Check_mount() should also work with multi device filesystems.
This patch adds checks that allow to detect if a file is a device
file used by a mounted single or multi device btrfs or if it is a
regular file used by a loopback device that is part of a mounted
single or multi device btrfs.
The single device checks also work for non-btrfs filesystems.
This might be helpful to prevent users from running btrfs programs
(e.g. mkfs.btrfs) accidentally on a filesystem used somewhere else.
Signed-off-by: Andi Drebes <lists-receive@programmierforen.de>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
The new back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer by
searching the tree. The shortcoming of the new back ref is that it only works
for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these fuzzy back
references would be O(number_of_snapshots) and quite slow. The solution used
here is to use the fuzzy back references in the common case where a given tree
block is only referenced by one root, and use the full back references when
multiple roots have a reference
The structure used to send device in btrfs ioctl calls was not
properly aligned, and so 32 bit ioctls would not work properly on
64 bit kernels.
We could fix this with compat ioctls, but we're just one byte away
and it doesn't make sense at this stage to carry about the compat ioctls
forever at this stage in the project.
This patch brings the ioctl arg up to an evenly aligned 4k.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
brfsctl -a will do nothing and no error is output
if btrfs.ko is not inserted.
Since no caller do error processing for btrfs_register_one_device,
make its return void and do error processing inside.
Signed-off-by: Shen Feng <shen@cn.fujitsu.com>
This patch updates the ext3 to btrfs converter for the new
disk format. This mainly involves changing the convert's
data relocation and free space management code. This patch
also ports some functions from kernel module to btrfs-progs.
Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch updates btrfs-progs for superblock duplication.
Note: I didn't make this patch as complete as the one for
kernel since updating the converter requires changing the
code again. Thank you,
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Btrfs stores checksums for each data block. Until now, they have
been stored in the subvolume trees, indexed by the inode that is
referencing the data block. This means that when we read the inode,
we've probably read in at least some checksums as well.
But, this has a few problems:
* The checksums are indexed by logical offset in the file. When
compression is on, this means we have to do the expensive checksumming
on the uncompressed data. It would be faster if we could checksum
the compressed data instead.
* If we implement encryption, we'll be checksumming the plain text and
storing that on disk. This is significantly less secure.
* For either compression or encryption, we have to get the plain text
back before we can verify the checksum as correct. This makes the raid
layer balancing and extent moving much more expensive.
* It makes the front end caching code more complex, as we have touch
the subvolume and inodes as we cache extents.
* There is potentitally one copy of the checksum in each subvolume
referencing an extent.
The solution used here is to store the extent checksums in a dedicated
tree. This allows us to index the checksums by phyiscal extent
start and length. It means:
* The checksum is against the data stored on disk, after any compression
or encryption is done.
* The checksum is stored in a central location, and can be verified without
following back references, or reading inodes.
This makes compression significantly faster by reducing the amount of
data that needs to be checksummed. It will also allow much faster
raid management code in general.
The checksums are indexed by a key with a fixed objectid (a magic value
in ctree.h) and offset set to the starting byte of the extent. This
allows us to copy the checksum items into the fsync log tree directly (or
any other tree), without having to invent a second format for them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is the btrfs-progs version of the patch to add the ability to have
different csum algorithims. Note I didn't change the image maker since it
seemed a bit more complicated than just changing some stuff around so I will let
Yan take care of that.
Everything else was converted and for now a mkfs just
sets the type to be BTRFS_CSUM_TYPE_CRC32.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This patch does the following:
1) Update device management code to match the kernel code.
2) Allocator fixes.
3) Add a program called btrfstune to set/clear the SEEDING
super block flags.
This patch adds transaction IDs to root tree pointers.
Transaction IDs in tree pointers are compared with the
generation numbers in block headers when reading root
blocks of trees. This can detect some types of IO errors.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding reference to file extent
are recorded explicitly. We can quickly scan these tree leaves, so the
offset field is not required.
This patch also makes the back reference system check the objectid
when extents are being deleted
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.
Gcc only sends warnings for uninitialized variables when you compile with -O,
and there were a couple of bugs sprinkled in the code. The biggest was the
alloc_start variable for mkfs, which can cause strange things to happen.
(thanks to Gabor Micsko for helping to find this)
The main changes in this patch are adding chunk handing and data relocation
ability. In the last step of conversion, the converter relocates data in system
chunk and move chunk tree into system chunk. In the rollback process, the
converter remove chunk tree from system chunk and copy data back.
Regards
YZ
---
Block headers now store the chunk tree uuid
Chunk items records the device uuid for each stripes
Device extent items record better back refs to the chunk tree
Block groups record better back refs to the chunk tree
The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY
used to be the logical offset of the chunk. Now it is a chunk tree id,
with the logical offset being stored in the offset field of the key.
This allows a single chunk tree to record multiple logical address spaces,
upping the number of bytes indexed by a chunk tree from 2^64 to
2^128.
The mkfs code bootstraps the filesystem on a single device. Once
the raid block groups are setup, it needs to recow all of the blocks so
that each tree is properly allocated.
We get lots of warnings of the flavor:
utils.c:441: warning: format '%Lu' expects type 'long long unsigned int' but argument 2 has type 'u64'
And thanks to -Werror, the build fails. Clean up these printfs
by properly casting the arg to the format specified.
Signed-off-by: Alex Chiang <achiang@hp.com>
This saves from the blunder of formatting a live mounted filesystem.
This can be extended to get the mount flags of the filesystem
mounted.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@gmail.com>
Using strncpy avoids a 1 byte overflow into the next field
of the struct. The overflow is harmless, but does
trip automated tools.
Signed-off-by: Jan Engelhardt <jengelh@computergmbh.de>
---
utils.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
This patch adds rollback support for the converter, the converter can
roll back a conversion if the image file haven't been modified. In
addition, I rearrange some codes in convert.c and add a few comments.