Btrfs-progs: update rbtree libs

While debugging a broken fs we were seeing hangs in the rb_erase loops.  The
rbtree was simple and wasn't corrupted so it appeared to be a bug in our rbtree
library.  Updating to the kernels latest rbtree code made the infinite loop go
away, so pull it back.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This commit is contained in:
Josef Bacik 2014-10-10 16:57:09 -04:00 committed by David Sterba
parent cdb9e22e29
commit 2ba12173d5
4 changed files with 719 additions and 374 deletions

View File

@ -345,6 +345,11 @@ struct __una_u64 { __le64 x; } __attribute__((__packed__));
#define put_unaligned_le64(val,p) (((struct __una_u64 *)(p))->x = cpu_to_le64(val)) #define put_unaligned_le64(val,p) (((struct __una_u64 *)(p))->x = cpu_to_le64(val))
#endif #endif
#ifndef true
#define true 1
#define false 0
#endif
#ifndef noinline #ifndef noinline
#define noinline #define noinline
#endif #endif

715
rbtree.c
View File

@ -2,7 +2,8 @@
Red Black Trees Red Black Trees
(C) 1999 Andrea Arcangeli <andrea@suse.de> (C) 1999 Andrea Arcangeli <andrea@suse.de>
(C) 2002 David Woodhouse <dwmw2@infradead.org> (C) 2002 David Woodhouse <dwmw2@infradead.org>
(C) 2012 Michel Lespinasse <walken@google.com>
This program is free software; you can redistribute it and/or modify This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or the Free Software Foundation; either version 2 of the License, or
@ -20,276 +21,396 @@
linux/lib/rbtree.c linux/lib/rbtree.c
*/ */
#include "rbtree.h" #include "rbtree_augmented.h"
static void __rb_rotate_left(struct rb_node *node, struct rb_root *root) /*
* red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
*
* 1) A node is either red or black
* 2) The root is black
* 3) All leaves (NULL) are black
* 4) Both children of every red node are black
* 5) Every simple path from root to leaves contains the same number
* of black nodes.
*
* 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
* consecutive red nodes in a path and every red node is therefore followed by
* a black. So if B is the number of black nodes on every simple path (as per
* 5), then the longest possible path due to 4 is 2B.
*
* We shall indicate color with case, where black nodes are uppercase and red
* nodes will be lowercase. Unknown color nodes shall be drawn as red within
* parentheses and have some accompanying text comment.
*/
static inline void rb_set_black(struct rb_node *rb)
{ {
struct rb_node *right = node->rb_right; rb->__rb_parent_color |= RB_BLACK;
struct rb_node *parent = rb_parent(node);
if ((node->rb_right = right->rb_left))
rb_set_parent(right->rb_left, node);
right->rb_left = node;
rb_set_parent(right, parent);
if (parent)
{
if (node == parent->rb_left)
parent->rb_left = right;
else
parent->rb_right = right;
}
else
root->rb_node = right;
rb_set_parent(node, right);
} }
static void __rb_rotate_right(struct rb_node *node, struct rb_root *root) static inline struct rb_node *rb_red_parent(struct rb_node *red)
{ {
struct rb_node *left = node->rb_left; return (struct rb_node *)red->__rb_parent_color;
struct rb_node *parent = rb_parent(node);
if ((node->rb_left = left->rb_right))
rb_set_parent(left->rb_right, node);
left->rb_right = node;
rb_set_parent(left, parent);
if (parent)
{
if (node == parent->rb_right)
parent->rb_right = left;
else
parent->rb_left = left;
}
else
root->rb_node = left;
rb_set_parent(node, left);
} }
/*
* Helper function for rotations:
* - old's parent and color get assigned to new
* - old gets assigned new as a parent and 'color' as a color.
*/
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
struct rb_root *root, int color)
{
struct rb_node *parent = rb_parent(old);
new->__rb_parent_color = old->__rb_parent_color;
rb_set_parent_color(old, new, color);
__rb_change_child(old, new, parent, root);
}
static __always_inline void
__rb_insert(struct rb_node *node, struct rb_root *root,
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
while (true) {
/*
* Loop invariant: node is red
*
* If there is a black parent, we are done.
* Otherwise, take some corrective action as we don't
* want a red root or two consecutive red nodes.
*/
if (!parent) {
rb_set_parent_color(node, NULL, RB_BLACK);
break;
} else if (rb_is_black(parent))
break;
gparent = rb_red_parent(parent);
tmp = gparent->rb_right;
if (parent != tmp) { /* parent == gparent->rb_left */
if (tmp && rb_is_red(tmp)) {
/*
* Case 1 - color flips
*
* G g
* / \ / \
* p u --> P U
* / /
* n n
*
* However, since g's parent might be red, and
* 4) does not allow this, we need to recurse
* at g.
*/
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;
}
tmp = parent->rb_right;
if (node == tmp) {
/*
* Case 2 - left rotate at parent
*
* G G
* / \ / \
* p U --> n U
* \ /
* n p
*
* This still leaves us in violation of 4), the
* continuation into Case 3 will fix that.
*/
parent->rb_right = tmp = node->rb_left;
node->rb_left = parent;
if (tmp)
rb_set_parent_color(tmp, parent,
RB_BLACK);
rb_set_parent_color(parent, node, RB_RED);
augment_rotate(parent, node);
parent = node;
tmp = node->rb_right;
}
/*
* Case 3 - right rotate at gparent
*
* G P
* / \ / \
* p U --> n g
* / \
* n U
*/
gparent->rb_left = tmp; /* == parent->rb_right */
parent->rb_right = gparent;
if (tmp)
rb_set_parent_color(tmp, gparent, RB_BLACK);
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
augment_rotate(gparent, parent);
break;
} else {
tmp = gparent->rb_left;
if (tmp && rb_is_red(tmp)) {
/* Case 1 - color flips */
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;
}
tmp = parent->rb_left;
if (node == tmp) {
/* Case 2 - right rotate at parent */
parent->rb_left = tmp = node->rb_right;
node->rb_right = parent;
if (tmp)
rb_set_parent_color(tmp, parent,
RB_BLACK);
rb_set_parent_color(parent, node, RB_RED);
augment_rotate(parent, node);
parent = node;
tmp = node->rb_left;
}
/* Case 3 - left rotate at gparent */
gparent->rb_right = tmp; /* == parent->rb_left */
parent->rb_left = gparent;
if (tmp)
rb_set_parent_color(tmp, gparent, RB_BLACK);
__rb_rotate_set_parents(gparent, parent, root, RB_RED);
augment_rotate(gparent, parent);
break;
}
}
}
/*
* Inline version for rb_erase() use - we want to be able to inline
* and eliminate the dummy_rotate callback there
*/
static __always_inline void
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
while (true) {
/*
* Loop invariants:
* - node is black (or NULL on first iteration)
* - node is not the root (parent is not NULL)
* - All leaf paths going through parent and node have a
* black node count that is 1 lower than other leaf paths.
*/
sibling = parent->rb_right;
if (node != sibling) { /* node == parent->rb_left */
if (rb_is_red(sibling)) {
/*
* Case 1 - left rotate at parent
*
* P S
* / \ / \
* N s --> p Sr
* / \ / \
* Sl Sr N Sl
*/
parent->rb_right = tmp1 = sibling->rb_left;
sibling->rb_left = parent;
rb_set_parent_color(tmp1, parent, RB_BLACK);
__rb_rotate_set_parents(parent, sibling, root,
RB_RED);
augment_rotate(parent, sibling);
sibling = tmp1;
}
tmp1 = sibling->rb_right;
if (!tmp1 || rb_is_black(tmp1)) {
tmp2 = sibling->rb_left;
if (!tmp2 || rb_is_black(tmp2)) {
/*
* Case 2 - sibling color flip
* (p could be either color here)
*
* (p) (p)
* / \ / \
* N S --> N s
* / \ / \
* Sl Sr Sl Sr
*
* This leaves us violating 5) which
* can be fixed by flipping p to black
* if it was red, or by recursing at p.
* p is red when coming from Case 1.
*/
rb_set_parent_color(sibling, parent,
RB_RED);
if (rb_is_red(parent))
rb_set_black(parent);
else {
node = parent;
parent = rb_parent(node);
if (parent)
continue;
}
break;
}
/*
* Case 3 - right rotate at sibling
* (p could be either color here)
*
* (p) (p)
* / \ / \
* N S --> N Sl
* / \ \
* sl Sr s
* \
* Sr
*/
sibling->rb_left = tmp1 = tmp2->rb_right;
tmp2->rb_right = sibling;
parent->rb_right = tmp2;
if (tmp1)
rb_set_parent_color(tmp1, sibling,
RB_BLACK);
augment_rotate(sibling, tmp2);
tmp1 = sibling;
sibling = tmp2;
}
/*
* Case 4 - left rotate at parent + color flips
* (p and sl could be either color here.
* After rotation, p becomes black, s acquires
* p's color, and sl keeps its color)
*
* (p) (s)
* / \ / \
* N S --> P Sr
* / \ / \
* (sl) sr N (sl)
*/
parent->rb_right = tmp2 = sibling->rb_left;
sibling->rb_left = parent;
rb_set_parent_color(tmp1, sibling, RB_BLACK);
if (tmp2)
rb_set_parent(tmp2, parent);
__rb_rotate_set_parents(parent, sibling, root,
RB_BLACK);
augment_rotate(parent, sibling);
break;
} else {
sibling = parent->rb_left;
if (rb_is_red(sibling)) {
/* Case 1 - right rotate at parent */
parent->rb_left = tmp1 = sibling->rb_right;
sibling->rb_right = parent;
rb_set_parent_color(tmp1, parent, RB_BLACK);
__rb_rotate_set_parents(parent, sibling, root,
RB_RED);
augment_rotate(parent, sibling);
sibling = tmp1;
}
tmp1 = sibling->rb_left;
if (!tmp1 || rb_is_black(tmp1)) {
tmp2 = sibling->rb_right;
if (!tmp2 || rb_is_black(tmp2)) {
/* Case 2 - sibling color flip */
rb_set_parent_color(sibling, parent,
RB_RED);
if (rb_is_red(parent))
rb_set_black(parent);
else {
node = parent;
parent = rb_parent(node);
if (parent)
continue;
}
break;
}
/* Case 3 - right rotate at sibling */
sibling->rb_right = tmp1 = tmp2->rb_left;
tmp2->rb_left = sibling;
parent->rb_left = tmp2;
if (tmp1)
rb_set_parent_color(tmp1, sibling,
RB_BLACK);
augment_rotate(sibling, tmp2);
tmp1 = sibling;
sibling = tmp2;
}
/* Case 4 - left rotate at parent + color flips */
parent->rb_left = tmp2 = sibling->rb_right;
sibling->rb_right = parent;
rb_set_parent_color(tmp1, sibling, RB_BLACK);
if (tmp2)
rb_set_parent(tmp2, parent);
__rb_rotate_set_parents(parent, sibling, root,
RB_BLACK);
augment_rotate(parent, sibling);
break;
}
}
}
/* Non-inline version for rb_erase_augmented() use */
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
____rb_erase_color(parent, root, augment_rotate);
}
/*
* Non-augmented rbtree manipulation functions.
*
* We use dummy augmented callbacks here, and have the compiler optimize them
* out of the rb_insert_color() and rb_erase() function definitions.
*/
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
static const struct rb_augment_callbacks dummy_callbacks = {
dummy_propagate, dummy_copy, dummy_rotate
};
void rb_insert_color(struct rb_node *node, struct rb_root *root) void rb_insert_color(struct rb_node *node, struct rb_root *root)
{ {
struct rb_node *parent, *gparent; __rb_insert(node, root, dummy_rotate);
while ((parent = rb_parent(node)) && rb_is_red(parent))
{
gparent = rb_parent(parent);
if (parent == gparent->rb_left)
{
{
register struct rb_node *uncle = gparent->rb_right;
if (uncle && rb_is_red(uncle))
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;
}
}
if (parent->rb_right == node)
{
register struct rb_node *tmp;
__rb_rotate_left(parent, root);
tmp = parent;
parent = node;
node = tmp;
}
rb_set_black(parent);
rb_set_red(gparent);
__rb_rotate_right(gparent, root);
} else {
{
register struct rb_node *uncle = gparent->rb_left;
if (uncle && rb_is_red(uncle))
{
rb_set_black(uncle);
rb_set_black(parent);
rb_set_red(gparent);
node = gparent;
continue;
}
}
if (parent->rb_left == node)
{
register struct rb_node *tmp;
__rb_rotate_right(parent, root);
tmp = parent;
parent = node;
node = tmp;
}
rb_set_black(parent);
rb_set_red(gparent);
__rb_rotate_left(gparent, root);
}
}
rb_set_black(root->rb_node);
}
static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
struct rb_root *root)
{
struct rb_node *other;
while ((!node || rb_is_black(node)) && node != root->rb_node)
{
if (parent->rb_left == node)
{
other = parent->rb_right;
if (rb_is_red(other))
{
rb_set_black(other);
rb_set_red(parent);
__rb_rotate_left(parent, root);
other = parent->rb_right;
}
if ((!other->rb_left || rb_is_black(other->rb_left)) &&
(!other->rb_right || rb_is_black(other->rb_right)))
{
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->rb_right || rb_is_black(other->rb_right))
{
struct rb_node *o_left;
if ((o_left = other->rb_left))
rb_set_black(o_left);
rb_set_red(other);
__rb_rotate_right(other, root);
other = parent->rb_right;
}
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
if (other->rb_right)
rb_set_black(other->rb_right);
__rb_rotate_left(parent, root);
node = root->rb_node;
break;
}
}
else
{
other = parent->rb_left;
if (rb_is_red(other))
{
rb_set_black(other);
rb_set_red(parent);
__rb_rotate_right(parent, root);
other = parent->rb_left;
}
if ((!other->rb_left || rb_is_black(other->rb_left)) &&
(!other->rb_right || rb_is_black(other->rb_right)))
{
rb_set_red(other);
node = parent;
parent = rb_parent(node);
}
else
{
if (!other->rb_left || rb_is_black(other->rb_left))
{
register struct rb_node *o_right;
if ((o_right = other->rb_right))
rb_set_black(o_right);
rb_set_red(other);
__rb_rotate_left(other, root);
other = parent->rb_left;
}
rb_set_color(other, rb_color(parent));
rb_set_black(parent);
if (other->rb_left)
rb_set_black(other->rb_left);
__rb_rotate_right(parent, root);
node = root->rb_node;
break;
}
}
}
if (node)
rb_set_black(node);
} }
void rb_erase(struct rb_node *node, struct rb_root *root) void rb_erase(struct rb_node *node, struct rb_root *root)
{ {
struct rb_node *child, *parent; struct rb_node *rebalance;
int color; rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
if (rebalance)
____rb_erase_color(rebalance, root, dummy_rotate);
}
if (!node->rb_left) /*
child = node->rb_right; * Augmented rbtree manipulation functions.
else if (!node->rb_right) *
child = node->rb_left; * This instantiates the same __always_inline functions as in the non-augmented
else * case, but this time with user-defined callbacks.
{ */
struct rb_node *old = node, *left;
node = node->rb_right; void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
while ((left = node->rb_left) != NULL) void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
node = left; {
child = node->rb_right; __rb_insert(node, root, augment_rotate);
parent = rb_parent(node);
color = rb_color(node);
if (child)
rb_set_parent(child, parent);
if (parent == old) {
parent->rb_right = child;
parent = node;
} else
parent->rb_left = child;
node->rb_parent_color = old->rb_parent_color;
node->rb_right = old->rb_right;
node->rb_left = old->rb_left;
if (rb_parent(old))
{
if (rb_parent(old)->rb_left == old)
rb_parent(old)->rb_left = node;
else
rb_parent(old)->rb_right = node;
} else
root->rb_node = node;
rb_set_parent(old->rb_left, node);
if (old->rb_right)
rb_set_parent(old->rb_right, node);
goto color;
}
parent = rb_parent(node);
color = rb_color(node);
if (child)
rb_set_parent(child, parent);
if (parent)
{
if (parent->rb_left == node)
parent->rb_left = child;
else
parent->rb_right = child;
}
else
root->rb_node = child;
color:
if (color == RB_BLACK)
__rb_erase_color(child, parent, root);
} }
/* /*
* This function returns the first node (in sort order) of the tree. * This function returns the first node (in sort order) of the tree.
*/ */
struct rb_node *rb_first(struct rb_root *root) struct rb_node *rb_first(const struct rb_root *root)
{ {
struct rb_node *n; struct rb_node *n;
@ -301,7 +422,7 @@ struct rb_node *rb_first(struct rb_root *root)
return n; return n;
} }
struct rb_node *rb_last(struct rb_root *root) struct rb_node *rb_last(const struct rb_root *root)
{ {
struct rb_node *n; struct rb_node *n;
@ -313,52 +434,59 @@ struct rb_node *rb_last(struct rb_root *root)
return n; return n;
} }
struct rb_node *rb_next(struct rb_node *node) struct rb_node *rb_next(const struct rb_node *node)
{ {
struct rb_node *parent; struct rb_node *parent;
if (rb_parent(node) == node) if (RB_EMPTY_NODE(node))
return NULL; return NULL;
/* If we have a right-hand child, go down and then left as far /*
as we can. */ * If we have a right-hand child, go down and then left as far
* as we can.
*/
if (node->rb_right) { if (node->rb_right) {
node = node->rb_right; node = node->rb_right;
while (node->rb_left) while (node->rb_left)
node=node->rb_left; node=node->rb_left;
return node; return (struct rb_node *)node;
} }
/* No right-hand children. Everything down and left is /*
smaller than us, so any 'next' node must be in the general * No right-hand children. Everything down and left is smaller than us,
direction of our parent. Go up the tree; any time the * so any 'next' node must be in the general direction of our parent.
ancestor is a right-hand child of its parent, keep going * Go up the tree; any time the ancestor is a right-hand child of its
up. First time it's a left-hand child of its parent, said * parent, keep going up. First time it's a left-hand child of its
parent is our 'next' node. */ * parent, said parent is our 'next' node.
*/
while ((parent = rb_parent(node)) && node == parent->rb_right) while ((parent = rb_parent(node)) && node == parent->rb_right)
node = parent; node = parent;
return parent; return parent;
} }
struct rb_node *rb_prev(struct rb_node *node) struct rb_node *rb_prev(const struct rb_node *node)
{ {
struct rb_node *parent; struct rb_node *parent;
if (rb_parent(node) == node) if (RB_EMPTY_NODE(node))
return NULL; return NULL;
/* If we have a left-hand child, go down and then right as far /*
as we can. */ * If we have a left-hand child, go down and then right as far
* as we can.
*/
if (node->rb_left) { if (node->rb_left) {
node = node->rb_left; node = node->rb_left;
while (node->rb_right) while (node->rb_right)
node=node->rb_right; node=node->rb_right;
return node; return (struct rb_node *)node;
} }
/* No left-hand children. Go up till we find an ancestor which /*
is a right-hand child of its parent */ * No left-hand children. Go up till we find an ancestor which
* is a right-hand child of its parent.
*/
while ((parent = rb_parent(node)) && node == parent->rb_left) while ((parent = rb_parent(node)) && node == parent->rb_left)
node = parent; node = parent;
@ -371,14 +499,7 @@ void rb_replace_node(struct rb_node *victim, struct rb_node *new,
struct rb_node *parent = rb_parent(victim); struct rb_node *parent = rb_parent(victim);
/* Set the surrounding nodes to point to the replacement */ /* Set the surrounding nodes to point to the replacement */
if (parent) { __rb_change_child(victim, new, parent, root);
if (victim == parent->rb_left)
parent->rb_left = new;
else
parent->rb_right = new;
} else {
root->rb_node = new;
}
if (victim->rb_left) if (victim->rb_left)
rb_set_parent(victim->rb_left, new); rb_set_parent(victim->rb_left, new);
if (victim->rb_right) if (victim->rb_right)
@ -387,3 +508,41 @@ void rb_replace_node(struct rb_node *victim, struct rb_node *new,
/* Copy the pointers/colour from the victim to the replacement */ /* Copy the pointers/colour from the victim to the replacement */
*new = *victim; *new = *victim;
} }
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
{
for (;;) {
if (node->rb_left)
node = node->rb_left;
else if (node->rb_right)
node = node->rb_right;
else
return (struct rb_node *)node;
}
}
struct rb_node *rb_next_postorder(const struct rb_node *node)
{
const struct rb_node *parent;
if (!node)
return NULL;
parent = rb_parent(node);
/* If we're sitting on node, we've already seen our children */
if (parent && node == parent->rb_left && parent->rb_right) {
/* If we are the parent's left node, go to the parent's right
* node then all the way down to the left */
return rb_left_deepest_node(parent->rb_right);
} else
/* Otherwise we are the parent's right node, and the parent
* should be next */
return (struct rb_node *)parent;
}
struct rb_node *rb_first_postorder(const struct rb_root *root)
{
if (!root->rb_node)
return NULL;
return rb_left_deepest_node(root->rb_node);
}

142
rbtree.h
View File

@ -23,72 +23,7 @@
I know it's not the cleaner way, but in C (not in C++) to get I know it's not the cleaner way, but in C (not in C++) to get
performances and genericity... performances and genericity...
Some example of insert and search follows here. The search is a plain See Documentation/rbtree.txt for documentation and samples.
normal search over an ordered tree. The insert instead must be implemented
int two steps: as first thing the code must insert the element in
order as a red leaf in the tree, then the support library function
rb_insert_color() must be called. Such function will do the
not trivial work to rebalance the rbtree if necessary.
-----------------------------------------------------------------------
static inline struct page * rb_search_page_cache(struct inode * inode,
unsigned long offset)
{
struct rb_node * n = inode->i_rb_page_cache.rb_node;
struct page * page;
while (n)
{
page = rb_entry(n, struct page, rb_page_cache);
if (offset < page->offset)
n = n->rb_left;
else if (offset > page->offset)
n = n->rb_right;
else
return page;
}
return NULL;
}
static inline struct page * __rb_insert_page_cache(struct inode * inode,
unsigned long offset,
struct rb_node * node)
{
struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
struct rb_node * parent = NULL;
struct page * page;
while (*p)
{
parent = *p;
page = rb_entry(parent, struct page, rb_page_cache);
if (offset < page->offset)
p = &(*p)->rb_left;
else if (offset > page->offset)
p = &(*p)->rb_right;
else
return page;
}
rb_link_node(node, parent, p);
return NULL;
}
static inline struct page * rb_insert_page_cache(struct inode * inode,
unsigned long offset,
struct rb_node * node)
{
struct page * ret;
if ((ret = __rb_insert_page_cache(inode, offset, node)))
goto out;
rb_insert_color(node, &inode->i_rb_page_cache);
out:
return ret;
}
-----------------------------------------------------------------------
*/ */
#ifndef _LINUX_RBTREE_H #ifndef _LINUX_RBTREE_H
@ -98,63 +33,78 @@ static inline struct page * rb_insert_page_cache(struct inode * inode,
#else #else
#include <btrfs/kerncompat.h> #include <btrfs/kerncompat.h>
#endif /* BTRFS_FLAT_INCLUDES */ #endif /* BTRFS_FLAT_INCLUDES */
struct rb_node
{ struct rb_node {
unsigned long rb_parent_color; unsigned long __rb_parent_color;
#define RB_RED 0
#define RB_BLACK 1
struct rb_node *rb_right; struct rb_node *rb_right;
struct rb_node *rb_left; struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long)))); } __attribute__((aligned(sizeof(long))));
/* The alignment might seem pointless, but allegedly CRIS needs it */ /* The alignment might seem pointless, but allegedly CRIS needs it */
struct rb_root struct rb_root {
{
struct rb_node *rb_node; struct rb_node *rb_node;
}; };
#define rb_parent(r) ((struct rb_node *)((r)->rb_parent_color & ~3))
#define rb_color(r) ((r)->rb_parent_color & 1)
#define rb_is_red(r) (!rb_color(r))
#define rb_is_black(r) rb_color(r)
#define rb_set_red(r) do { (r)->rb_parent_color &= ~1; } while (0)
#define rb_set_black(r) do { (r)->rb_parent_color |= 1; } while (0)
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p) #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))
{
rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
}
static inline void rb_set_color(struct rb_node *rb, int color)
{
rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
}
#define RB_ROOT (struct rb_root) { NULL, } #define RB_ROOT (struct rb_root) { NULL, }
#define rb_entry(ptr, type, member) container_of(ptr, type, member) #define rb_entry(ptr, type, member) container_of(ptr, type, member)
#define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL) #define RB_EMPTY_ROOT(root) ((root)->rb_node == NULL)
#define RB_EMPTY_NODE(node) (rb_parent(node) == node)
#define RB_CLEAR_NODE(node) (rb_set_parent(node, node)) /* 'empty' nodes are nodes that are known not to be inserted in an rbree */
#define RB_EMPTY_NODE(node) \
((node)->__rb_parent_color == (unsigned long)(node))
#define RB_CLEAR_NODE(node) \
((node)->__rb_parent_color = (unsigned long)(node))
extern void rb_insert_color(struct rb_node *, struct rb_root *); extern void rb_insert_color(struct rb_node *, struct rb_root *);
extern void rb_erase(struct rb_node *, struct rb_root *); extern void rb_erase(struct rb_node *, struct rb_root *);
/* Find logical next and previous nodes in a tree */ /* Find logical next and previous nodes in a tree */
extern struct rb_node *rb_next(struct rb_node *); extern struct rb_node *rb_next(const struct rb_node *);
extern struct rb_node *rb_prev(struct rb_node *); extern struct rb_node *rb_prev(const struct rb_node *);
extern struct rb_node *rb_first(struct rb_root *); extern struct rb_node *rb_first(const struct rb_root *);
extern struct rb_node *rb_last(struct rb_root *); extern struct rb_node *rb_last(const struct rb_root *);
/* Postorder iteration - always visit the parent after its children */
extern struct rb_node *rb_first_postorder(const struct rb_root *);
extern struct rb_node *rb_next_postorder(const struct rb_node *);
/* Fast replacement of a single node without remove/rebalance/add/rebalance */ /* Fast replacement of a single node without remove/rebalance/add/rebalance */
extern void rb_replace_node(struct rb_node *victim, struct rb_node *xnew, extern void rb_replace_node(struct rb_node *victim, struct rb_node *new,
struct rb_root *root); struct rb_root *root);
static inline void rb_link_node(struct rb_node * node, struct rb_node * parent, static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
struct rb_node ** rb_link) struct rb_node ** rb_link)
{ {
node->rb_parent_color = (unsigned long )parent; node->__rb_parent_color = (unsigned long)parent;
node->rb_left = node->rb_right = NULL; node->rb_left = node->rb_right = NULL;
*rb_link = node; *rb_link = node;
} }
#define rb_entry_safe(ptr, type, member) \
({ typeof(ptr) ____ptr = (ptr); \
____ptr ? rb_entry(____ptr, type, member) : NULL; \
})
/**
* rbtree_postorder_for_each_entry_safe - iterate over rb_root in post order of
* given type safe against removal of rb_node entry
*
* @pos: the 'type *' to use as a loop cursor.
* @n: another 'type *' to use as temporary storage
* @root: 'rb_root *' of the rbtree.
* @field: the name of the rb_node field within 'type'.
*/
#define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \
for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \
pos && ({ n = rb_entry_safe(rb_next_postorder(&pos->field), \
typeof(*pos), field); 1; }); \
pos = n)
#endif /* _LINUX_RBTREE_H */ #endif /* _LINUX_RBTREE_H */

231
rbtree_augmented.h Normal file
View File

@ -0,0 +1,231 @@
/*
Red Black Trees
(C) 1999 Andrea Arcangeli <andrea@suse.de>
(C) 2002 David Woodhouse <dwmw2@infradead.org>
(C) 2012 Michel Lespinasse <walken@google.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
linux/include/linux/rbtree_augmented.h
*/
#ifndef _LINUX_RBTREE_AUGMENTED_H
#define _LINUX_RBTREE_AUGMENTED_H
#include "rbtree.h"
/*
* Please note - only struct rb_augment_callbacks and the prototypes for
* rb_insert_augmented() and rb_erase_augmented() are intended to be public.
* The rest are implementation details you are not expected to depend on.
*
* See Documentation/rbtree.txt for documentation and samples.
*/
struct rb_augment_callbacks {
void (*propagate)(struct rb_node *node, struct rb_node *stop);
void (*copy)(struct rb_node *old, struct rb_node *new);
void (*rotate)(struct rb_node *old, struct rb_node *new);
};
extern void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
static inline void
rb_insert_augmented(struct rb_node *node, struct rb_root *root,
const struct rb_augment_callbacks *augment)
{
__rb_insert_augmented(node, root, augment->rotate);
}
#define RB_DECLARE_CALLBACKS(rbstatic, rbname, rbstruct, rbfield, \
rbtype, rbaugmented, rbcompute) \
static inline void \
rbname ## _propagate(struct rb_node *rb, struct rb_node *stop) \
{ \
while (rb != stop) { \
rbstruct *node = rb_entry(rb, rbstruct, rbfield); \
rbtype augmented = rbcompute(node); \
if (node->rbaugmented == augmented) \
break; \
node->rbaugmented = augmented; \
rb = rb_parent(&node->rbfield); \
} \
} \
static inline void \
rbname ## _copy(struct rb_node *rb_old, struct rb_node *rb_new) \
{ \
rbstruct *old = rb_entry(rb_old, rbstruct, rbfield); \
rbstruct *new = rb_entry(rb_new, rbstruct, rbfield); \
new->rbaugmented = old->rbaugmented; \
} \
static void \
rbname ## _rotate(struct rb_node *rb_old, struct rb_node *rb_new) \
{ \
rbstruct *old = rb_entry(rb_old, rbstruct, rbfield); \
rbstruct *new = rb_entry(rb_new, rbstruct, rbfield); \
new->rbaugmented = old->rbaugmented; \
old->rbaugmented = rbcompute(old); \
} \
rbstatic const struct rb_augment_callbacks rbname = { \
rbname ## _propagate, rbname ## _copy, rbname ## _rotate \
};
#define RB_RED 0
#define RB_BLACK 1
#define __rb_parent(pc) ((struct rb_node *)(pc & ~3))
#define __rb_color(pc) ((pc) & 1)
#define __rb_is_black(pc) __rb_color(pc)
#define __rb_is_red(pc) (!__rb_color(pc))
#define rb_color(rb) __rb_color((rb)->__rb_parent_color)
#define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color)
#define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color)
static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
{
rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
}
static inline void rb_set_parent_color(struct rb_node *rb,
struct rb_node *p, int color)
{
rb->__rb_parent_color = (unsigned long)p | color;
}
static inline void
__rb_change_child(struct rb_node *old, struct rb_node *new,
struct rb_node *parent, struct rb_root *root)
{
if (parent) {
if (parent->rb_left == old)
parent->rb_left = new;
else
parent->rb_right = new;
} else
root->rb_node = new;
}
extern void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
void (*augment_rotate)(struct rb_node *old, struct rb_node *new));
static __always_inline struct rb_node *
__rb_erase_augmented(struct rb_node *node, struct rb_root *root,
const struct rb_augment_callbacks *augment)
{
struct rb_node *child = node->rb_right, *tmp = node->rb_left;
struct rb_node *parent, *rebalance;
unsigned long pc;
if (!tmp) {
/*
* Case 1: node to erase has no more than 1 child (easy!)
*
* Note that if there is one child it must be red due to 5)
* and node must be black due to 4). We adjust colors locally
* so as to bypass __rb_erase_color() later on.
*/
pc = node->__rb_parent_color;
parent = __rb_parent(pc);
__rb_change_child(node, child, parent, root);
if (child) {
child->__rb_parent_color = pc;
rebalance = NULL;
} else
rebalance = __rb_is_black(pc) ? parent : NULL;
tmp = parent;
} else if (!child) {
/* Still case 1, but this time the child is node->rb_left */
tmp->__rb_parent_color = pc = node->__rb_parent_color;
parent = __rb_parent(pc);
__rb_change_child(node, tmp, parent, root);
rebalance = NULL;
tmp = parent;
} else {
struct rb_node *successor = child, *child2;
tmp = child->rb_left;
if (!tmp) {
/*
* Case 2: node's successor is its right child
*
* (n) (s)
* / \ / \
* (x) (s) -> (x) (c)
* \
* (c)
*/
parent = successor;
child2 = successor->rb_right;
augment->copy(node, successor);
} else {
/*
* Case 3: node's successor is leftmost under
* node's right child subtree
*
* (n) (s)
* / \ / \
* (x) (y) -> (x) (y)
* / /
* (p) (p)
* / /
* (s) (c)
* \
* (c)
*/
do {
parent = successor;
successor = tmp;
tmp = tmp->rb_left;
} while (tmp);
parent->rb_left = child2 = successor->rb_right;
successor->rb_right = child;
rb_set_parent(child, successor);
augment->copy(node, successor);
augment->propagate(parent, successor);
}
successor->rb_left = tmp = node->rb_left;
rb_set_parent(tmp, successor);
pc = node->__rb_parent_color;
tmp = __rb_parent(pc);
__rb_change_child(node, successor, tmp, root);
if (child2) {
successor->__rb_parent_color = pc;
rb_set_parent_color(child2, parent, RB_BLACK);
rebalance = NULL;
} else {
unsigned long pc2 = successor->__rb_parent_color;
successor->__rb_parent_color = pc;
rebalance = __rb_is_black(pc2) ? parent : NULL;
}
tmp = successor;
}
augment->propagate(tmp, NULL);
return rebalance;
}
static __always_inline void
rb_erase_augmented(struct rb_node *node, struct rb_root *root,
const struct rb_augment_callbacks *augment)
{
struct rb_node *rebalance = __rb_erase_augmented(node, root, augment);
if (rebalance)
__rb_erase_color(rebalance, root, augment->rotate);
}
#endif /* _LINUX_RBTREE_AUGMENTED_H */