baritone/src/main/java/baritone/behavior/ElytraBehavior.java

972 lines
40 KiB
Java

/*
* This file is part of Baritone.
*
* Baritone is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Baritone is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Baritone. If not, see <https://www.gnu.org/licenses/>.
*/
package baritone.behavior;
import baritone.Baritone;
import baritone.api.behavior.IElytraBehavior;
import baritone.api.behavior.look.IAimProcessor;
import baritone.api.behavior.look.ITickableAimProcessor;
import baritone.api.event.events.*;
import baritone.api.utils.*;
import baritone.behavior.elytra.NetherPathfinderContext;
import baritone.behavior.elytra.NetherPath;
import baritone.behavior.elytra.PathCalculationException;
import baritone.behavior.elytra.UnpackedSegment;
import baritone.utils.BlockStateInterface;
import baritone.utils.accessor.IEntityFireworkRocket;
import net.minecraft.block.material.Material;
import net.minecraft.block.state.IBlockState;
import net.minecraft.entity.item.EntityFireworkRocket;
import net.minecraft.init.Items;
import net.minecraft.item.ItemStack;
import net.minecraft.nbt.NBTTagCompound;
import net.minecraft.network.play.server.SPacketPlayerPosLook;
import net.minecraft.util.EnumHand;
import net.minecraft.util.math.*;
import net.minecraft.world.chunk.Chunk;
import java.util.*;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.Future;
import java.util.function.UnaryOperator;
public final class ElytraBehavior extends Behavior implements IElytraBehavior, Helper {
/**
* 2b2t seed
*/
private static final long NETHER_SEED = 146008555100680L;
// Used exclusively for PathRenderer
public List<Pair<Vec3d, Vec3d>> clearLines;
public List<Pair<Vec3d, Vec3d>> blockedLines;
public List<Vec3d> simulationLine;
public BlockPos aimPos;
public List<BetterBlockPos> visiblePath;
// :sunglasses:
private final NetherPathfinderContext context;
private final PathManager pathManager;
/**
* Remaining cool-down ticks between firework usage
*/
private int remainingFireworkTicks;
/**
* Remaining cool-down ticks after the player's position and rotation are reset by the server
*/
private int remainingSetBackTicks;
/**
* The most recent minimum number of firework boost ticks, equivalent to {@code 10 * (1 + Flight)}
* <p>
* Updated every time a firework is automatically used
*/
private int minimumBoostTicks;
private BlockStateInterface bsi;
private Future<Solution> solver;
private boolean solveNextTick;
public ElytraBehavior(Baritone baritone) {
super(baritone);
this.context = new NetherPathfinderContext(NETHER_SEED);
this.clearLines = new CopyOnWriteArrayList<>();
this.blockedLines = new CopyOnWriteArrayList<>();
this.visiblePath = Collections.emptyList();
this.pathManager = this.new PathManager();
}
private final class PathManager {
private BlockPos destination;
private NetherPath path;
private boolean completePath;
private boolean recalculating;
private int maxPlayerNear;
private int ticksNearUnchanged;
private int playerNear;
public PathManager() {
// lol imagine initializing fields normally
this.clear();
}
public void tick() {
// Recalculate closest path node
this.updatePlayerNear();
final int prevMaxNear = this.maxPlayerNear;
this.maxPlayerNear = Math.max(this.maxPlayerNear, this.playerNear);
if (this.maxPlayerNear == prevMaxNear && ctx.player().isElytraFlying()) {
this.ticksNearUnchanged++;
} else {
this.ticksNearUnchanged = 0;
}
// Obstacles are more important than an incomplete path, handle those first.
this.pathfindAroundObstacles();
this.attemptNextSegment();
}
public void pathToDestination(final BlockPos destination) {
this.destination = destination;
final long start = System.nanoTime();
this.path0(ctx.playerFeet(), destination, UnaryOperator.identity())
.thenRun(() -> {
final double distance = this.path.get(0).distanceTo(this.path.get(this.path.size() - 1));
if (this.completePath) {
logDirect(String.format("Computed path (%.1f blocks in %.4f seconds)", distance, (System.nanoTime() - start) / 1e9d));
} else {
logDirect(String.format("Computed segment (Next %.1f blocks in %.4f seconds)", distance, (System.nanoTime() - start) / 1e9d));
}
})
.whenComplete((result, ex) -> {
this.recalculating = false;
if (ex != null) {
final Throwable cause = ex.getCause();
if (cause instanceof PathCalculationException) {
logDirect("Failed to compute path to destination");
} else {
logUnhandledException(cause);
}
}
});
}
public CompletableFuture<Void> pathRecalcSegment(final int upToIncl) {
if (this.recalculating) {
throw new IllegalStateException("already recalculating");
}
this.recalculating = true;
final List<BetterBlockPos> after = this.path.subList(upToIncl, this.path.size());
final boolean complete = this.completePath;
return this.path0(ctx.playerFeet(), this.path.get(upToIncl), segment -> segment.append(after.stream(), complete))
.whenComplete((result, ex) -> {
this.recalculating = false;
if (ex != null) {
final Throwable cause = ex.getCause();
if (cause instanceof PathCalculationException) {
logDirect("Failed to recompute segment");
} else {
logUnhandledException(cause);
}
}
});
}
public void pathNextSegment(final int afterIncl) {
if (this.recalculating) {
return;
}
this.recalculating = true;
final List<BetterBlockPos> before = this.path.subList(0, afterIncl + 1);
final long start = System.nanoTime();
this.path0(this.path.get(afterIncl), this.destination, segment -> segment.prepend(before.stream()))
.thenRun(() -> {
final int recompute = this.path.size() - before.size() - 1;
final double distance = this.path.get(0).distanceTo(this.path.get(recompute));
if (this.completePath) {
logDirect(String.format("Computed path (%.1f blocks in %.4f seconds)", distance, (System.nanoTime() - start) / 1e9d));
} else {
logDirect(String.format("Computed segment (Next %.1f blocks in %.4f seconds)", distance, (System.nanoTime() - start) / 1e9d));
}
})
.whenComplete((result, ex) -> {
this.recalculating = false;
if (ex != null) {
final Throwable cause = ex.getCause();
if (cause instanceof PathCalculationException) {
logDirect("Failed to compute next segment");
} else {
logUnhandledException(cause);
}
}
});
}
public void clear() {
this.destination = null;
this.path = NetherPath.emptyPath();
this.completePath = true;
this.recalculating = false;
this.playerNear = 0;
this.ticksNearUnchanged = 0;
this.maxPlayerNear = 0;
}
private void setPath(final UnpackedSegment segment) {
this.path = segment.collect();
this.completePath = segment.isFinished();
this.playerNear = 0;
this.ticksNearUnchanged = 0;
this.maxPlayerNear = 0;
}
public NetherPath getPath() {
return this.path;
}
public int getNear() {
return this.playerNear;
}
// mickey resigned
private CompletableFuture<Void> path0(BlockPos src, BlockPos dst, UnaryOperator<UnpackedSegment> operator) {
return ElytraBehavior.this.context.pathFindAsync(src, dst)
.thenApply(UnpackedSegment::from)
.thenApply(operator)
.thenAcceptAsync(this::setPath, ctx.minecraft()::addScheduledTask);
}
private void pathfindAroundObstacles() {
if (this.recalculating) {
return;
}
int rangeStartIncl = playerNear;
int rangeEndExcl = playerNear;
while (rangeEndExcl < path.size() && ctx.world().isBlockLoaded(path.get(rangeEndExcl), false)) {
rangeEndExcl++;
}
if (rangeStartIncl >= rangeEndExcl) {
// not loaded yet?
return;
}
if (!passable(ctx.world().getBlockState(path.get(rangeStartIncl)), false)) {
// we're in a wall
return; // previous iterations of this function SHOULD have fixed this by now :rage_cat:
}
if (this.ticksNearUnchanged > 100) {
this.pathRecalcSegment(rangeEndExcl - 1)
.thenRun(() -> {
logDirect("Recalculating segment, no progress in last 100 ticks");
});
this.ticksNearUnchanged = 0;
return;
}
for (int i = rangeStartIncl; i < rangeEndExcl - 1; i++) {
if (!ElytraBehavior.this.clearView(this.path.getVec(i), this.path.getVec(i + 1), false)) {
// obstacle. where do we return to pathing?
// find the next valid segment
final BetterBlockPos blockage = this.path.get(i);
final double distance = ctx.playerFeet().distanceTo(this.path.get(rangeEndExcl - 1));
final long start = System.nanoTime();
this.pathRecalcSegment(rangeEndExcl - 1)
.thenRun(() -> {
logDirect(String.format("Recalculated segment around path blockage near %s %s %s (next %.1f blocks in %.4f seconds)",
SettingsUtil.maybeCensor(blockage.x),
SettingsUtil.maybeCensor(blockage.y),
SettingsUtil.maybeCensor(blockage.z),
distance,
(System.nanoTime() - start) / 1e9d
));
});
return;
}
}
}
private void attemptNextSegment() {
if (this.recalculating) {
return;
}
final int last = this.path.size() - 1;
if (!this.completePath && ctx.world().isBlockLoaded(this.path.get(last), false)) {
this.pathNextSegment(last);
}
}
public void updatePlayerNear() {
if (this.path.isEmpty()) {
return;
}
int index = this.playerNear;
final BetterBlockPos pos = ctx.playerFeet();
for (int i = index; i >= Math.max(index - 1000, 0); i -= 10) {
if (path.get(i).distanceSq(pos) < path.get(index).distanceSq(pos)) {
index = i; // intentional: this changes the bound of the loop
}
}
for (int i = index; i < Math.min(index + 1000, path.size()); i += 10) {
if (path.get(i).distanceSq(pos) < path.get(index).distanceSq(pos)) {
index = i; // intentional: this changes the bound of the loop
}
}
for (int i = index; i >= Math.max(index - 50, 0); i--) {
if (path.get(i).distanceSq(pos) < path.get(index).distanceSq(pos)) {
index = i; // intentional: this changes the bound of the loop
}
}
for (int i = index; i < Math.min(index + 50, path.size()); i++) {
if (path.get(i).distanceSq(pos) < path.get(index).distanceSq(pos)) {
index = i; // intentional: this changes the bound of the loop
}
}
this.playerNear = index;
}
}
@Override
public void onChunkEvent(ChunkEvent event) {
if (event.isPostPopulate()) {
final Chunk chunk = ctx.world().getChunk(event.getX(), event.getZ());
this.context.queueForPacking(chunk);
}
}
@Override
public void onBlockChange(BlockChangeEvent event) {
event.getAffectedChunks().stream()
.map(pos -> ctx.world().getChunk(pos.x, pos.z))
.forEach(this.context::queueForPacking);
}
@Override
public void onReceivePacket(PacketEvent event) {
if (event.getPacket() instanceof SPacketPlayerPosLook) {
ctx.minecraft().addScheduledTask(() -> {
this.remainingSetBackTicks = Baritone.settings().elytraFireworkSetbackUseDelay.value;
});
}
}
@Override
public void pathTo(BlockPos destination) {
this.pathManager.pathToDestination(destination);
}
@Override
public void cancel() {
this.visiblePath = Collections.emptyList();
this.pathManager.clear();
this.aimPos = null;
this.remainingFireworkTicks = 0;
this.remainingSetBackTicks = 0;
if (this.solver != null) {
this.solver.cancel(true);
this.solver = null;
}
}
@Override
public boolean isActive() {
return !this.pathManager.getPath().isEmpty();
}
@Override
public void onTick(TickEvent event) {
if (event.getType() == TickEvent.Type.OUT) {
return;
}
// Fetch the previous solution, regardless of if it's going to be used
Solution solution = null;
if (this.solver != null) {
try {
solution = this.solver.get();
} catch (Exception ignored) {
// it doesn't matter if get() fails since the solution can just be recalculated synchronously
} finally {
this.solver = null;
}
}
// Certified mojang employee incident
if (this.remainingFireworkTicks > 0) {
this.remainingFireworkTicks--;
}
if (this.remainingSetBackTicks > 0) {
this.remainingSetBackTicks--;
}
if (!this.getAttachedFirework().isPresent()) {
this.minimumBoostTicks = 0;
}
// Reset rendered elements
this.clearLines.clear();
this.blockedLines.clear();
this.simulationLine = null;
this.aimPos = null;
final List<BetterBlockPos> path = this.pathManager.getPath();
if (path.isEmpty()) {
return;
}
this.bsi = new BlockStateInterface(ctx);
this.pathManager.tick();
final int playerNear = this.pathManager.getNear();
this.visiblePath = path.subList(
Math.max(playerNear - 30, 0),
Math.min(playerNear + 100, path.size())
);
if (!ctx.player().isElytraFlying()) {
return;
}
baritone.getInputOverrideHandler().clearAllKeys();
if (ctx.player().collidedHorizontally) {
logDirect("hbonk");
}
if (ctx.player().collidedVertically) {
logDirect("vbonk");
}
final SolverContext solverContext = this.new SolverContext(false);
this.solveNextTick = true;
// If there's no previously calculated solution to use, or the context used at the end of last tick doesn't match this tick
if (solution == null || !solution.context.equals(solverContext)) {
solution = this.solveAngles(solverContext);
}
if (solution == null) {
logDirect("no solution");
return;
}
baritone.getLookBehavior().updateTarget(solution.rotation, false);
if (!solution.solvedPitch) {
logDirect("no pitch solution, probably gonna crash in a few ticks LOL!!!");
return;
} else {
this.aimPos = new BetterBlockPos(solution.goingTo.x, solution.goingTo.y, solution.goingTo.z);
}
this.tickUseFireworks(
solution.context.start,
solution.goingTo,
solution.context.boost.isBoosted(),
solution.forceUseFirework
);
}
@Override
public void onPostTick(TickEvent event) {
if (event.getType() == TickEvent.Type.IN && this.solveNextTick) {
// We're at the end of the tick, the player's position likely updated and the closest path node could've
// changed. Updating it now will avoid unnecessary recalculation on the main thread.
this.pathManager.updatePlayerNear();
final SolverContext context = this.new SolverContext(true);
this.solver = CompletableFuture.supplyAsync(() -> this.solveAngles(context));
this.solveNextTick = false;
}
}
private Solution solveAngles(final SolverContext context) {
final NetherPath path = context.path;
final int playerNear = context.playerNear;
final Vec3d start = context.start;
final boolean isInLava = ctx.player().isInLava();
Solution solution = null;
for (int relaxation = 0; relaxation < 3; relaxation++) { // try for a strict solution first, then relax more and more (if we're in a corner or near some blocks, it will have to relax its constraints a bit)
int[] heights = context.boost.isBoosted() ? new int[]{20, 10, 5, 0} : new int[]{0}; // attempt to gain height, if we can, so as not to waste the boost
float[] interps = new float[] {1.0f, 0.75f, 0.5f, 0.25f};
int steps = relaxation < 2 ? context.boost.isBoosted() ? 5 : Baritone.settings().elytraSimulationTicks.value : 3;
int lookahead = relaxation == 0 ? 2 : 3; // ideally this would be expressed as a distance in blocks, rather than a number of voxel steps
//int minStep = Math.max(0, playerNear - relaxation);
int minStep = playerNear;
for (int i = Math.min(playerNear + 20, path.size() - 1); i >= minStep; i--) {
for (int dy : heights) {
for (float interp : interps) {
Vec3d dest;
if (interp == 1 || i == minStep) {
dest = path.getVec(i);
} else {
dest = path.getVec(i).scale(interp).add(path.getVec(i - 1).scale(1.0d - interp));
}
dest = dest.add(0, dy, 0);
if (dy != 0) {
if (i + lookahead >= path.size()) {
continue;
}
if (start.distanceTo(dest) < 40) {
if (!this.clearView(dest, path.getVec(i + lookahead).add(0, dy, 0), false)
|| !this.clearView(dest, path.getVec(i + lookahead), false)) {
// aka: don't go upwards if doing so would prevent us from being able to see the next position **OR** the modified next position
continue;
}
} else {
// but if it's far away, allow gaining altitude if we could lose it again by the time we get there
if (!this.clearView(dest, path.getVec(i), false)) {
continue;
}
}
}
final double minAvoidance = Baritone.settings().elytraMinimumAvoidance.value;
final Double growth = relaxation == 2 ? null
: relaxation == 0 ? 2 * minAvoidance : minAvoidance;
if (this.isHitboxClear(start, dest, growth, isInLava)) {
// Yaw is trivial, just calculate the rotation required to face the destination
final float yaw = RotationUtils.calcRotationFromVec3d(start, dest, ctx.playerRotations()).getYaw();
final Pair<Float, Boolean> pitch = this.solvePitch(context, dest.subtract(start), steps, relaxation, isInLava);
if (pitch.first() == null) {
solution = new Solution(context, new Rotation(yaw, ctx.playerRotations().getPitch()), null, false, false);
continue;
}
// A solution was found with yaw AND pitch, so just immediately return it.
return new Solution(context, new Rotation(yaw, pitch.first()), dest, true, pitch.second());
}
}
}
}
}
return solution;
}
private void tickUseFireworks(final Vec3d start, final Vec3d goingTo, final boolean isBoosted, final boolean forceUseFirework) {
if (this.remainingSetBackTicks > 0) {
logDebug("waiting for elytraFireworkSetbackUseDelay: " + this.remainingSetBackTicks);
return;
}
final boolean useOnDescend = !Baritone.settings().conserveFireworks.value || ctx.player().posY < goingTo.y + 5;
final double currentSpeed = new Vec3d(
ctx.player().motionX,
// ignore y component if we are BOTH below where we want to be AND descending
ctx.player().posY < goingTo.y ? Math.max(0, ctx.player().motionY) : ctx.player().motionY,
ctx.player().motionZ
).lengthSquared();
final double elytraFireworkSpeed = Baritone.settings().elytraFireworkSpeed.value;
if (this.remainingFireworkTicks <= 0 && (forceUseFirework || (!isBoosted
&& useOnDescend
&& (ctx.player().posY < goingTo.y - 5 || start.distanceTo(new Vec3d(goingTo.x + 0.5, ctx.player().posY, goingTo.z + 0.5)) > 5) // UGH!!!!!!!
&& currentSpeed < elytraFireworkSpeed * elytraFireworkSpeed))
) {
// Prioritize boosting fireworks over regular ones
// TODO: Take the minimum boost time into account?
if (!baritone.getInventoryBehavior().throwaway(true, ElytraBehavior::isBoostingFireworks) &&
!baritone.getInventoryBehavior().throwaway(true, ElytraBehavior::isFireworks)) {
logDirect("no fireworks");
return;
}
logDirect("attempting to use firework" + (forceUseFirework ? " takeoff" : ""));
ctx.playerController().processRightClick(ctx.player(), ctx.world(), EnumHand.MAIN_HAND);
this.minimumBoostTicks = 10 * (1 + getFireworkBoost(ctx.player().getHeldItemMainhand()).orElse(0));
this.remainingFireworkTicks = 10;
}
}
private final class SolverContext {
public final NetherPath path;
public final int playerNear;
public final Vec3d start;
public final FireworkBoost boost;
public final IAimProcessor aimProcessor;
public SolverContext(boolean async) {
this.path = ElytraBehavior.this.pathManager.getPath();
this.playerNear = ElytraBehavior.this.pathManager.getNear();
this.start = ElytraBehavior.this.ctx.playerFeetAsVec();
this.boost = new FireworkBoost(
ElytraBehavior.this.getAttachedFirework().orElse(null),
ElytraBehavior.this.minimumBoostTicks
);
ITickableAimProcessor aim = ElytraBehavior.this.baritone.getLookBehavior().getAimProcessor().fork();
if (async) {
// async computation is done at the end of a tick, advance by 1 to prepare for the next tick
aim.advance(1);
}
this.aimProcessor = aim;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || o.getClass() != SolverContext.class) {
return false;
}
SolverContext other = (SolverContext) o;
return this.path == other.path // Contents aren't modified, just compare by reference
&& this.playerNear == other.playerNear
&& Objects.equals(this.start, other.start)
&& Objects.equals(this.boost, other.boost);
}
}
private static final class FireworkBoost {
private final EntityFireworkRocket firework;
private final int minimumBoostTicks;
private final int maximumBoostTicks;
public FireworkBoost(final EntityFireworkRocket firework, final int minimumBoostTicks) {
this.firework = firework;
// this.lifetime = 10 * i + this.rand.nextInt(6) + this.rand.nextInt(7);
this.minimumBoostTicks = minimumBoostTicks;
this.maximumBoostTicks = minimumBoostTicks + 11;
}
public boolean isBoosted() {
return this.firework != null;
}
public int getGuaranteedBoostTicks() {
return this.isBoosted() ? Math.max(0, this.minimumBoostTicks - this.firework.ticksExisted) : 0;
}
public int getMaximumBoostTicks() {
return this.isBoosted() ? Math.max(0, this.maximumBoostTicks - this.firework.ticksExisted) : 0;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || o.getClass() != FireworkBoost.class) {
return false;
}
FireworkBoost other = (FireworkBoost) o;
return Objects.equals(this.firework, other.firework)
&& this.minimumBoostTicks == other.minimumBoostTicks
&& this.maximumBoostTicks == other.maximumBoostTicks;
}
}
private static final class Solution {
public final SolverContext context;
public final Rotation rotation;
public final Vec3d goingTo;
public final boolean solvedPitch;
public final boolean forceUseFirework;
public Solution(SolverContext context, Rotation rotation, Vec3d goingTo, boolean solvedPitch, boolean forceUseFirework) {
this.context = context;
this.rotation = rotation;
this.goingTo = goingTo;
this.solvedPitch = solvedPitch;
this.forceUseFirework = forceUseFirework;
}
}
private static boolean isFireworks(final ItemStack itemStack) {
if (itemStack.getItem() != Items.FIREWORKS) {
return false;
}
// If it has NBT data, make sure it won't cause us to explode.
final NBTTagCompound compound = itemStack.getSubCompound("Fireworks");
return compound == null || !compound.hasKey("Explosions");
}
private static boolean isBoostingFireworks(final ItemStack itemStack) {
return getFireworkBoost(itemStack).isPresent();
}
private static OptionalInt getFireworkBoost(final ItemStack itemStack) {
if (isFireworks(itemStack)) {
final NBTTagCompound compound = itemStack.getSubCompound("Fireworks");
if (compound != null && compound.hasKey("Flight")) {
return OptionalInt.of(compound.getByte("Flight"));
}
}
return OptionalInt.empty();
}
private Optional<EntityFireworkRocket> getAttachedFirework() {
return ctx.world().loadedEntityList.stream()
.filter(x -> x instanceof EntityFireworkRocket)
.filter(x -> Objects.equals(((IEntityFireworkRocket) x).getBoostedEntity(), ctx.player()))
.map(x -> (EntityFireworkRocket) x)
.findFirst();
}
private boolean isHitboxClear(final Vec3d start, final Vec3d dest, final Double growAmount, boolean ignoreLava) {
if (!this.clearView(start, dest, ignoreLava)) {
return false;
}
if (growAmount == null) {
return true;
}
final AxisAlignedBB bb = ctx.player().getEntityBoundingBox().grow(growAmount);
final double ox = dest.x - start.x;
final double oy = dest.y - start.y;
final double oz = dest.z - start.z;
final double[] src = new double[]{
bb.minX, bb.minY, bb.minZ,
bb.minX, bb.minY, bb.maxZ,
bb.minX, bb.maxY, bb.minZ,
bb.minX, bb.maxY, bb.maxZ,
bb.maxX, bb.minY, bb.minZ,
bb.maxX, bb.minY, bb.maxZ,
bb.maxX, bb.maxY, bb.minZ,
bb.maxX, bb.maxY, bb.maxZ,
};
final double[] dst = new double[]{
bb.minX + ox, bb.minY + oy, bb.minZ + oz,
bb.minX + ox, bb.minY + oy, bb.maxZ + oz,
bb.minX + ox, bb.maxY + oy, bb.minZ + oz,
bb.minX + ox, bb.maxY + oy, bb.maxZ + oz,
bb.maxX + ox, bb.minY + oy, bb.minZ + oz,
bb.maxX + ox, bb.minY + oy, bb.maxZ + oz,
bb.maxX + ox, bb.maxY + oy, bb.minZ + oz,
bb.maxX + ox, bb.maxY + oy, bb.maxZ + oz,
};
// Use non-batching method without early failure
if (Baritone.settings().renderHitboxRaytraces.value) {
boolean clear = true;
for (int i = 0; i < 8; i++) {
final Vec3d s = new Vec3d(src[i * 3], src[i * 3 + 1], src[i * 3 + 2]);
final Vec3d d = new Vec3d(dst[i * 3], dst[i * 3 + 1], dst[i * 3 + 2]);
// Don't forward ignoreLava since the batch call doesn't care about it
if (!this.clearView(s, d, false)) {
clear = false;
}
}
return clear;
}
return this.context.raytrace(8, src, dst, NetherPathfinderContext.Visibility.ALL);
}
private boolean clearView(Vec3d start, Vec3d dest, boolean ignoreLava) {
final boolean clear;
if (!ignoreLava) {
// if start == dest then the cpp raytracer dies
clear = start.equals(dest) || this.context.raytrace(start, dest);
} else {
clear = ctx.world().rayTraceBlocks(start, dest, false, false, false) == null;
}
if (clear) {
this.clearLines.add(new Pair<>(start, dest));
return true;
} else {
this.blockedLines.add(new Pair<>(start, dest));
return false;
}
}
private Pair<Float, Boolean> solvePitch(SolverContext context, Vec3d goalDelta, int steps, int relaxation, boolean ignoreLava) {
final Float pitch = this.solvePitch(context, goalDelta, steps, relaxation == 2, context.boost.isBoosted(), ignoreLava);
if (pitch != null) {
return new Pair<>(pitch, false);
}
if (Baritone.settings().experimentalTakeoff.value && relaxation > 0) {
final Float usingFirework = this.solvePitch(context, goalDelta, steps, relaxation == 2, true, ignoreLava);
if (usingFirework != null) {
return new Pair<>(usingFirework, true);
}
}
return new Pair<>(null, false);
}
private Float solvePitch(SolverContext context, Vec3d goalDelta, int steps, boolean desperate, boolean firework, boolean ignoreLava) {
// we are at a certain velocity, but we have a target velocity
// what pitch would get us closest to our target velocity?
// yaw is easy so we only care about pitch
final Vec3d goalDirection = goalDelta.normalize();
final float goodPitch = RotationUtils.calcRotationFromVec3d(Vec3d.ZERO, goalDirection, ctx.playerRotations()).getPitch();
Float bestPitch = null;
double bestDot = Double.NEGATIVE_INFINITY;
List<Vec3d> bestLine = null;
final Vec3d initialMotion = ctx.playerMotion();
final AxisAlignedBB initialBB = ctx.player().getEntityBoundingBox();
final float minPitch = desperate ? -90 : Math.max(goodPitch - Baritone.settings().elytraPitchRange.value, -89);
final float maxPitch = desperate ? 90 : Math.min(goodPitch + Baritone.settings().elytraPitchRange.value, 89);
outer:
for (float pitch = minPitch; pitch <= maxPitch; pitch++) {
final ITickableAimProcessor aimProcessor = context.aimProcessor.fork();
Vec3d delta = goalDelta;
Vec3d motion = initialMotion;
AxisAlignedBB hitbox = initialBB;
Vec3d totalMotion = Vec3d.ZERO;
List<Vec3d> line = new ArrayList<>();
line.add(totalMotion);
for (int i = 0; i < steps; i++) {
if (MC_1_12_Collision_Fix.bonk(ctx, hitbox)) {
continue outer;
}
final Rotation rotation = aimProcessor.nextRotation(
RotationUtils.calcRotationFromVec3d(Vec3d.ZERO, delta, ctx.playerRotations()).withPitch(pitch)
);
final Vec3d lookDirection = RotationUtils.calcLookDirectionFromRotation(rotation);
motion = step(motion, lookDirection, rotation.getPitch());
delta = delta.subtract(motion);
// Collision box while the player is in motion, with additional padding for safety
final AxisAlignedBB inMotion = hitbox.expand(motion.x, motion.y, motion.z).grow(0.01);
for (int x = MathHelper.floor(inMotion.minX); x < MathHelper.ceil(inMotion.maxX); x++) {
for (int y = MathHelper.floor(inMotion.minY); y < MathHelper.ceil(inMotion.maxY); y++) {
for (int z = MathHelper.floor(inMotion.minZ); z < MathHelper.ceil(inMotion.maxZ); z++) {
if (!this.passable(x, y, z, ignoreLava)) {
continue outer;
}
}
}
}
hitbox = hitbox.offset(motion.x, motion.y, motion.z);
totalMotion = totalMotion.add(motion);
line.add(totalMotion);
if (firework) {
// See EntityFireworkRocket
motion = motion.add(
lookDirection.x * 0.1 + (lookDirection.x * 1.5 - motion.x) * 0.5,
lookDirection.y * 0.1 + (lookDirection.y * 1.5 - motion.y) * 0.5,
lookDirection.z * 0.1 + (lookDirection.z * 1.5 - motion.z) * 0.5
);
}
}
double directionalGoodness = goalDirection.dotProduct(totalMotion.normalize());
// tried to incorporate a "speedGoodness" but it kept making it do stupid stuff (aka always losing altitude)
double goodness = directionalGoodness;
if (goodness > bestDot) {
bestDot = goodness;
bestPitch = pitch;
bestLine = line;
}
}
if (bestLine != null) {
this.simulationLine = bestLine;
}
return bestPitch;
}
private static Vec3d step(final Vec3d motion, final Vec3d lookDirection, final float pitch) {
double motionX = motion.x;
double motionY = motion.y;
double motionZ = motion.z;
float pitchRadians = pitch * RotationUtils.DEG_TO_RAD_F;
double pitchBase2 = Math.sqrt(lookDirection.x * lookDirection.x + lookDirection.z * lookDirection.z);
double flatMotion = Math.sqrt(motionX * motionX + motionZ * motionZ);
double thisIsAlwaysOne = lookDirection.length();
float pitchBase3 = MathHelper.cos(pitchRadians);
//System.out.println("always the same lol " + -pitchBase + " " + pitchBase3);
//System.out.println("always the same lol " + Math.abs(pitchBase3) + " " + pitchBase2);
//System.out.println("always 1 lol " + thisIsAlwaysOne);
pitchBase3 = (float) ((double) pitchBase3 * (double) pitchBase3 * Math.min(1, thisIsAlwaysOne / 0.4));
motionY += -0.08 + (double) pitchBase3 * 0.06;
if (motionY < 0 && pitchBase2 > 0) {
double speedModifier = motionY * -0.1 * (double) pitchBase3;
motionY += speedModifier;
motionX += lookDirection.x * speedModifier / pitchBase2;
motionZ += lookDirection.z * speedModifier / pitchBase2;
}
if (pitchRadians < 0) { // if you are looking down (below level)
double anotherSpeedModifier = flatMotion * (double) (-MathHelper.sin(pitchRadians)) * 0.04;
motionY += anotherSpeedModifier * 3.2;
motionX -= lookDirection.x * anotherSpeedModifier / pitchBase2;
motionZ -= lookDirection.z * anotherSpeedModifier / pitchBase2;
}
if (pitchBase2 > 0) { // this is always true unless you are looking literally straight up (let's just say the bot will never do that)
motionX += (lookDirection.x / pitchBase2 * flatMotion - motionX) * 0.1;
motionZ += (lookDirection.z / pitchBase2 * flatMotion - motionZ) * 0.1;
}
motionX *= 0.99f;
motionY *= 0.98f;
motionZ *= 0.99f;
//System.out.println(motionX + " " + motionY + " " + motionZ);
return new Vec3d(motionX, motionY, motionZ);
}
private boolean passable(int x, int y, int z, boolean ignoreLava) {
return passable(this.bsi.get0(x, y, z), ignoreLava);
}
private static boolean passable(IBlockState state, boolean ignoreLava) {
Material mat = state.getMaterial();
return mat == Material.AIR || (ignoreLava && mat == Material.LAVA);
}
/**
* Minecraft 1.12's pushOutOfBlocks logic doesn't account for players being able to fit under single block spaces,
* so whenever the edge of a ceiling is encountered while elytra flying it tries to push the player out.
*/
private static final class MC_1_12_Collision_Fix {
public static boolean bonk(final IPlayerContext ctx, final AxisAlignedBB aabb) {
final Vec3d center = aabb.getCenter();
final double width = (double) ctx.player().width * 0.35D;
final double x = center.x;
final double y = aabb.minY + 0.5D;
final double z = center.z;
return pushOutOfBlocks(ctx, x - width, y, z + width)
|| pushOutOfBlocks(ctx, x - width, y, z - width)
|| pushOutOfBlocks(ctx, x + width, y, z - width)
|| pushOutOfBlocks(ctx, x + width, y, z + width);
}
private static boolean pushOutOfBlocks(final IPlayerContext ctx, final double x, final double y, final double z) {
final BlockPos pos = new BlockPos(x, y, z);
if (isOpenBlockSpace(ctx, pos)) {
return false;
}
return isOpenBlockSpace(ctx, pos.west())
|| isOpenBlockSpace(ctx, pos.east())
|| isOpenBlockSpace(ctx, pos.north())
|| isOpenBlockSpace(ctx, pos.south());
}
private static boolean isOpenBlockSpace(IPlayerContext ctx, BlockPos pos) {
return !ctx.world().getBlockState(pos).isNormalCube() && !ctx.world().getBlockState(pos.up()).isNormalCube();
}
}
}