btrfs-progs/kernel-lib/raid56.c

358 lines
8.7 KiB
C
Raw Normal View History

/* -*- linux-c -*- ------------------------------------------------------- *
*
* Copyright 2002-2004 H. Peter Anvin - All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, Inc., 53 Temple Place Ste 330,
* Boston MA 02111-1307, USA; either version 2 of the License, or
* (at your option) any later version; incorporated herein by reference.
*
* ----------------------------------------------------------------------- */
/*
* Added helpers for unaligned native int access
*/
/*
* raid6int1.c
*
* 1-way unrolled portable integer math RAID-6 instruction set
*
* This file was postprocessed using unroll.pl and then ported to userspace
*/
#include <stdint.h>
#include <unistd.h>
#include "kerncompat.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/volumes.h"
#include "common/utils.h"
#include "kernel-lib/raid56.h"
/*
* This is the C data type to use
*/
/* Change this from BITS_PER_LONG if there is something better... */
#if BITS_PER_LONG == 64
# define NBYTES(x) ((x) * 0x0101010101010101UL)
# define NSIZE 8
# define NSHIFT 3
typedef uint64_t unative_t;
#define put_unaligned_native(val,p) put_unaligned_64((val),(p))
#define get_unaligned_native(p) get_unaligned_64((p))
#else
# define NBYTES(x) ((x) * 0x01010101U)
# define NSIZE 4
# define NSHIFT 2
typedef uint32_t unative_t;
#define put_unaligned_native(val,p) put_unaligned_32((val),(p))
#define get_unaligned_native(p) get_unaligned_32((p))
#endif
/*
* These sub-operations are separate inlines since they can sometimes be
* specially optimized using architecture-specific hacks.
*/
/*
* The SHLBYTE() operation shifts each byte left by 1, *not*
* rolling over into the next byte
*/
static inline __attribute_const__ unative_t SHLBYTE(unative_t v)
{
unative_t vv;
vv = (v << 1) & NBYTES(0xfe);
return vv;
}
/*
* The MASK() operation returns 0xFF in any byte for which the high
* bit is 1, 0x00 for any byte for which the high bit is 0.
*/
static inline __attribute_const__ unative_t MASK(unative_t v)
{
unative_t vv;
vv = v & NBYTES(0x80);
vv = (vv << 1) - (vv >> 7); /* Overflow on the top bit is OK */
return vv;
}
void raid6_gen_syndrome(int disks, size_t bytes, void **ptrs)
{
uint8_t **dptr = (uint8_t **)ptrs;
uint8_t *p, *q;
int d, z, z0;
unative_t wd0, wq0, wp0, w10, w20;
z0 = disks - 3; /* Highest data disk */
p = dptr[z0+1]; /* XOR parity */
q = dptr[z0+2]; /* RS syndrome */
for ( d = 0 ; d < bytes ; d += NSIZE*1 ) {
wq0 = wp0 = get_unaligned_native(&dptr[z0][d+0*NSIZE]);
for ( z = z0-1 ; z >= 0 ; z-- ) {
wd0 = get_unaligned_native(&dptr[z][d+0*NSIZE]);
wp0 ^= wd0;
w20 = MASK(wq0);
w10 = SHLBYTE(wq0);
w20 &= NBYTES(0x1d);
w10 ^= w20;
wq0 = w10 ^ wd0;
}
put_unaligned_native(wp0, &p[d+NSIZE*0]);
put_unaligned_native(wq0, &q[d+NSIZE*0]);
}
}
static void xor_range(char *dst, const char*src, size_t size)
{
/* Move to DWORD aligned */
while (size && ((unsigned long)dst & sizeof(unsigned long))) {
*dst++ ^= *src++;
size--;
}
/* DWORD aligned part */
while (size >= sizeof(unsigned long)) {
*(unsigned long *)dst ^= *(unsigned long *)src;
src += sizeof(unsigned long);
dst += sizeof(unsigned long);
size -= sizeof(unsigned long);
}
/* Remaining */
while (size) {
*dst++ ^= *src++;
size--;
}
}
/*
* Generate desired data/parity stripe for RAID5
*
* @nr_devs: Total number of devices, including parity
* @stripe_len: Stripe length
* @data: Data, with special layout:
* data[0]: Data stripe 0
* data[nr_devs-2]: Last data stripe
* data[nr_devs-1]: RAID5 parity
* @dest: To generate which data. should follow above data layout
*/
int raid5_gen_result(int nr_devs, size_t stripe_len, int dest, void **data)
{
int i;
char *buf = data[dest];
/* Validation check */
if (stripe_len <= 0 || stripe_len != BTRFS_STRIPE_LEN) {
error("invalid parameter for %s", __func__);
return -EINVAL;
}
if (dest >= nr_devs || nr_devs < 2) {
error("invalid parameter for %s", __func__);
return -EINVAL;
}
/* Shortcut for 2 devs RAID5, which is just RAID1 */
if (nr_devs == 2) {
memcpy(data[dest], data[1 - dest], stripe_len);
return 0;
}
memset(buf, 0, stripe_len);
for (i = 0; i < nr_devs; i++) {
if (i == dest)
continue;
xor_range(buf, data[i], stripe_len);
}
return 0;
}
/*
* Raid 6 recovery code copied from kernel lib/raid6/recov.c.
* With modifications:
* - rename from raid6_2data_recov_intx1
* - kfree/free modification for btrfs-progs
*/
int raid6_recov_data2(int nr_devs, size_t stripe_len, int dest1, int dest2,
void **data)
{
u8 *p, *q, *dp, *dq;
u8 px, qx, db;
const u8 *pbmul; /* P multiplier table for B data */
const u8 *qmul; /* Q multiplier table (for both) */
char *zero_mem1, *zero_mem2;
int ret = 0;
/* Early check */
if (dest1 < 0 || dest1 >= nr_devs - 2 ||
dest2 < 0 || dest2 >= nr_devs - 2 || dest1 >= dest2)
return -EINVAL;
zero_mem1 = calloc(1, stripe_len);
zero_mem2 = calloc(1, stripe_len);
if (!zero_mem1 || !zero_mem2) {
free(zero_mem1);
free(zero_mem2);
return -ENOMEM;
}
p = (u8 *)data[nr_devs - 2];
q = (u8 *)data[nr_devs - 1];
/* Compute syndrome with zero for the missing data pages
Use the dead data pages as temporary storage for
delta p and delta q */
dp = (u8 *)data[dest1];
data[dest1] = (void *)zero_mem1;
data[nr_devs - 2] = dp;
dq = (u8 *)data[dest2];
data[dest2] = (void *)zero_mem2;
data[nr_devs - 1] = dq;
raid6_gen_syndrome(nr_devs, stripe_len, data);
/* Restore pointer table */
data[dest1] = dp;
data[dest2] = dq;
data[nr_devs - 2] = p;
data[nr_devs - 1] = q;
/* Now, pick the proper data tables */
pbmul = raid6_gfmul[raid6_gfexi[dest2 - dest1]];
qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[dest1]^raid6_gfexp[dest2]]];
/* Now do it... */
while ( stripe_len-- ) {
px = *p ^ *dp;
qx = qmul[*q ^ *dq];
*dq++ = db = pbmul[px] ^ qx; /* Reconstructed B */
*dp++ = db ^ px; /* Reconstructed A */
p++; q++;
}
free(zero_mem1);
free(zero_mem2);
return ret;
}
/*
* Raid 6 recover code copied from kernel lib/raid6/recov.c
* - rename from raid6_datap_recov_intx1()
* - parameter changed from faila to dest1
*/
int raid6_recov_datap(int nr_devs, size_t stripe_len, int dest1, void **data)
{
u8 *p, *q, *dq;
const u8 *qmul; /* Q multiplier table */
char *zero_mem;
p = (u8 *)data[nr_devs - 2];
q = (u8 *)data[nr_devs - 1];
zero_mem = calloc(1, stripe_len);
if (!zero_mem)
return -ENOMEM;
/* Compute syndrome with zero for the missing data page
Use the dead data page as temporary storage for delta q */
dq = (u8 *)data[dest1];
data[dest1] = (void *)zero_mem;
data[nr_devs - 1] = dq;
raid6_gen_syndrome(nr_devs, stripe_len, data);
/* Restore pointer table */
data[dest1] = dq;
data[nr_devs - 1] = q;
/* Now, pick the proper data tables */
qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[dest1]]];
/* Now do it... */
while ( stripe_len-- ) {
*p++ ^= *dq = qmul[*q ^ *dq];
q++; dq++;
}
return 0;
}
/* Original raid56 recovery wrapper */
int raid56_recov(int nr_devs, size_t stripe_len, u64 profile, int dest1,
int dest2, void **data)
{
int min_devs;
int ret;
if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK)
min_devs = btrfs_bg_type_to_devs_min(profile);
else
return -EINVAL;
if (nr_devs < min_devs)
return -EINVAL;
/* Nothing to recover */
if (dest1 == -1 && dest2 == -1)
return 0;
/* Reorder dest1/2, so only dest2 can be -1 */
if (dest1 == -1) {
dest1 = dest2;
dest2 = -1;
} else if (dest2 != -1 && dest1 != -1) {
/* Reorder dest1/2, ensure dest2 > dest1 */
if (dest1 > dest2) {
int tmp;
tmp = dest2;
dest2 = dest1;
dest1 = tmp;
}
}
if (profile & BTRFS_BLOCK_GROUP_RAID5) {
if (dest2 != -1)
return 1;
return raid5_gen_result(nr_devs, stripe_len, dest1, data);
}
/* RAID6 one dev corrupted case*/
if (dest2 == -1) {
/* Regenerate P/Q */
if (dest1 == nr_devs - 1 || dest1 == nr_devs - 2) {
raid6_gen_syndrome(nr_devs, stripe_len, data);
return 0;
}
/* Regenerate data from P */
return raid5_gen_result(nr_devs - 1, stripe_len, dest1, data);
}
/* P/Q bot corrupted */
if (dest1 == nr_devs - 2 && dest2 == nr_devs - 1) {
raid6_gen_syndrome(nr_devs, stripe_len, data);
return 0;
}
/* 2 Data corrupted */
if (dest2 < nr_devs - 2)
return raid6_recov_data2(nr_devs, stripe_len, dest1, dest2,
data);
/* Data and P*/
if (dest2 == nr_devs - 1)
return raid6_recov_datap(nr_devs, stripe_len, dest1, data);
/*
* Final case, Data and Q, recover data first then regenerate Q
*/
ret = raid5_gen_result(nr_devs - 1, stripe_len, dest1, data);
if (ret < 0)
return ret;
raid6_gen_syndrome(nr_devs, stripe_len, data);
return 0;
}