytenr += async->bufsize;

		pthread_mutex_lock(&mdres->mutex);
		if (async->start == BTRFS_SUPER_INFO_OFFSET) {
			ret = fill_mdres_info(mdres, async);
			if (ret) {
				error("unable to set up restore state");
				pthread_mutex_unlock(&mdres->mutex);
				free(async->buffer);
				free(async);
				return ret;
			}
		}
		list_add_tail(&async->list, &mdres->list);
		mdres->num_items++;
		pthread_cond_signal(&mdres->cond);
		pthread_mutex_unlock(&mdres->mutex);
	}
	if (bytenr & IMAGE_BLOCK_MASK) {
		char buffer[IMAGE_BLOCK_MASK];
		size_t size = IMAGE_BLOCK_SIZE - (bytenr & IMAGE_BLOCK_MASK);

		bytenr += size;
		ret = fread(buffer, size, 1, mdres->in);
		if (ret != 1) {
			error("failed to read buffer: %m");
			return -EIO;
		}
	}
	*next = bytenr;
	return 0;
}

static int wait_for_worker(struct mdrestore_struct *mdres)
{
	int ret = 0;

	pthread_mutex_lock(&mdres->mutex);
	ret = mdres->error;
	while (!ret && mdres->num_items > 0) {
		struct timespec ts = {
			.tv_sec = 0,
			.tv_nsec = 10000000,
		};
		pthread_mutex_unlock(&mdres->mutex);
		nanosleep(&ts, NULL);
		pthread_mutex_lock(&mdres->mutex);
		ret = mdres->error;
	}
	pthread_mutex_unlock(&mdres->mutex);
	return ret;
}

static int iter_tree_blocks(struct btrfs_fs_info *fs_info,
			    struct extent_buffer *eb, bool pin)
{
	void (*func)(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes);
	struct btrfs_tree_parent_check check = { 0 };
	int nritems;
	int level;
	int i;
	int ret;

	if (pin)
		func = btrfs_pin_extent;
	else
		func = btrfs_unpin_extent;

	func(fs_info, eb->start, eb->len);

	level = btrfs_header_level(eb);
	nritems = btrfs_header_nritems(eb);
	if (level == 0)
		return 0;

	for (i = 0; i < nritems; i++) {
		u64 bytenr;
		struct extent_buffer *tmp;

		if (level == 0) {
			struct btrfs_root_item *ri;
			struct btrfs_key key;

			btrfs_item_key_to_cpu(eb, &key, i);
			if (key.type != BTRFS_ROOT_ITEM_KEY)
				continue;
			ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
			bytenr = btrfs_disk_root_bytenr(eb, ri);
			tmp = read_tree_block(fs_info, bytenr, &check);
			if (!extent_buffer_uptodate(tmp)) {
				error("unable to read log root block");
				return -EIO;
			}
			ret = iter_tree_blocks(fs_info, tmp, pin);
			free_extent_buffer(tmp);
			if (ret)
				return ret;
		} else {
			bytenr = btrfs_node_blockptr(eb, i);
			tmp = read_tree_block(fs_info, bytenr, &check);
			if (!extent_buffer_uptodate(tmp)) {
				error("unable to read log root block");
				return -EIO;
			}
			ret = iter_tree_blocks(fs_info, tmp, pin);
			free_extent_buffer(tmp);
			if (ret)
				return ret;
		}
	}

	return 0;
}

static int remove_all_dev_extents(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_path path = { 0 };
	struct btrfs_key key;
	struct extent_buffer *leaf;
	int slot;
	int ret;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
	if (ret < 0) {
		errno = -ret;
		error("failed to search dev tree: %m");
		return ret;
	}

	while (1) {
		slot = path.slots[0];
		leaf = path.nodes[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, &path);
			if (ret < 0) {
				errno = -ret;
				error("failed to search dev tree: %m");
				goto out;
			}
			if (ret > 0) {
				ret = 0;
				goto out;
			}
		}

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		ret = btrfs_del_item(trans, root, &path);
		if (ret < 0) {
			errno = -ret;
			error("failed to delete dev extent %llu, %llu: %m",
				key.objectid, key.offset);
			goto out;
		}
	}
out:
	btrfs_release_path(&path);
	return ret;
}

static int fixup_dev_extents(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct btrfs_device *dev;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 devid = btrfs_stack_device_id(&fs_info->super_copy->dev_item);
	int i;
	int ret;

	ret = remove_all_dev_extents(trans);
	if (ret < 0) {
		errno = -ret;
		error("failed to remove all existing dev extents: %m");
	}

	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
	if (!dev) {
		error("failed to find devid %llu", devid);
		return -ENODEV;
	}

	/* Rebuild all dev extents using chunk maps */
	for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
	     ce = next_cache_extent(ce)) {
		u64 stripe_len;

		map = container_of(ce, struct map_lookup, ce);
		stripe_len = calc_stripe_length(map->type, ce->size,
						map->num_stripes);
		for (i = 0; i < map->num_stripes; i++) {
			ret = btrfs_insert_dev_extent(trans, dev, ce->start,
					stripe_len, map->stripes[i].physical);
			if (ret < 0) {
				errno = -ret;
				error(
				"failed to insert dev extent %llu %llu: %m",
					devid, map->stripes[i].physical);
				goto out;
			}
		}
	}
out:
	return ret;
}

static void fixup_block_groups(struct btrfs_trans_handle *trans)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_block_group *bg;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
	struct cache_extent *ce;
	struct map_lookup *map;
	u64 extra_flags;

	for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
	     ce = next_cache_extent(ce)) {
		map = container_of(ce, struct map_lookup, ce);

		bg = btrfs_lookup_block_group(fs_info, ce->start);
		if (!bg) {
			warning(
		"cannot find block group %llu, filesystem may not be mountable",
				ce->start);
			continue;
		}
		extra_flags = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;

		if (bg->flags == map->type)
			continue;

		/* Update the block group item and mark the bg dirty */
		bg->flags = map->type;
		if (list_empty(&bg->dirty_list))
			list_add_tail(&bg->dirty_list, &trans->dirty_bgs);
		/*
		 * Chunk and bg flags can be different, changing bg flags
		 * without update avail_data/meta_alloc_bits will lead to
		 * ENOSPC.
		 * So here we set avail_*_alloc_bits to match chunk types.
		 */
		if (map->type & BTRFS_BLOCK_GROUP_DATA)
			fs_info->avail_data_alloc_bits = extra_flags;
		if (map->type & BTRFS_BLOCK_GROUP_METADATA)
			fs_info->avail_metadata_alloc_bits = extra_flags;
		if (map->type & BTRFS_BLOCK_GROUP_SYSTEM)
			fs_info->avail_system_alloc_bits = extra_flags;
	}
}

static int fixup_device_size(struct btrfs_trans_handle *trans,
			     struct mdrestore_struct *mdres, int out_fd)
{
	struct btrfs_fs_info *fs_info = trans->fs_info;
	struct btrfs_dev_item *dev_item;
	struct btrfs_dev_extent *dev_ext;
	struct btrfs_device *dev;
	struct btrfs_path path = { 0 };
	struct extent_buffer *leaf;
	struct btrfs_root *root = fs_info->chunk_root;
	struct btrfs_key key;
	struct stat buf;
	u64 devid, cur_devid;
	u64 dev_size; /* Get from last dev extents */
	int ret;

	dev_item = &fs_info->super_copy->dev_item;

	devid = btrfs_stack_device_id(dev_item);

	key.objectid = devid;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = (u64)-1;

	dev = list_first_entry(&fs_info->fs_devices->devices,
				struct btrfs_device, dev_list);
	ret = btrfs_search_slot(NULL, fs_info->dev_root, &key, &path, 0, 0);
	if (ret < 0) {
		errno = -ret;
		error("failed to locate last dev extent of devid %llu: %m",
			devid);
		btrfs_release_path(&path);
		return ret;
	}
	if (ret == 0) {
		error("found invalid dev extent devid %llu offset -1", devid);
		btrfs_release_path(&path);
		return -EUCLEAN;
	}
	ret = btrfs_previous_item(fs_info->dev_root, &path, devid,
				  BTRFS_DEV_EXTENT_KEY);
	if (ret > 0)
		ret = -ENOENT;
	if (ret < 0) {
		errno = -ret;
		error("failed to locate last dev extent of devid %llu: %m",
			devid);
		btrfs_release_path(&path);
		return ret;
	}

	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
	dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0],
				 struct btrfs_dev_extent);
	dev_size = key.offset + btrfs_dev_extent_length(path.nodes[0], dev_ext);
	btrfs_release_path(&path);

	btrfs_set_stack_device_total_bytes(dev_item, dev_size);
	btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
	dev->total_bytes = dev_size;
	dev->bytes_used = mdres->alloced_chunks;
	btrfs_set_super_total_bytes(fs_info->super_copy, dev_size);
	ret = fstat(out_fd, &buf);
	if (ret < 0) {
		error("failed to stat result image: %m");
		return -errno;
	}
	if (S_ISREG(buf.st_mode)) {
		/* Don't forget to enlarge the real file */
		ret = ftruncate(out_fd, dev_size);
		if (ret < 0) {
			error("failed to enlarge result image: %m");
			return -errno;
		}
	}

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = 0;

again:
	ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
	if (ret < 0) {
		error("search failed: %d", ret);
		return ret;
	}

	while (1) {
		leaf = path.nodes[0];
		if (path.slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, &path);
			if (ret < 0) {
				error("cannot go to next leaf %d", ret);
				exit(1);
			}
			if (ret > 0) {
				ret = 0;
				break;
			}
			leaf = path.nodes[0];
		}

		btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
		if (key.type > BTRFS_DEV_ITEM_KEY)
			break;
		if (key.type != BTRFS_DEV_ITEM_KEY) {
			path.slots[0]++;
			continue;
		}

		dev_item = btrfs_item_ptr(leaf, path.slots[0],
					  struct btrfs_dev_item);
		cur_devid = btrfs_device_id(leaf, dev_item);
		if (devid != cur_devid) {
			ret = btrfs_del_item(trans, root, &path);
			if (ret) {
				error("cannot delete item: %d", ret);
				exit(1);
			}
			btrfs_release_path(&path);
			goto again;
		}

		btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
		btrfs_set_device_bytes_used(leaf, dev_item,
					    mdres->alloced_chunks);
		btrfs_mark_buffer_dirty(leaf);
		path.slots[0]++;
	}

	btrfs_release_path(&path);
	return 0;
}

static int fixup_chunks_and_devices(struct btrfs_fs_info *fs_info,
			 struct mdrestore_struct *mdres, int out_fd)
{
	struct btrfs_trans_handle *trans;
	int ret;

	if (btrfs_super_log_root(fs_info->super_copy)) {
		warning(
		"log tree detected, its generation will not match superblock");
	}
	trans = btrfs_start_transaction(fs_info->tree_root, 1);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		errno = -ret;
		error_msg(ERROR_MSG_START_TRANS, "%m");
		return ret;
	}

	if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
		iter_tree_blocks(fs_info, fs_info->log_root_tree->node, true);
	fixup_block_groups(trans);
	ret = fixup_dev_extents(trans);
	if (ret < 0)
		goto error;

	ret = fixup_device_size(trans, mdres, out_fd);
	if (ret < 0)
		goto error;

	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
	if (ret) {
		errno = -ret;
		error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
		return ret;
	}
	if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
		iter_tree_blocks(fs_info, fs_info->log_root_tree->node, false);
	return 0;
error:
	errno = -ret;
	error(
"failed to fix chunks and devices mapping, the fs may not be mountable: %m");
	btrfs_abort_transaction(trans, ret);
	return ret;
}

int restore_metadump(const char *input, FILE *out, int old_restore,
		     int num_threads, int fixup_offset, const char *target,
		     int multi_devices)
{
	struct meta_cluster *cluster = NULL;
	struct meta_cluster_header *header;
	struct mdrestore_struct mdrestore;
	struct btrfs_fs_info *info = NULL;
	u64 bytenr = 0;
	FILE *in = NULL;
	int ret = 0;

	if (!strcmp(input, "-")) {
		in = stdin;
	} else {
		in = fopen(input, "r");
		if (!in) {
			error("unable to open metadump image: %m");
			return 1;
		}
	}

	/* NOTE: open with write mode */
	if (fixup_offset) {
		struct open_ctree_args oca = { 0 };

		oca.filename = target;
		oca.flags = OPEN_CTREE_WRITES | OPEN_CTREE_RESTORE |
			    OPEN_CTREE_PARTIAL | OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS |
			    OPEN_CTREE_EXCLUSIVE;
		info = open_ctree_fs_info(&oca);
		if (!info) {
			error("open ctree failed");
			ret = -EIO;
			goto failed_open;
		}
	}

	cluster = malloc(IMAGE_BLOCK_SIZE);
	if (!cluster) {
		error_msg(ERROR_MSG_MEMORY, NULL);
		ret = -ENOMEM;
		goto failed_info;
	}

	ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
			     fixup_offset, info, multi_devices);
	if (ret) {
		error("failed to initialize metadata restore state: %d", ret);
		goto failed_cluster;
	}

	if (!multi_devices && !old_restore) {
		ret = build_chunk_tree(&mdrestore, cluster);
		if (ret) {
			error("failed to build chunk tree");
			goto out;
		}
		if (!list_empty(&mdrestore.overlapping_chunks))
			remap_overlapping_chunks(&mdrestore);
	}

	if (in != stdin && fseek(in, 0, SEEK_SET)) {
		error("seek failed: %m");
		goto out;
	}

	while (!mdrestore.error) {
		ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, in);
		if (!ret)
			break;

		header = &cluster->header;
		if (get_unaligned_le64(&header->magic) != current_version->magic_cpu ||
		    get_unaligned_le64(&header->bytenr) != bytenr) {
			error("bad header in metadump image");
			ret = -EIO;
			break;
		}
		ret = add_cluster(cluster, &mdrestore, &bytenr);
		if (ret) {
			error("failed to add cluster: %d", ret);
			break;
		}
	}
	ret = wait_for_worker(&mdrestore);

	if (!ret && !multi_devices && !old_restore &&
	    btrfs_super_num_devices(mdrestore.original_super) != 1) {
		struct btrfs_root *root;

		root = open_ctree_fd(fileno(out), target, 0,
					  OPEN_CTREE_PARTIAL |
					  OPEN_CTREE_WRITES |
					  OPEN_CTREE_EXCLUSIVE |
					  OPEN_CTREE_NO_DEVICES |
					  OPEN_CTREE_ALLOW_TRANSID_MISMATCH |
					  OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS);
		if (!root) {
			error("open ctree failed in %s", target);
			ret = -EIO;
			goto out;
		}
		info = root->fs_info;

		ret = fixup_chunks_and_devices(info, &mdrestore, fileno(out));
		close_ctree(info->chunk_root);
		if (ret)
			goto out;
	} else {
		struct btrfs_root *root;
		struct stat st;
		u64 dev_size;

		if (!info) {
			root = open_ctree_fd(fileno(out), target, 0,
					     OPEN_CTREE_ALLOW_TRANSID_MISMATCH |
					     OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS);
			if (!root) {
				error("open ctree failed in %s", target);
				ret = -EIO;
				goto out;
			}

			info = root->fs_info;

			dev_size = btrfs_stack_device_total_bytes(
					&info->super_copy->dev_item);
			close_ctree(root);
			info = NULL;
		} else {
			dev_size = btrfs_stack_device_total_bytes(
					&info->super_copy->dev_item);
		}

		/*
		 * We don't need extra tree modification, but if the output is
		 * a file, we need to enlarge the output file so that 5.11+
		 * kernel won't report an error.
		 */
		ret = fstat(fileno(out), &st);
		if (ret < 0) {
			error("failed to stat result image: %m");
			ret = -errno;
			goto out;
		}
		if (S_ISREG(st.st_mode) && st.st_size < dev_size) {
			ret = ftruncate(fileno(out), dev_size);
			if (ret < 0) {
				error(
		"failed to enlarge result image file from %llu to %llu: %m",
					(unsigned long long)st.st_size, dev_size);
				ret = -errno;
				goto out;
			}
		}
	}
out:
	mdrestore_destroy(&mdrestore, num_threads);
failed_cluster:
	free(cluster);
failed_info:
	if (fixup_offset && info)
		close_ctree(info->chunk_root);
failed_open:
	if (in != stdin)
		fclose(in);
	return ret;
}