btrfs-progs/kerncompat.h

579 lines
14 KiB
C
Raw Normal View History

2007-06-12 13:07:11 +00:00
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __KERNCOMPAT_H__
#define __KERNCOMPAT_H__
#ifndef __SANE_USERSPACE_TYPES__
/* For PPC64 to get LL64 types */
#define __SANE_USERSPACE_TYPES__
#endif
2007-06-08 02:12:21 +00:00
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
2007-06-08 02:12:21 +00:00
#include <string.h>
#include <endian.h>
#include <byteswap.h>
#include <assert.h>
#include <stddef.h>
#include <linux/types.h>
#include <linux/const.h>
#include <stdint.h>
#include <stdbool.h>
#include <features.h>
/*
* Glibc supports backtrace, some other libc implementations don't but need to
* be more careful detecting proper glibc.
*/
#if !defined(__GLIBC__) || defined(__UCLIBC__)
#ifndef BTRFS_DISABLE_BACKTRACE
#define BTRFS_DISABLE_BACKTRACE
#endif
#ifndef __always_inline
#define __always_inline __inline __attribute__ ((__always_inline__))
#endif
#endif
#ifndef BTRFS_DISABLE_BACKTRACE
#include <execinfo.h>
#endif
#define ptr_to_u64(x) ((u64)(uintptr_t)x)
#define u64_to_ptr(x) ((void *)(uintptr_t)x)
2007-06-08 02:12:21 +00:00
#ifndef READ
#define READ 0
#define WRITE 1
#define READA 2
#endif
#define gfp_t int
#define get_cpu_var(p) (p)
#define __get_cpu_var(p) (p)
#define BITS_PER_BYTE 8
#define BITS_PER_LONG (__SIZEOF_LONG__ * BITS_PER_BYTE)
#define __GFP_BITS_SHIFT 20
#define __GFP_BITS_MASK ((int)((1 << __GFP_BITS_SHIFT) - 1))
2007-02-02 14:18:22 +00:00
#define GFP_KERNEL 0
2007-04-02 18:18:17 +00:00
#define GFP_NOFS 0
#define __read_mostly
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#ifndef ULONG_MAX
#define ULONG_MAX (~0UL)
#endif
#ifndef SECTOR_SHIFT
#define SECTOR_SHIFT (9)
#endif
#define __token_glue(a,b,c) ___token_glue(a,b,c)
#define ___token_glue(a,b,c) a ## b ## c
#ifdef DEBUG_BUILD_CHECKS
#define BUILD_ASSERT(x) extern int __token_glue(compile_time_assert_,__LINE__,__COUNTER__)[1-2*!(x)] __attribute__((unused))
#else
#define BUILD_ASSERT(x)
#endif
#ifndef BTRFS_DISABLE_BACKTRACE
#define MAX_BACKTRACE 16
static inline void print_trace(void)
{
void *array[MAX_BACKTRACE];
int size;
size = backtrace(array, MAX_BACKTRACE);
backtrace_symbols_fd(array, size, 2);
}
#endif
static inline void warning_trace(const char *assertion, const char *filename,
const char *func, unsigned line, long val)
{
if (!val)
return;
fprintf(stderr,
"%s:%u: %s: Warning: assertion `%s` failed, value %ld\n",
filename, line, func, assertion, val);
#ifndef BTRFS_DISABLE_BACKTRACE
print_trace();
#endif
}
static inline void bugon_trace(const char *assertion, const char *filename,
const char *func, unsigned line, long val)
{
if (!val)
return;
fprintf(stderr,
"%s:%u: %s: BUG_ON `%s` triggered, value %ld\n",
filename, line, func, assertion, val);
#ifndef BTRFS_DISABLE_BACKTRACE
print_trace();
#endif
abort();
exit(1);
}
#ifdef __CHECKER__
#define __force __attribute__((force))
#define __bitwise__ __attribute__((bitwise))
#else
#define __force
#ifndef __bitwise__
#define __bitwise__
#endif
#endif
2007-06-08 02:12:21 +00:00
#ifndef __CHECKER__
/*
* Since we're using primitive definitions from kernel-space, we need to
* define __KERNEL__ so that system header files know which definitions
* to use.
*/
#define __KERNEL__
2007-06-08 02:12:21 +00:00
#include <asm/types.h>
typedef __u32 u32;
typedef __u64 u64;
typedef __u16 u16;
typedef __u8 u8;
typedef __s64 s64;
typedef __s32 s32;
/*
* Continuing to define __KERNEL__ breaks others parts of the code, so
* we can just undefine it now that we have the correct headers...
*/
#undef __KERNEL__
2007-06-08 02:12:21 +00:00
#else
typedef unsigned int u32;
2007-06-08 02:12:21 +00:00
typedef unsigned int __u32;
2007-02-26 15:55:01 +00:00
typedef unsigned long long u64;
typedef unsigned char u8;
typedef unsigned short u16;
typedef long long s64;
typedef int s32;
2007-06-08 02:12:21 +00:00
#endif
typedef u64 sector_t;
struct vma_shared { int prio_tree_node; };
struct vm_area_struct {
unsigned long vm_pgoff;
unsigned long vm_start;
unsigned long vm_end;
struct vma_shared shared;
};
struct page {
unsigned long index;
};
struct mutex {
unsigned long lock;
};
typedef struct spinlock_struct {
unsigned long lock;
} spinlock_t;
#define mutex_init(m) \
do { \
(m)->lock = 1; \
} while (0)
static inline void mutex_lock(struct mutex *m)
{
m->lock--;
}
static inline void mutex_unlock(struct mutex *m)
{
m->lock++;
}
static inline int mutex_is_locked(struct mutex *m)
{
return (m->lock != 1);
}
#define cond_resched() do { } while (0)
2007-06-12 15:39:09 +00:00
#define preempt_enable() do { } while (0)
#define preempt_disable() do { } while (0)
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
#ifndef __attribute_const__
#define __attribute_const__ __attribute__((__const__))
#endif
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
/*
* error pointer
*/
#define MAX_ERRNO 4095
#define IS_ERR_VALUE(x) ((x) >= (unsigned long)-MAX_ERRNO)
static inline void *ERR_PTR(long error)
{
return (void *) error;
}
static inline long PTR_ERR(const void *ptr)
{
return (long) ptr;
}
static inline int IS_ERR(const void *ptr)
{
return IS_ERR_VALUE((unsigned long)ptr);
}
static inline int IS_ERR_OR_NULL(const void *ptr)
{
return !ptr || IS_ERR(ptr);
}
#define div_u64(x, y) ((x) / (y))
/**
* __swap - swap values of @a and @b
* @a: first value
* @b: second value
*/
#define __swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/*
* This looks more complex than it should be. But we need to
* get the type for the ~ right in round_down (it needs to be
* as wide as the result!), and we want to evaluate the macro
* arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
#define round_down(x, y) ((x) & ~__round_mask(x, y))
/*
* printk
*/
#define printk(fmt, args...) fprintf(stderr, fmt, ##args)
#define KERN_CRIT ""
#define KERN_ERR ""
/*
* kmalloc/kfree
*/
#define kmalloc(x, y) malloc(x)
#define kzalloc(x, y) calloc(1, x)
#define kstrdup(x, y) strdup(x)
#define kfree(x) free(x)
#define vmalloc(x) malloc(x)
#define vfree(x) free(x)
#define kvzalloc(x, y) kzalloc(x,y)
#define kvfree(x) free(x)
#define memalloc_nofs_save() (0)
#define memalloc_nofs_restore(x) ((void)(x))
#ifndef BTRFS_DISABLE_BACKTRACE
static inline void assert_trace(const char *assertion, const char *filename,
const char *func, unsigned line, long val)
{
if (val)
return;
fprintf(stderr,
"%s:%d: %s: Assertion `%s` failed, value %ld\n",
filename, line, func, assertion, val);
#ifndef BTRFS_DISABLE_BACKTRACE
print_trace();
#endif
abort();
exit(1);
}
#define ASSERT(c) assert_trace(#c, __FILE__, __func__, __LINE__, (long)(c))
#else
#define ASSERT(c) assert(c)
#endif
2007-06-12 15:39:09 +00:00
#define BUG_ON(c) bugon_trace(#c, __FILE__, __func__, __LINE__, (long)(c))
#define BUG() \
do { \
BUG_ON(1); \
__builtin_unreachable(); \
} while (0)
#define WARN_ON(c) warning_trace(#c, __FILE__, __func__, __LINE__, (long)(c))
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
2007-06-12 15:39:09 +00:00
(type *)( (char *)__mptr - offsetof(type,member) );})
#ifndef __bitwise
2007-06-08 02:12:21 +00:00
#ifdef __CHECKER__
#define __bitwise __bitwise__
#else
#define __bitwise
#endif /* __CHECKER__ */
#endif /* __bitwise */
/* Alignment check */
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
/*
* Alignment, copied and renamed from /usr/include/linux/const.h to work around
* issues caused by moving the definition in 5.12
*/
#define __ALIGN_KERNEL__(x, a) __ALIGN_KERNEL_MASK__(x, (typeof(x))(a) - 1)
#define __ALIGN_KERNEL_MASK__(x, mask) (((x) + (mask)) & ~(mask))
#define ALIGN(x, a) __ALIGN_KERNEL__((x), (a))
static inline int is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/**
* const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value
* @n: parameter
*
* Use this where sparse expects a true constant expression, e.g. for array
* indices.
*/
#define const_ilog2(n) \
( \
__builtin_constant_p(n) ? ( \
(n) < 2 ? 0 : \
(n) & (1ULL << 63) ? 63 : \
(n) & (1ULL << 62) ? 62 : \
(n) & (1ULL << 61) ? 61 : \
(n) & (1ULL << 60) ? 60 : \
(n) & (1ULL << 59) ? 59 : \
(n) & (1ULL << 58) ? 58 : \
(n) & (1ULL << 57) ? 57 : \
(n) & (1ULL << 56) ? 56 : \
(n) & (1ULL << 55) ? 55 : \
(n) & (1ULL << 54) ? 54 : \
(n) & (1ULL << 53) ? 53 : \
(n) & (1ULL << 52) ? 52 : \
(n) & (1ULL << 51) ? 51 : \
(n) & (1ULL << 50) ? 50 : \
(n) & (1ULL << 49) ? 49 : \
(n) & (1ULL << 48) ? 48 : \
(n) & (1ULL << 47) ? 47 : \
(n) & (1ULL << 46) ? 46 : \
(n) & (1ULL << 45) ? 45 : \
(n) & (1ULL << 44) ? 44 : \
(n) & (1ULL << 43) ? 43 : \
(n) & (1ULL << 42) ? 42 : \
(n) & (1ULL << 41) ? 41 : \
(n) & (1ULL << 40) ? 40 : \
(n) & (1ULL << 39) ? 39 : \
(n) & (1ULL << 38) ? 38 : \
(n) & (1ULL << 37) ? 37 : \
(n) & (1ULL << 36) ? 36 : \
(n) & (1ULL << 35) ? 35 : \
(n) & (1ULL << 34) ? 34 : \
(n) & (1ULL << 33) ? 33 : \
(n) & (1ULL << 32) ? 32 : \
(n) & (1ULL << 31) ? 31 : \
(n) & (1ULL << 30) ? 30 : \
(n) & (1ULL << 29) ? 29 : \
(n) & (1ULL << 28) ? 28 : \
(n) & (1ULL << 27) ? 27 : \
(n) & (1ULL << 26) ? 26 : \
(n) & (1ULL << 25) ? 25 : \
(n) & (1ULL << 24) ? 24 : \
(n) & (1ULL << 23) ? 23 : \
(n) & (1ULL << 22) ? 22 : \
(n) & (1ULL << 21) ? 21 : \
(n) & (1ULL << 20) ? 20 : \
(n) & (1ULL << 19) ? 19 : \
(n) & (1ULL << 18) ? 18 : \
(n) & (1ULL << 17) ? 17 : \
(n) & (1ULL << 16) ? 16 : \
(n) & (1ULL << 15) ? 15 : \
(n) & (1ULL << 14) ? 14 : \
(n) & (1ULL << 13) ? 13 : \
(n) & (1ULL << 12) ? 12 : \
(n) & (1ULL << 11) ? 11 : \
(n) & (1ULL << 10) ? 10 : \
(n) & (1ULL << 9) ? 9 : \
(n) & (1ULL << 8) ? 8 : \
(n) & (1ULL << 7) ? 7 : \
(n) & (1ULL << 6) ? 6 : \
(n) & (1ULL << 5) ? 5 : \
(n) & (1ULL << 4) ? 4 : \
(n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : \
1) : \
-1)
btrfs-progs: zoned: implement log-structured superblock Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - primary superblock: offset 0B (and the following zone) - first copy: offset 512G (and the following zone) - Second copy: offset 4T (4096G, and the following zone) If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Currently, superblock reading/writing is done by pread/pwrite. This commit replace the call sites with sbread/sbwrite to wrap the functions. For zoned btrfs, btrfs_sb_io which is called from sbread/sbwrite reverses the IO position back to a mirror number, maps the mirror number into the superblock logging position, and do the IO. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-26 06:27:26 +00:00
static inline int ilog2(u64 num)
{
int l = 0;
num >>= 1;
while (num) {
l++;
num >>= 1;
}
return l;
}
typedef u16 __bitwise __le16;
typedef u16 __bitwise __be16;
typedef u32 __bitwise __le32;
typedef u32 __bitwise __be32;
typedef u64 __bitwise __le64;
typedef u64 __bitwise __be64;
btrfs-progs: zoned: implement log-structured superblock Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - primary superblock: offset 0B (and the following zone) - first copy: offset 512G (and the following zone) - Second copy: offset 4T (4096G, and the following zone) If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Currently, superblock reading/writing is done by pread/pwrite. This commit replace the call sites with sbread/sbwrite to wrap the functions. For zoned btrfs, btrfs_sb_io which is called from sbread/sbwrite reverses the IO position back to a mirror number, maps the mirror number into the superblock logging position, and do the IO. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-26 06:27:26 +00:00
#define U64_MAX UINT64_MAX
#define U32_MAX UINT32_MAX
/* Macros to generate set/get funcs for the struct fields
* assume there is a lefoo_to_cpu for every type, so lets make a simple
* one for u8:
*/
#define le8_to_cpu(v) (v)
#define cpu_to_le8(v) (v)
#define __le8 u8
2007-06-08 02:12:21 +00:00
#if __BYTE_ORDER == __BIG_ENDIAN
#define cpu_to_le64(x) ((__force __le64)(u64)(bswap_64(x)))
#define le64_to_cpu(x) ((__force u64)(__le64)(bswap_64(x)))
#define cpu_to_le32(x) ((__force __le32)(u32)(bswap_32(x)))
#define le32_to_cpu(x) ((__force u32)(__le32)(bswap_32(x)))
#define cpu_to_le16(x) ((__force __le16)(u16)(bswap_16(x)))
#define le16_to_cpu(x) ((__force u16)(__le16)(bswap_16(x)))
#else
#define cpu_to_le64(x) ((__force __le64)(u64)(x))
#define le64_to_cpu(x) ((__force u64)(__le64)(x))
#define cpu_to_le32(x) ((__force __le32)(u32)(x))
#define le32_to_cpu(x) ((__force u32)(__le32)(x))
#define cpu_to_le16(x) ((__force __le16)(u16)(x))
#define le16_to_cpu(x) ((__force u16)(__le16)(x))
2007-03-12 20:22:34 +00:00
#endif
struct __una_u16 { __le16 x; } __attribute__((__packed__));
struct __una_u32 { __le32 x; } __attribute__((__packed__));
struct __una_u64 { __le64 x; } __attribute__((__packed__));
#define get_unaligned_le8(p) (*((u8 *)(p)))
#define get_unaligned_8(p) (*((u8 *)(p)))
#define put_unaligned_le8(val,p) ((*((u8 *)(p))) = (val))
#define put_unaligned_8(val,p) ((*((u8 *)(p))) = (val))
#define get_unaligned_le16(p) le16_to_cpu(((const struct __una_u16 *)(p))->x)
#define get_unaligned_16(p) (((const struct __una_u16 *)(p))->x)
#define put_unaligned_le16(val,p) (((struct __una_u16 *)(p))->x = cpu_to_le16(val))
#define put_unaligned_16(val,p) (((struct __una_u16 *)(p))->x = (val))
#define get_unaligned_le32(p) le32_to_cpu(((const struct __una_u32 *)(p))->x)
#define get_unaligned_32(p) (((const struct __una_u32 *)(p))->x)
#define put_unaligned_le32(val,p) (((struct __una_u32 *)(p))->x = cpu_to_le32(val))
#define put_unaligned_32(val,p) (((struct __una_u32 *)(p))->x = (val))
#define get_unaligned_le64(p) le64_to_cpu(((const struct __una_u64 *)(p))->x)
#define get_unaligned_64(p) (((const struct __una_u64 *)(p))->x)
#define put_unaligned_le64(val,p) (((struct __una_u64 *)(p))->x = cpu_to_le64(val))
#define put_unaligned_64(val,p) (((struct __una_u64 *)(p))->x = (val))
#ifndef true
#define true 1
#define false 0
#endif
#ifndef noinline
#define noinline
#endif
/*
* Note: simplified versions of READ_ONCE and WRITE_ONCE for source
* compatibility only, not usable for lock-less implementation like in kernel.
*
* Changed:
* - __unqual_scalar_typeof: volatile cast to typeof()
* - compiletime_assert_rwonce_type: no word size compatibility checks
* - no const volatile cast
*/
#define READ_ONCE(x) (x)
#define WRITE_ONCE(x, val) \
do { \
(x) = (val); \
} while (0)
typedef struct refcount_struct {
int refs;
} refcount_t;
typedef u32 blk_status_t;
typedef u32 blk_opf_t;
typedef int atomic_t;
struct work_struct {
};
typedef struct wait_queue_head_s {
} wait_queue_head_t;
/*
* __init cannot be defined in kerncompat.h as it's still part of libbtrfs and
* the macro name is too generic and can break build.
#define __init
*/
#define __cold
#endif