btrfs-progs: docs: update btrfs-balance manual page

Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
David Sterba 2016-07-12 17:13:16 +02:00
parent 419334be80
commit 97bb68ebf3
1 changed files with 147 additions and 3 deletions

View File

@ -51,17 +51,32 @@ NOTE: A short syntax *btrfs balance <path>* works due to backward compatibility
but is deprecated and should not be used anymore. Use *btrfs balance start*
command instead.
PERFORMANCE IMPLICATIONS
------------------------
Balance operation is intense namely in the IO respect, but can be also CPU
intense. It affects other actions on the filesystem. There are typically lots
of data being copied from one location to another, and lots of metadata get
updated.
Depending on the actual block group layout, it can be also seek-heavy. The
performance on rotational devices is noticeably worse than on SSDs or fast
arrays.
SUBCOMMAND
----------
*cancel* <path>::
cancel running or paused balance
cancel running or paused balance, the command will block and wait until the
actually processed blockgroup is finished
*pause* <path>::
pause running balance operation, this will store the state of the balance
progress and used filters to the filesystem
*resume* <path>::
resume interrupted balance
resume interrupted balance, the balance status must be stored on the filesystem
from previous run, eg. after it was forcibly interrupted and mounted again with
'skip_balance'
*start* [options] <path>::
start the balance operation according to the specified filters, no filters
@ -73,6 +88,10 @@ filesystem size. To prevent starting a full balance by accident, the user is
warned and has a few seconds to cancel the operation before it starts. The
warning and delay can be skipped with '--full-balance' option.
+
Please note that the filters must be written together with the '-d', '-m' and
'-s' options, because they're optional and bare '-d' etc alwo work and mean no
filters.
+
`Options`
+
-d[<filters>]::::
@ -94,7 +113,7 @@ If '-v' option is given, output will be verbose.
FILTERS
-------
From kernel 3.3 onwards, btrfs balance can limit its action to a subset of the
full filesystem, and can be used to change the replication configuration (e.g.
whole filesystem, and can be used to change the replication configuration (e.g.
moving data from single to RAID1). This functionality is accessed through the
'-d', '-m' or '-s' options to btrfs balance start, which filter on data,
metadata and system blocks respectively.
@ -140,6 +159,9 @@ parameters.
+
NOTE: starting with kernel 4.5, the 'data' chunks can be converted to/from the
'DUP' profile on a single device.
+
NOTE: starting with kernel 4.6, all profiles can be converted to/from 'DUP' on
multi-device filesystems.
*limit=<number>*::
*limit=<range>*::
@ -206,6 +228,128 @@ Conversion to profiles based on striping (RAID0, RAID5/6) require the work
space on each device. An interrupted balance may leave partially filled block
groups that might consume the work space.
EXAMPLES
--------
A more comprehensive example when going from one to multiple devices, and back,
can be found in section 'TYPICAL USECASES' of `btrfs-device`(8).
MAKING BLOCK GROUP LAYOUT MORE COMPACT
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The layout of block groups is not normally visible, most tools report only
summarized numbers of free or used space, but there are still some hints
provided.
Let's use the following real life example and start with the output:
--------------------
$ btrfs fi df /path
Data, single: total=75.81GiB, used=64.44GiB
System, RAID1: total=32.00MiB, used=20.00KiB
Metadata, RAID1: total=15.87GiB, used=8.84GiB
GlobalReserve, single: total=512.00MiB, used=0.00B
--------------------
Roughly calculating for data, '75G - 64G = 11G', the used/total ratio is
about '85%'. How can we can interpret that:
* chunks are filled by 85% on average, ie. the 'usage' filter with anything
smaller than 85 will likely not affect anything
* in a more realistic scenario, the space is distributed unevenly, we can
assume there are completely used chunks and the remaining are partially filled
Compacting the layout could be used on both. In the former case it would spread
data of a given chunk to the others and removing it. Here we can estimate that
roughly 850 MiB of data have to be moved (85% of a 1 GiB chunk).
In the latter case, targeting the partially used chunks will have to move less
data and thus will be faster. A typical filter command would look like:
--------------------
# btrfs balance start -dusage=50 /path
Done, had to relocate 2 out of 97 chunks
$ btrfs fi df /path
Data, single: total=74.03GiB, used=64.43GiB
System, RAID1: total=32.00MiB, used=20.00KiB
Metadata, RAID1: total=15.87GiB, used=8.84GiB
GlobalReserve, single: total=512.00MiB, used=0.00B
--------------------
As you can see, the 'total' amount of data is decreased by just 1 GiB, which is
an expected result. Let's see what will happen when we increase the estimated
usage filter.
--------------------
# btrfs balance start -dusage=85 /path
Done, had to relocate 13 out of 95 chunks
$ btrfs fi df /path
Data, single: total=68.03GiB, used=64.43GiB
System, RAID1: total=32.00MiB, used=20.00KiB
Metadata, RAID1: total=15.87GiB, used=8.85GiB
GlobalReserve, single: total=512.00MiB, used=0.00B
--------------------
Now the used/total ratio is about 94% and we moved about '74G - 68G = 6G' of
data to the remaining blockgroups, ie. the 6GiB are now free of filesystem
structures, and can be reused for new data or metadata block groups.
We can do a similar exercise with the metadata block groups, but this should
not be typically necessary, unless the used/total ration is really off. Here
the ratio is roughly 50% but the difference as an absolute number is "a few
gigabytes", which can be considered normal for a workload with snapshots or
reflinks updated frequently.
--------------------
# btrfs balance start -musage=50 /path
Done, had to relocate 4 out of 89 chunks
$ btrfs fi df /path
Data, single: total=68.03GiB, used=64.43GiB
System, RAID1: total=32.00MiB, used=20.00KiB
Metadata, RAID1: total=14.87GiB, used=8.85GiB
GlobalReserve, single: total=512.00MiB, used=0.00B
--------------------
Just 1 GiB decrease, which possibly means there are block groups with good
utilization. Making the metadata layout more compact would in turn require
updating more metadata structures, ie. lots of IO. As running out of metadata
space is a more severe problem, it's not necessary to keep the utilization
ratio too high. For the purpose of this example, let's see the effects of
further compaction:
--------------------
# btrfs balance start -musage=70 /path
Done, had to relocate 13 out of 88 chunks
$ btrfs fi df .
Data, single: total=68.03GiB, used=64.43GiB
System, RAID1: total=32.00MiB, used=20.00KiB
Metadata, RAID1: total=11.97GiB, used=8.83GiB
GlobalReserve, single: total=512.00MiB, used=0.00B
--------------------
GETTING RID OF COMPLETELY UNUSED BLOCK GROUPS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normally the balance operation needs a work space, to temporarily move the
data before the old block groups gets removed. If there's no work space, it
ends with 'no space left'.
There's a special case when the block groups are completely unused, possibly
left after removing lots of files or deleting snapshots. Removing empty block
groups is automatic since 3.18. The same can be achieved manually with a
notable exception that this operation does not require the work space. Thus it
can be used to reclaim unused block groups to make it available.
--------------------
# btrfs balance start -dusage=0 /path
--------------------
This should lead to decrease in the 'total' numbers in the *btrfs fi df* output.
EXIT STATUS
-----------
*btrfs balance* returns a zero exit status if it succeeds. Non zero is