btrfs-progs/mkfs.c

1546 lines
38 KiB
C
Raw Normal View History

2007-06-12 13:07:11 +00:00
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/mount.h>
#include "ioctl.h"
2007-02-20 21:41:09 +00:00
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/dir.h>
2007-02-20 21:41:09 +00:00
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>
2007-04-05 18:29:12 +00:00
#include <uuid/uuid.h>
#include <ctype.h>
#include <sys/xattr.h>
#include <limits.h>
#include <linux/limits.h>
#include <blkid/blkid.h>
#include <ftw.h>
2007-02-20 21:41:09 +00:00
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
2007-03-21 15:13:29 +00:00
#include "transaction.h"
#include "utils.h"
2007-02-20 21:41:09 +00:00
static u64 index_cnt = 2;
struct directory_name_entry {
char *dir_name;
char *path;
ino_t inum;
struct list_head list;
};
static int make_root_dir(struct btrfs_root *root, int mixed)
{
2007-04-06 19:39:12 +00:00
struct btrfs_trans_handle *trans;
struct btrfs_key location;
u64 bytes_used;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret;
2007-04-06 19:39:12 +00:00
trans = btrfs_start_transaction(root, 1);
bytes_used = btrfs_super_bytes_used(root->fs_info->super_copy);
root->fs_info->system_allocs = 1;
ret = btrfs_make_block_group(trans, root, bytes_used,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
BUG_ON(ret);
if (mixed) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA);
if (ret == -ENOSPC) {
fprintf(stderr,
"no space to alloc data/metadata chunk\n");
goto err;
}
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
printf("Created a data/metadata chunk of size %llu\n", chunk_size);
} else {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA);
if (ret == -ENOSPC) {
fprintf(stderr, "no space to alloc metadata chunk\n");
goto err;
}
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
}
root->fs_info->system_allocs = 0;
btrfs_commit_transaction(trans, root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
if (!mixed) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_DATA);
if (ret == -ENOSPC) {
fprintf(stderr, "no space to alloc data chunk\n");
goto err;
}
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
}
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
2007-03-21 15:13:29 +00:00
if (ret)
2007-04-06 19:39:12 +00:00
goto err;
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
2007-04-06 19:39:12 +00:00
if (ret)
goto err;
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
"default", 7,
btrfs_super_root_dir(root->fs_info->super_copy),
&location, BTRFS_FT_DIR, 0);
2007-04-06 19:39:12 +00:00
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
"default", 7, location.objectid,
2008-07-24 16:13:32 +00:00
BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
if (ret)
goto err;
btrfs_commit_transaction(trans, root);
2007-04-06 19:39:12 +00:00
err:
2007-03-21 15:13:29 +00:00
return ret;
}
2007-03-21 00:35:03 +00:00
static void __recow_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
struct extent_buffer *tmp;
if (trans->transid != btrfs_root_generation(&root->root_item)) {
extent_buffer_get(root->node);
ret = __btrfs_cow_block(trans, root, root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
}
}
static void recow_roots(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *info = root->fs_info;
__recow_root(trans, info->fs_root);
__recow_root(trans, info->tree_root);
__recow_root(trans, info->extent_root);
__recow_root(trans, info->chunk_root);
__recow_root(trans, info->dev_root);
__recow_root(trans, info->csum_root);
}
static int create_one_raid_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
u64 chunk_start;
u64 chunk_size;
int ret;
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, type);
if (ret == -ENOSPC) {
fprintf(stderr, "not enough free space\n");
exit(1);
}
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
return ret;
}
static int create_raid_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 data_profile,
int data_profile_opt, u64 metadata_profile,
int mixed)
{
u64 num_devices = btrfs_super_num_devices(root->fs_info->super_copy);
int ret;
if (metadata_profile) {
u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA;
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_SYSTEM |
metadata_profile);
BUG_ON(ret);
if (mixed)
meta_flags |= BTRFS_BLOCK_GROUP_DATA;
ret = create_one_raid_group(trans, root, meta_flags |
metadata_profile);
BUG_ON(ret);
}
if (!mixed && num_devices > 1 && data_profile) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_DATA |
data_profile);
BUG_ON(ret);
}
recow_roots(trans, root);
return 0;
}
static int create_data_reloc_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key location;
struct btrfs_root_item root_item;
struct extent_buffer *tmp;
u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
int ret;
ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid);
BUG_ON(ret);
memcpy(&root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_bytenr(&root_item, tmp->start);
btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
btrfs_set_root_generation(&root_item, trans->transid);
free_extent_buffer(tmp);
location.objectid = objectid;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&location, &root_item);
BUG_ON(ret);
return 0;
}
static void print_usage(void) __attribute__((noreturn));
2007-10-15 20:25:14 +00:00
static void print_usage(void)
{
fprintf(stderr, "usage: mkfs.btrfs [options] dev [ dev ... ]\n");
fprintf(stderr, "options:\n");
fprintf(stderr, "\t-A|--alloc-start START the offset to start the FS\n");
fprintf(stderr, "\t-b|--byte-count SIZE total number of bytes in the FS\n");
fprintf(stderr, "\t-d|--data PROFILE data profile, raid0, raid1, raid5, raid6, raid10, dup or single\n");
fprintf(stderr, "\t-f|--force force overwrite of existing filesystem\n");
fprintf(stderr, "\t-l|--leafsize SIZE deprecated, alias for nodesize\n");
fprintf(stderr, "\t-L|--label LABEL set a label\n");
fprintf(stderr, "\t-m|--metadata PROFILE metadata profile, values like data profile\n");
fprintf(stderr, "\t-M|--mixed mix metadata and data together\n");
fprintf(stderr, "\t-n|--nodesize SIZE size of btree nodes\n");
fprintf(stderr, "\t-s|--sectorsize SIZE min block allocation (may not mountable by current kernel)\n");
fprintf(stderr, "\t-r|--rootdir DIR the source directory\n");
fprintf(stderr, "\t-K|--nodiscard do not perform whole device TRIM\n");
fprintf(stderr, "\t-O|--features LIST comma separated list of filesystem features\n");
fprintf(stderr, "\t-U|--uuid UUID specify the filesystem UUID\n");
fprintf(stderr, "\t-V|--version print the mkfs.btrfs version and exit\n");
fprintf(stderr, "%s\n", PACKAGE_STRING);
2007-10-15 20:25:14 +00:00
exit(1);
}
2007-03-21 00:35:03 +00:00
static void print_version(void) __attribute__((noreturn));
static void print_version(void)
{
fprintf(stderr, "mkfs.btrfs, part of %s\n", PACKAGE_STRING);
exit(0);
}
static u64 parse_profile(char *s)
{
if (strcmp(s, "raid0") == 0) {
return BTRFS_BLOCK_GROUP_RAID0;
} else if (strcmp(s, "raid1") == 0) {
return BTRFS_BLOCK_GROUP_RAID1;
} else if (strcmp(s, "raid5") == 0) {
return BTRFS_BLOCK_GROUP_RAID5;
} else if (strcmp(s, "raid6") == 0) {
return BTRFS_BLOCK_GROUP_RAID6;
2008-04-16 15:14:21 +00:00
} else if (strcmp(s, "raid10") == 0) {
return BTRFS_BLOCK_GROUP_RAID10;
} else if (strcmp(s, "dup") == 0) {
return BTRFS_BLOCK_GROUP_DUP;
} else if (strcmp(s, "single") == 0) {
return 0;
} else {
fprintf(stderr, "Unknown profile %s\n", s);
print_usage();
}
/* not reached */
return 0;
}
static char *parse_label(char *input)
{
int len = strlen(input);
if (len >= BTRFS_LABEL_SIZE) {
fprintf(stderr, "Label %s is too long (max %d)\n", input,
BTRFS_LABEL_SIZE - 1);
exit(1);
}
return strdup(input);
}
static int add_directory_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
ino_t parent_inum, const char *name,
struct stat *st, int *dir_index_cnt)
{
int ret;
int name_len;
struct btrfs_key location;
u8 filetype = 0;
name_len = strlen(name);
location.objectid = objectid;
location.offset = 0;
btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY);
if (S_ISDIR(st->st_mode))
filetype = BTRFS_FT_DIR;
if (S_ISREG(st->st_mode))
filetype = BTRFS_FT_REG_FILE;
if (S_ISLNK(st->st_mode))
filetype = BTRFS_FT_SYMLINK;
ret = btrfs_insert_dir_item(trans, root, name, name_len,
parent_inum, &location,
filetype, index_cnt);
if (ret)
return ret;
ret = btrfs_insert_inode_ref(trans, root, name, name_len,
objectid, parent_inum, index_cnt);
*dir_index_cnt = index_cnt;
index_cnt++;
return ret;
}
static int fill_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *dst, struct stat *src)
{
u64 blocks = 0;
u64 sectorsize = root->sectorsize;
/*
* btrfs_inode_item has some reserved fields
* and represents on-disk inode entry, so
* zero everything to prevent information leak
*/
memset(dst, 0, sizeof (*dst));
btrfs_set_stack_inode_generation(dst, trans->transid);
btrfs_set_stack_inode_size(dst, src->st_size);
btrfs_set_stack_inode_nbytes(dst, 0);
btrfs_set_stack_inode_block_group(dst, 0);
btrfs_set_stack_inode_nlink(dst, src->st_nlink);
btrfs_set_stack_inode_uid(dst, src->st_uid);
btrfs_set_stack_inode_gid(dst, src->st_gid);
btrfs_set_stack_inode_mode(dst, src->st_mode);
btrfs_set_stack_inode_rdev(dst, 0);
btrfs_set_stack_inode_flags(dst, 0);
btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime);
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime);
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime);
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
btrfs_set_stack_timespec_sec(&dst->otime, 0);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
if (S_ISDIR(src->st_mode)) {
btrfs_set_stack_inode_size(dst, 0);
btrfs_set_stack_inode_nlink(dst, 1);
}
if (S_ISREG(src->st_mode)) {
btrfs_set_stack_inode_size(dst, (u64)src->st_size);
if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root))
btrfs_set_stack_inode_nbytes(dst, src->st_size);
else {
blocks = src->st_size / sectorsize;
if (src->st_size % sectorsize)
blocks += 1;
blocks *= sectorsize;
btrfs_set_stack_inode_nbytes(dst, blocks);
}
}
if (S_ISLNK(src->st_mode))
btrfs_set_stack_inode_nbytes(dst, src->st_size + 1);
return 0;
}
static int directory_select(const struct direct *entry)
{
if ((strncmp(entry->d_name, ".", entry->d_reclen) == 0) ||
(strncmp(entry->d_name, "..", entry->d_reclen) == 0))
return 0;
else
return 1;
}
static void free_namelist(struct direct **files, int count)
{
int i;
if (count < 0)
return;
for (i = 0; i < count; ++i)
free(files[i]);
free(files);
}
static u64 calculate_dir_inode_size(char *dirname)
{
int count, i;
struct direct **files, *cur_file;
u64 dir_inode_size = 0;
count = scandir(dirname, &files, directory_select, NULL);
for (i = 0; i < count; i++) {
cur_file = files[i];
dir_inode_size += strlen(cur_file->d_name);
}
free_namelist(files, count);
dir_inode_size *= 2;
return dir_inode_size;
}
static int add_inode_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct stat *st, char *name,
u64 self_objectid, ino_t parent_inum,
int dir_index_cnt, struct btrfs_inode_item *inode_ret)
{
int ret;
struct btrfs_key inode_key;
struct btrfs_inode_item btrfs_inode;
u64 objectid;
u64 inode_size = 0;
fill_inode_item(trans, root, &btrfs_inode, st);
objectid = self_objectid;
if (S_ISDIR(st->st_mode)) {
inode_size = calculate_dir_inode_size(name);
btrfs_set_stack_inode_size(&btrfs_inode, inode_size);
}
inode_key.objectid = objectid;
inode_key.offset = 0;
btrfs_set_key_type(&inode_key, BTRFS_INODE_ITEM_KEY);
ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
*inode_ret = btrfs_inode;
return ret;
}
static int add_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
const char *file_name)
{
int ret;
int cur_name_len;
char xattr_list[XATTR_LIST_MAX];
char *cur_name;
char cur_value[XATTR_SIZE_MAX];
char delimiter = '\0';
char *next_location = xattr_list;
ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
if (ret < 0) {
if(errno == ENOTSUP)
return 0;
fprintf(stderr, "get a list of xattr failed for %s\n",
file_name);
return ret;
}
if (ret == 0)
return ret;
cur_name = strtok(xattr_list, &delimiter);
while (cur_name != NULL) {
cur_name_len = strlen(cur_name);
next_location += cur_name_len + 1;
ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
if (ret < 0) {
if(errno == ENOTSUP)
return 0;
fprintf(stderr, "get a xattr value failed for %s attr %s\n",
file_name, cur_name);
return ret;
}
ret = btrfs_insert_xattr_item(trans, root, cur_name,
cur_name_len, cur_value,
ret, objectid);
if (ret) {
fprintf(stderr, "insert a xattr item failed for %s\n",
file_name);
}
cur_name = strtok(next_location, &delimiter);
}
return ret;
}
static int add_symbolic_link(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, const char *path_name)
{
int ret;
u64 sectorsize = root->sectorsize;
char *buf = malloc(sectorsize);
ret = readlink(path_name, buf, sectorsize);
if (ret <= 0) {
fprintf(stderr, "readlink failed for %s\n", path_name);
goto fail;
}
if (ret >= sectorsize) {
fprintf(stderr, "symlink too long for %s", path_name);
ret = -1;
goto fail;
}
buf[ret] = '\0'; /* readlink does not do it for us */
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buf, ret + 1);
fail:
free(buf);
return ret;
}
static int add_file_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *btrfs_inode, u64 objectid,
ino_t parent_inum, struct stat *st,
const char *path_name, int out_fd)
{
int ret = -1;
ssize_t ret_read;
u64 bytes_read = 0;
struct btrfs_key key;
int blocks;
u32 sectorsize = root->sectorsize;
u64 first_block = 0;
u64 file_pos = 0;
u64 cur_bytes;
u64 total_bytes;
struct extent_buffer *eb = NULL;
int fd;
if (st->st_size == 0)
return 0;
fd = open(path_name, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "%s open failed\n", path_name);
return ret;
}
blocks = st->st_size / sectorsize;
if (st->st_size % sectorsize)
blocks += 1;
if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
char *buffer = malloc(st->st_size);
ret_read = pread64(fd, buffer, st->st_size, bytes_read);
if (ret_read == -1) {
fprintf(stderr, "%s read failed\n", path_name);
free(buffer);
goto end;
}
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buffer, st->st_size);
free(buffer);
goto end;
}
/* round up our st_size to the FS blocksize */
total_bytes = (u64)blocks * sectorsize;
/*
* do our IO in extent buffers so it can work
* against any raid type
*/
eb = malloc(sizeof(*eb) + sectorsize);
if (!eb) {
ret = -ENOMEM;
goto end;
}
memset(eb, 0, sizeof(*eb) + sectorsize);
again:
/*
* keep our extent size at 1MB max, this makes it easier to work inside
* the tiny block groups created during mkfs
*/
cur_bytes = min(total_bytes, 1024ULL * 1024);
ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1,
&key, 1);
if (ret)
goto end;
first_block = key.objectid;
bytes_read = 0;
while (bytes_read < cur_bytes) {
memset(eb->data, 0, sectorsize);
ret_read = pread64(fd, eb->data, sectorsize, file_pos + bytes_read);
if (ret_read == -1) {
fprintf(stderr, "%s read failed\n", path_name);
goto end;
}
eb->start = first_block + bytes_read;
eb->len = sectorsize;
/*
* we're doing the csum before we record the extent, but
* that's ok
*/
ret = btrfs_csum_file_block(trans, root->fs_info->csum_root,
first_block + bytes_read + sectorsize,
first_block + bytes_read,
eb->data, sectorsize);
if (ret)
goto end;
ret = write_and_map_eb(trans, root, eb);
if (ret) {
fprintf(stderr, "output file write failed\n");
goto end;
}
bytes_read += sectorsize;
}
if (bytes_read) {
ret = btrfs_record_file_extent(trans, root, objectid, btrfs_inode,
file_pos, first_block, cur_bytes);
if (ret)
goto end;
}
file_pos += cur_bytes;
total_bytes -= cur_bytes;
if (total_bytes)
goto again;
end:
free(eb);
close(fd);
return ret;
}
static char *make_path(char *dir, char *name)
{
char *path;
path = malloc(strlen(dir) + strlen(name) + 2);
if (!path)
return NULL;
strcpy(path, dir);
if (dir[strlen(dir) - 1] != '/')
strcat(path, "/");
strcat(path, name);
return path;
}
static int traverse_directory(struct btrfs_trans_handle *trans,
struct btrfs_root *root, char *dir_name,
struct directory_name_entry *dir_head, int out_fd)
{
int ret = 0;
struct btrfs_inode_item cur_inode;
struct btrfs_inode_item *inode_item;
int count, i, dir_index_cnt;
struct direct **files;
struct stat st;
struct directory_name_entry *dir_entry, *parent_dir_entry;
struct direct *cur_file;
ino_t parent_inum, cur_inum;
ino_t highest_inum = 0;
char *parent_dir_name;
char real_path[PATH_MAX];
struct btrfs_path path;
struct extent_buffer *leaf;
struct btrfs_key root_dir_key;
u64 root_dir_inode_size = 0;
/* Add list for source directory */
dir_entry = malloc(sizeof(struct directory_name_entry));
dir_entry->dir_name = dir_name;
dir_entry->path = realpath(dir_name, real_path);
if (!dir_entry->path) {
fprintf(stderr, "get directory real path error\n");
ret = -1;
goto fail_no_dir;
}
parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID;
dir_entry->inum = parent_inum;
list_add_tail(&dir_entry->list, &dir_head->list);
btrfs_init_path(&path);
root_dir_key.objectid = btrfs_root_dirid(&root->root_item);
root_dir_key.offset = 0;
btrfs_set_key_type(&root_dir_key, BTRFS_INODE_ITEM_KEY);
ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1);
if (ret) {
fprintf(stderr, "root dir lookup error\n");
goto fail_no_dir;
}
leaf = path.nodes[0];
inode_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_inode_item);
root_dir_inode_size = calculate_dir_inode_size(dir_name);
btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(&path);
do {
parent_dir_entry = list_entry(dir_head->list.next,
struct directory_name_entry,
list);
list_del(&parent_dir_entry->list);
parent_inum = parent_dir_entry->inum;
parent_dir_name = parent_dir_entry->dir_name;
if (chdir(parent_dir_entry->path)) {
fprintf(stderr, "chdir error for %s\n",
parent_dir_name);
ret = -1;
goto fail_no_files;
}
count = scandir(parent_dir_entry->path, &files,
directory_select, NULL);
if (count == -1)
{
fprintf(stderr, "scandir for %s failed: %s\n",
parent_dir_name, strerror (errno));
ret = -1;
goto fail;
}
for (i = 0; i < count; i++) {
cur_file = files[i];
if (lstat(cur_file->d_name, &st) == -1) {
fprintf(stderr, "lstat failed for file %s\n",
cur_file->d_name);
ret = -1;
goto fail;
}
cur_inum = st.st_ino;
ret = add_directory_items(trans, root,
cur_inum, parent_inum,
cur_file->d_name,
&st, &dir_index_cnt);
if (ret) {
fprintf(stderr, "add_directory_items failed\n");
goto fail;
}
ret = add_inode_items(trans, root, &st,
cur_file->d_name, cur_inum,
parent_inum, dir_index_cnt,
&cur_inode);
if (ret == -EEXIST) {
BUG_ON(st.st_nlink <= 1);
continue;
}
if (ret) {
fprintf(stderr, "add_inode_items failed\n");
goto fail;
}
ret = add_xattr_item(trans, root,
cur_inum, cur_file->d_name);
if (ret) {
fprintf(stderr, "add_xattr_item failed\n");
if(ret != -ENOTSUP)
goto fail;
}
if (S_ISDIR(st.st_mode)) {
dir_entry = malloc(sizeof(struct directory_name_entry));
dir_entry->dir_name = cur_file->d_name;
dir_entry->path = make_path(parent_dir_entry->path,
cur_file->d_name);
dir_entry->inum = cur_inum;
list_add_tail(&dir_entry->list, &dir_head->list);
} else if (S_ISREG(st.st_mode)) {
ret = add_file_items(trans, root, &cur_inode,
cur_inum, parent_inum, &st,
cur_file->d_name, out_fd);
if (ret) {
fprintf(stderr, "add_file_items failed\n");
goto fail;
}
} else if (S_ISLNK(st.st_mode)) {
ret = add_symbolic_link(trans, root,
cur_inum, cur_file->d_name);
if (ret) {
fprintf(stderr, "add_symbolic_link failed\n");
goto fail;
}
}
}
free_namelist(files, count);
free(parent_dir_entry);
index_cnt = 2;
} while (!list_empty(&dir_head->list));
out:
return !!ret;
fail:
free_namelist(files, count);
fail_no_files:
free(parent_dir_entry);
goto out;
fail_no_dir:
free(dir_entry);
goto out;
}
static int open_target(char *output_name)
{
int output_fd;
output_fd = open(output_name, O_CREAT | O_RDWR | O_TRUNC,
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
return output_fd;
}
static int create_chunks(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 num_of_meta_chunks,
u64 size_of_data)
{
u64 chunk_start;
u64 chunk_size;
u64 meta_type = BTRFS_BLOCK_GROUP_METADATA;
u64 data_type = BTRFS_BLOCK_GROUP_DATA;
u64 minimum_data_chunk_size = 8 * 1024 * 1024;
u64 i;
int ret;
for (i = 0; i < num_of_meta_chunks; i++) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, meta_type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
set_extent_dirty(&root->fs_info->free_space_cache,
chunk_start, chunk_start + chunk_size - 1, 0);
}
if (size_of_data < minimum_data_chunk_size)
size_of_data = minimum_data_chunk_size;
ret = btrfs_alloc_data_chunk(trans, root->fs_info->extent_root,
&chunk_start, size_of_data, data_type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, size_of_data);
BUG_ON(ret);
set_extent_dirty(&root->fs_info->free_space_cache,
chunk_start, chunk_start + size_of_data - 1, 0);
return ret;
}
static int make_image(char *source_dir, struct btrfs_root *root, int out_fd)
{
int ret;
struct btrfs_trans_handle *trans;
struct stat root_st;
struct directory_name_entry dir_head;
struct directory_name_entry *dir_entry = NULL;
ret = lstat(source_dir, &root_st);
if (ret) {
fprintf(stderr, "unable to lstat the %s\n", source_dir);
goto out;
}
INIT_LIST_HEAD(&dir_head.list);
trans = btrfs_start_transaction(root, 1);
ret = traverse_directory(trans, root, source_dir, &dir_head, out_fd);
if (ret) {
fprintf(stderr, "unable to traverse_directory\n");
goto fail;
}
btrfs_commit_transaction(trans, root);
printf("Making image is completed.\n");
return 0;
fail:
while (!list_empty(&dir_head.list)) {
dir_entry = list_entry(dir_head.list.next,
struct directory_name_entry, list);
list_del(&dir_entry->list);
free(dir_entry);
}
out:
fprintf(stderr, "Making image is aborted.\n");
return -1;
}
/*
* This ignores symlinks with unreadable targets and subdirs that can't
* be read. It's a best-effort to give a rough estimate of the size of
* a subdir. It doesn't guarantee that prepopulating btrfs from this
* tree won't still run out of space.
*
* The rounding up to 4096 is questionable. Previous code used du -B 4096.
*/
static u64 global_total_size;
static int ftw_add_entry_size(const char *fpath, const struct stat *st,
int type)
{
if (type == FTW_F || type == FTW_D)
global_total_size += round_up(st->st_size, 4096);
return 0;
}
static u64 size_sourcedir(char *dir_name, u64 sectorsize,
u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret)
{
u64 dir_size = 0;
u64 total_size = 0;
int ret;
u64 default_chunk_size = 8 * 1024 * 1024; /* 8MB */
u64 allocated_meta_size = 8 * 1024 * 1024; /* 8MB */
u64 allocated_total_size = 20 * 1024 * 1024; /* 20MB */
u64 num_of_meta_chunks = 0;
u64 num_of_data_chunks = 0;
u64 num_of_allocated_meta_chunks =
allocated_meta_size / default_chunk_size;
global_total_size = 0;
ret = ftw(dir_name, ftw_add_entry_size, 10);
dir_size = global_total_size;
if (ret < 0) {
fprintf(stderr, "ftw subdir walk of '%s' failed: %s\n",
dir_name, strerror(errno));
exit(1);
}
num_of_data_chunks = (dir_size + default_chunk_size - 1) /
default_chunk_size;
num_of_meta_chunks = (dir_size / 2) / default_chunk_size;
if (((dir_size / 2) % default_chunk_size) != 0)
num_of_meta_chunks++;
if (num_of_meta_chunks <= num_of_allocated_meta_chunks)
num_of_meta_chunks = 0;
else
num_of_meta_chunks -= num_of_allocated_meta_chunks;
total_size = allocated_total_size +
(num_of_data_chunks * default_chunk_size) +
(num_of_meta_chunks * default_chunk_size);
*num_of_meta_chunks_ret = num_of_meta_chunks;
*size_of_data_ret = num_of_data_chunks * default_chunk_size;
return total_size;
}
static int zero_output_file(int out_fd, u64 size, u32 sectorsize)
{
int len = sectorsize;
int loop_num = size / sectorsize;
u64 location = 0;
char *buf = malloc(len);
int ret = 0, i;
ssize_t written;
if (!buf)
return -ENOMEM;
memset(buf, 0, len);
for (i = 0; i < loop_num; i++) {
written = pwrite64(out_fd, buf, len, location);
if (written != len)
ret = -EIO;
location += sectorsize;
}
free(buf);
return ret;
}
static int is_ssd(const char *file)
{
blkid_probe probe;
char wholedisk[32];
char sysfs_path[PATH_MAX];
dev_t devno;
int fd;
char rotational;
int ret;
probe = blkid_new_probe_from_filename(file);
if (!probe)
return 0;
/* Device number of this disk (possibly a partition) */
devno = blkid_probe_get_devno(probe);
if (!devno) {
blkid_free_probe(probe);
return 0;
}
/* Get whole disk name (not full path) for this devno */
ret = blkid_devno_to_wholedisk(devno,
wholedisk, sizeof(wholedisk), NULL);
if (ret) {
blkid_free_probe(probe);
return 0;
}
snprintf(sysfs_path, PATH_MAX, "/sys/block/%s/queue/rotational",
wholedisk);
blkid_free_probe(probe);
fd = open(sysfs_path, O_RDONLY);
if (fd < 0) {
return 0;
}
if (read(fd, &rotational, sizeof(char)) < sizeof(char)) {
close(fd);
return 0;
}
close(fd);
return !atoi((const char *)&rotational);
}
2007-03-21 00:35:03 +00:00
int main(int ac, char **av)
{
char *file;
struct btrfs_root *root;
struct btrfs_trans_handle *trans;
char *label = NULL;
char *first_file;
2007-03-21 00:35:03 +00:00
u64 block_count = 0;
2008-03-24 19:04:49 +00:00
u64 dev_block_count = 0;
Btrfs: move data checksumming into a dedicated tree Btrfs stores checksums for each data block. Until now, they have been stored in the subvolume trees, indexed by the inode that is referencing the data block. This means that when we read the inode, we've probably read in at least some checksums as well. But, this has a few problems: * The checksums are indexed by logical offset in the file. When compression is on, this means we have to do the expensive checksumming on the uncompressed data. It would be faster if we could checksum the compressed data instead. * If we implement encryption, we'll be checksumming the plain text and storing that on disk. This is significantly less secure. * For either compression or encryption, we have to get the plain text back before we can verify the checksum as correct. This makes the raid layer balancing and extent moving much more expensive. * It makes the front end caching code more complex, as we have touch the subvolume and inodes as we cache extents. * There is potentitally one copy of the checksum in each subvolume referencing an extent. The solution used here is to store the extent checksums in a dedicated tree. This allows us to index the checksums by phyiscal extent start and length. It means: * The checksum is against the data stored on disk, after any compression or encryption is done. * The checksum is stored in a central location, and can be verified without following back references, or reading inodes. This makes compression significantly faster by reducing the amount of data that needs to be checksummed. It will also allow much faster raid management code in general. The checksums are indexed by a key with a fixed objectid (a magic value in ctree.h) and offset set to the starting byte of the extent. This allows us to copy the checksum items into the fsync log tree directly (or any other tree), without having to invent a second format for them. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-08 22:00:31 +00:00
u64 blocks[7];
u64 alloc_start = 0;
u64 metadata_profile = 0;
u64 data_profile = 0;
u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
BTRFS_MKFS_DEFAULT_NODE_SIZE);
2007-10-15 20:25:14 +00:00
u32 sectorsize = 4096;
2007-11-30 16:30:24 +00:00
u32 stripesize = 4096;
2008-03-24 19:04:49 +00:00
int zero_end = 1;
int fd;
int ret;
int i;
int mixed = 0;
int nodesize_forced = 0;
int data_profile_opt = 0;
int metadata_profile_opt = 0;
int discard = 1;
int ssd = 0;
int force_overwrite = 0;
2007-03-21 15:13:29 +00:00
char *source_dir = NULL;
int source_dir_set = 0;
u64 num_of_meta_chunks = 0;
u64 size_of_data = 0;
u64 source_dir_size = 0;
int dev_cnt = 0;
int saved_optind;
char estr[100];
char *fs_uuid = NULL;
u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
2007-10-15 20:25:14 +00:00
while(1) {
int c;
static const struct option long_options[] = {
{ "alloc-start", required_argument, NULL, 'A'},
{ "byte-count", required_argument, NULL, 'b' },
{ "force", no_argument, NULL, 'f' },
{ "leafsize", required_argument, NULL, 'l' },
{ "label", required_argument, NULL, 'L'},
{ "metadata", required_argument, NULL, 'm' },
{ "mixed", no_argument, NULL, 'M' },
{ "nodesize", required_argument, NULL, 'n' },
{ "sectorsize", required_argument, NULL, 's' },
{ "data", required_argument, NULL, 'd' },
{ "version", no_argument, NULL, 'V' },
{ "rootdir", required_argument, NULL, 'r' },
{ "nodiscard", no_argument, NULL, 'K' },
{ "features", required_argument, NULL, 'O' },
{ "uuid", required_argument, NULL, 'U' },
{ NULL, 0, NULL, 0}
};
c = getopt_long(ac, av, "A:b:fl:n:s:m:d:L:O:r:U:VMK",
long_options, NULL);
2007-10-15 20:25:14 +00:00
if (c < 0)
break;
switch(c) {
case 'A':
alloc_start = parse_size(optarg);
break;
case 'f':
force_overwrite = 1;
break;
case 'd':
data_profile = parse_profile(optarg);
data_profile_opt = 1;
break;
2007-10-15 20:25:14 +00:00
case 'l':
fprintf(stderr,
"WARNING: --leafsize is deprecated, use --nodesize\n");
case 'n':
nodesize = parse_size(optarg);
nodesize_forced = 1;
2007-10-15 20:25:14 +00:00
break;
case 'L':
label = parse_label(optarg);
break;
case 'm':
metadata_profile = parse_profile(optarg);
metadata_profile_opt = 1;
break;
case 'M':
mixed = 1;
break;
case 'O': {
char *orig = strdup(optarg);
char *tmp = orig;
tmp = btrfs_parse_fs_features(tmp, &features);
if (tmp) {
fprintf(stderr,
"Unrecognized filesystem feature '%s'\n",
tmp);
free(orig);
exit(1);
}
free(orig);
if (features & BTRFS_FEATURE_LIST_ALL) {
btrfs_list_all_fs_features(0);
exit(0);
}
break;
}
2007-11-30 16:30:24 +00:00
case 's':
sectorsize = parse_size(optarg);
2007-11-30 16:30:24 +00:00
break;
2008-03-24 19:04:49 +00:00
case 'b':
block_count = parse_size(optarg);
if (block_count <= BTRFS_MKFS_SMALL_VOLUME_SIZE) {
fprintf(stdout,
"SMALL VOLUME: forcing mixed metadata/data groups\n");
mixed = 1;
}
2008-03-24 19:04:49 +00:00
zero_end = 0;
break;
case 'V':
print_version();
break;
case 'r':
source_dir = optarg;
source_dir_set = 1;
break;
case 'U':
fs_uuid = optarg;
break;
case 'K':
discard = 0;
break;
2007-10-15 20:25:14 +00:00
default:
print_usage();
}
}
sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE));
if (btrfs_check_nodesize(nodesize, sectorsize))
2007-10-15 20:25:14 +00:00
exit(1);
saved_optind = optind;
dev_cnt = ac - optind;
if (dev_cnt == 0)
2007-10-15 20:25:14 +00:00
print_usage();
2008-03-24 19:04:49 +00:00
if (source_dir_set && dev_cnt > 1) {
fprintf(stderr,
"The -r option is limited to a single device\n");
exit(1);
}
if (fs_uuid) {
uuid_t dummy_uuid;
if (uuid_parse(fs_uuid, dummy_uuid) != 0) {
fprintf(stderr, "could not parse UUID: %s\n", fs_uuid);
exit(1);
}
if (!test_uuid_unique(fs_uuid)) {
fprintf(stderr, "non-unique UUID: %s\n", fs_uuid);
exit(1);
}
}
while (dev_cnt-- > 0) {
file = av[optind++];
if (is_block_device(file))
if (test_dev_for_mkfs(file, force_overwrite, estr)) {
fprintf(stderr, "Error: %s", estr);
exit(1);
}
}
optind = saved_optind;
dev_cnt = ac - optind;
file = av[optind++];
ssd = is_ssd(file);
if (is_vol_small(file)) {
printf("SMALL VOLUME: forcing mixed metadata/data groups\n");
mixed = 1;
}
/*
* Set default profiles according to number of added devices.
* For mixed groups defaults are single/single.
*/
if (!mixed) {
if (!metadata_profile_opt) {
if (dev_cnt == 1 && ssd)
printf("Detected a SSD, turning off metadata "
"duplication. Mkfs with -m dup if you want to "
"force metadata duplication.\n");
metadata_profile = (dev_cnt > 1) ?
BTRFS_BLOCK_GROUP_RAID1 : (ssd) ?
0: BTRFS_BLOCK_GROUP_DUP;
}
if (!data_profile_opt) {
data_profile = (dev_cnt > 1) ?
BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */
}
} else {
u32 best_nodesize = max_t(u32, sysconf(_SC_PAGESIZE), sectorsize);
if (metadata_profile_opt || data_profile_opt) {
if (metadata_profile != data_profile) {
fprintf(stderr,
"ERROR: With mixed block groups data and metadata profiles must be the same\n");
exit(1);
}
}
if (!nodesize_forced) {
nodesize = best_nodesize;
if (btrfs_check_nodesize(nodesize, sectorsize))
exit(1);
}
if (nodesize != sectorsize) {
fprintf(stderr, "Error: mixed metadata/data block groups "
"require metadata blocksizes equal to the sectorsize\n");
exit(1);
}
}
/* Check device/block_count after the nodesize is determined */
if (block_count && block_count < btrfs_min_dev_size(nodesize)) {
fprintf(stderr,
"Size '%llu' is too small to make a usable filesystem\n",
block_count);
fprintf(stderr,
"Minimum size for btrfs filesystem is %llu\n",
btrfs_min_dev_size(nodesize));
exit(1);
}
for (i = saved_optind; i < saved_optind + dev_cnt; i++) {
char *path;
path = av[i];
ret = test_minimum_size(path, nodesize);
if (ret < 0) {
fprintf(stderr, "Failed to check size for '%s': %s\n",
path, strerror(-ret));
exit (1);
}
if (ret > 0) {
fprintf(stderr,
"'%s' is too small to make a usable filesystem\n",
path);
fprintf(stderr,
"Minimum size for each btrfs device is %llu.\n",
btrfs_min_dev_size(nodesize));
exit(1);
}
}
ret = test_num_disk_vs_raid(metadata_profile, data_profile,
dev_cnt, mixed, estr);
if (ret) {
fprintf(stderr, "Error: %s\n", estr);
exit(1);
}
/* if we are here that means all devs are good to btrfsify */
printf("%s\n", PACKAGE_STRING);
printf("See %s for more information.\n\n", PACKAGE_URL);
dev_cnt--;
if (!source_dir_set) {
/*
* open without O_EXCL so that the problem should not
* occur by the following processing.
* (btrfs_register_one_device() fails if O_EXCL is on)
*/
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s: %s\n", file,
strerror(errno));
exit(1);
}
first_file = file;
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count,
block_count, &mixed, discard);
if (ret) {
close(fd);
exit(1);
}
if (block_count && block_count > dev_block_count) {
mkfs: Handle creation of filesystem larger than the first device On Wed 08-02-12 22:05:26, Phillip Susi wrote: > -----BEGIN PGP SIGNED MESSAGE----- > Hash: SHA1 > > On 02/08/2012 06:20 PM, Jan Kara wrote: > > Thanks for your reply. I admit I was not sure what exactly size argument > > should be. So after looking into the code for a while I figured it should > > be a total size of the filesystem - or differently it should be size of > > virtual block address space in the filesystem. Thus when filesystem has > > more devices (or admin wants to add more devices later), it can be larger > > than the first device. But I'm not really a btrfs developper so I might be > > wrong and of course feel free to fix the issue as you deem fit. > > The size of the fs is the total size of the individual disks. When you > limit the size, you limit the size of a disk, not the whole fs. IIRC, > mkfs initializes the fs on the first disk, which is why it was using that > size as the size of the whole fs, and then adds the other disks after ( > which then add their size to the total fs size ). OK, I missed that btrfs_add_to_fsid() increases total size of the filesystem. So now I agree with you. New patch is attached. Thanks for your review. > It might be nice if > mkfs could take sizes for each disk, but it only seems to take one size > for the initial disk. Yes, but I don't see a realistic usecase so I don't think it's really worth the work. Honza -- Jan Kara <jack@suse.cz> SUSE Labs, CR >From e5f46872232520310c56327593c02ef6a7f5ea33 Mon Sep 17 00:00:00 2001 From: Jan Kara <jack@suse.cz> Date: Fri, 10 Feb 2012 11:44:44 +0100 Subject: [PATCH] mkfs: Handle creation of filesystem larger than the first device mkfs does not properly check requested size of the filesystem. Thus if the requested size is larger than the first device, it happily creates larger filesystem than a device it resides on which results in 'attemp to access beyond end of device' messages from the kernel. So verify specified filesystem size against the size of the first device. CC: David Sterba <dsterba@suse.cz> Signed-off-by: Jan Kara <jack@suse.cz>
2012-02-10 10:49:19 +00:00
fprintf(stderr, "%s is smaller than requested size\n", file);
exit(1);
}
} else {
fd = open_target(file);
if (fd < 0) {
fprintf(stderr, "unable to open the %s\n", file);
exit(1);
}
first_file = file;
source_dir_size = size_sourcedir(source_dir, sectorsize,
&num_of_meta_chunks, &size_of_data);
if(block_count < source_dir_size)
block_count = source_dir_size;
ret = zero_output_file(fd, block_count, sectorsize);
if (ret) {
fprintf(stderr, "unable to zero the output file\n");
exit(1);
}
/* our "device" is the new image file */
dev_block_count = block_count;
2007-03-21 00:35:03 +00:00
}
/* To create the first block group and chunk 0 in make_btrfs */
if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) {
fprintf(stderr, "device is too small to make filesystem\n");
exit(1);
}
blocks[0] = BTRFS_SUPER_INFO_OFFSET;
for (i = 1; i < 7; i++) {
blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 +
nodesize * i;
}
/*
* FS features that can be set by other means than -O
* just set the bit here
*/
if (mixed)
features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS;
if ((data_profile | metadata_profile) &
(BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
features |= BTRFS_FEATURE_INCOMPAT_RAID56;
}
btrfs_process_fs_features(features);
ret = make_btrfs(fd, file, label, fs_uuid, blocks, dev_block_count,
nodesize, sectorsize, stripesize, features);
2007-03-21 00:35:03 +00:00
if (ret) {
fprintf(stderr, "error during mkfs: %s\n", strerror(-ret));
2007-03-21 00:35:03 +00:00
exit(1);
}
root = open_ctree(file, 0, OPEN_CTREE_WRITES);
if (!root) {
fprintf(stderr, "Open ctree failed\n");
close(fd);
exit(1);
}
root->fs_info->alloc_start = alloc_start;
ret = make_root_dir(root, mixed);
2007-03-21 15:13:29 +00:00
if (ret) {
fprintf(stderr, "failed to setup the root directory\n");
exit(1);
}
trans = btrfs_start_transaction(root, 1);
btrfs_register_one_device(file);
if (dev_cnt == 0)
goto raid_groups;
2008-03-24 19:04:49 +00:00
while (dev_cnt-- > 0) {
int old_mixed = mixed;
2008-03-24 19:04:49 +00:00
file = av[optind++];
/*
* open without O_EXCL so that the problem should not
* occur by the following processing.
* (btrfs_register_one_device() fails if O_EXCL is on)
*/
2008-03-24 19:04:49 +00:00
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s: %s\n", file,
strerror(errno));
2008-03-24 19:04:49 +00:00
exit(1);
}
ret = btrfs_device_already_in_root(root, fd,
BTRFS_SUPER_INFO_OFFSET);
if (ret) {
fprintf(stderr, "skipping duplicate device %s in FS\n",
file);
close(fd);
continue;
}
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count,
block_count, &mixed, discard);
if (ret) {
close(fd);
exit(1);
}
mixed = old_mixed;
2008-03-24 19:04:49 +00:00
ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
2008-03-24 19:04:49 +00:00
sectorsize, sectorsize, sectorsize);
BUG_ON(ret);
btrfs_register_one_device(file);
2008-03-24 19:04:49 +00:00
}
raid_groups:
if (!source_dir_set) {
ret = create_raid_groups(trans, root, data_profile,
data_profile_opt, metadata_profile,
mixed);
BUG_ON(ret);
}
ret = create_data_reloc_tree(trans, root);
BUG_ON(ret);
printf("fs created label %s on %s\n\tnodesize %u leafsize %u "
"sectorsize %u size %s\n",
label, first_file, nodesize, nodesize, sectorsize,
pretty_size(btrfs_super_total_bytes(root->fs_info->super_copy)));
2008-03-24 19:04:49 +00:00
btrfs_commit_transaction(trans, root);
if (source_dir_set) {
trans = btrfs_start_transaction(root, 1);
ret = create_chunks(trans, root,
num_of_meta_chunks, size_of_data);
BUG_ON(ret);
btrfs_commit_transaction(trans, root);
ret = make_image(source_dir, root, fd);
BUG_ON(ret);
}
2008-03-24 19:04:49 +00:00
ret = close_ctree(root);
BUG_ON(ret);
free(label);
2007-03-21 00:35:03 +00:00
return 0;
}