This commit is contained in:
Leijurv 2018-08-13 16:59:59 -07:00
parent 25b0348916
commit b15ebef880
No known key found for this signature in database
GPG Key ID: 44A3EA646EADAC6A
14 changed files with 15 additions and 522 deletions

View File

@ -17,8 +17,8 @@
package baritone.bot.chunk;
import baritone.bot.pathing.util.IBlockTypeAccess;
import baritone.bot.pathing.util.PathingBlockType;
import baritone.bot.utils.pathing.IBlockTypeAccess;
import baritone.bot.utils.pathing.PathingBlockType;
import java.util.BitSet;

View File

@ -17,7 +17,7 @@
package baritone.bot.chunk;
import baritone.bot.pathing.util.PathingBlockType;
import baritone.bot.utils.pathing.PathingBlockType;
import baritone.bot.utils.GZIPUtils;
import java.io.FileInputStream;

View File

@ -17,7 +17,7 @@
package baritone.bot.chunk;
import baritone.bot.pathing.util.PathingBlockType;
import baritone.bot.utils.pathing.PathingBlockType;
import it.unimi.dsi.fastutil.longs.Long2ObjectMap;
import it.unimi.dsi.fastutil.longs.Long2ObjectOpenHashMap;

View File

@ -18,7 +18,7 @@
package baritone.bot.chunk;
import baritone.bot.pathing.movement.MovementHelper;
import baritone.bot.pathing.util.PathingBlockType;
import baritone.bot.utils.pathing.PathingBlockType;
import baritone.bot.utils.BlockStateInterface;
import baritone.bot.utils.Helper;
import net.minecraft.block.Block;

View File

@ -17,7 +17,7 @@
package baritone.bot.chunk;
import baritone.bot.pathing.util.IBlockTypeAccess;
import baritone.bot.utils.pathing.IBlockTypeAccess;
import java.util.BitSet;

View File

@ -19,7 +19,6 @@ package baritone.bot.pathing.calc;
import baritone.bot.pathing.goals.Goal;
import baritone.bot.pathing.movement.Movement;
import baritone.bot.pathing.util.FibonacciHeap;
import net.minecraft.util.math.BlockPos;
import java.util.Objects;
@ -76,8 +75,10 @@ public class PathNode {
*/
boolean isOpen;
/**
* Where is this node in the array flattenization of the binary heap? Needed for decrease-key operations.
*/
public int heapPosition;
public FibonacciHeap.Node parent;
public PathNode(BlockPos pos, Goal goal) {
this.pos = pos;

View File

@ -1,45 +0,0 @@
/*
* This file is part of Baritone.
*
* Baritone is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Baritone is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Baritone. If not, see <https://www.gnu.org/licenses/>.
*/
package baritone.bot.pathing.calc.openset;
import baritone.bot.pathing.calc.PathNode;
import baritone.bot.pathing.util.FibonacciHeap;
/**
* Wrapper adapter between FibonacciHeap and OpenSet
*
* @author leijurv
*/
public class FibonacciHeapOpenSet extends FibonacciHeap implements IOpenSet {
@Override
public void insert(PathNode node) {
super.insert(node, node.combinedCost);
}
@Override
public PathNode removeLowest() {
PathNode pn = super.removeMin();
pn.parent = null;
return pn;
}
public void update(PathNode node) {
super.decreaseKey(node.parent, node.combinedCost);
}
}

View File

@ -1,463 +0,0 @@
/*
* This file is part of Baritone.
*
* Baritone is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Baritone is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Baritone. If not, see <https://www.gnu.org/licenses/>.
*/
//Source: https://github.com/nlfiedler/graphmaker/blob/master/core/src/com/bluemarsh/graphmaker/core/util/FibonacciHeap.java
package baritone.bot.pathing.util;
//package com.bluemarsh.graphmaker.core.util;
import baritone.bot.pathing.calc.PathNode;
/**
* This class implements a Fibonacci heap data structure. Much of the
* code in this class is based on the algorithms in Chapter 21 of the
* "Introduction to Algorithms" by Cormen, Leiserson, Rivest, and Stein.
* The amortized running time of most of these methods is O(1), making
* it a very fast data structure. Several have an actual running time
* of O(1). removeMin() and delete() have O(log n) amortized running
* times because they do the heap consolidation.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a set concurrently, and at least one of the
* threads modifies the set, it <em>must</em> be synchronized externally.
* This is typically accomplished by synchronizing on some object that
* naturally encapsulates the set.</p>
*
* @author Nathan Fiedler
*/
public class FibonacciHeap {
/**
* Points to the minimum node in the heap.
*/
private Node min;
/**
* Number of nodes in the heap. If the type is ever widened,
* (e.g. changed to long) then recalcuate the maximum degree
* value used in the consolidate() method.
*/
private int n;
/**
* Joins two Fibonacci heaps into a new one. No heap consolidation is
* performed at this time. The two root lists are simply joined together.
*
* <p><em>Running time: O(1)</em></p>
*
* @param H1 first heap
* @param H2 second heap
* @return new heap containing H1 and H2
*/
public static FibonacciHeap union(FibonacciHeap H1, FibonacciHeap H2) {
FibonacciHeap H = new FibonacciHeap();
if (H1 != null && H2 != null) {
H.min = H1.min;
if (H.min != null) {
if (H2.min != null) {
H.min.right.left = H2.min.left;
H2.min.left.right = H.min.right;
H.min.right = H2.min;
H2.min.left = H.min;
if (H2.min.key < H1.min.key) {
H.min = H2.min;
}
}
} else {
H.min = H2.min;
}
H.n = H1.n + H2.n;
}
return H;
}
/**
* Removes all elements from this heap.
*
* <p><em>Running time: O(1)</em></p>
*/
public void clear() {
min = null;
n = 0;
}
/**
* Consolidates the trees in the heap by joining trees of equal
* degree until there are no more trees of equal degree in the
* root list.
*
* <p><em>Running time: O(log n) amortized</em></p>
*/
private void consolidate() {
// The magic 45 comes from log base phi of Integer.MAX_VALUE,
// which is the most elements we will ever hold, and log base
// phi represents the largest degree of any root list node.
Node[] A = new Node[45];
// For each root list node look for others of the same degree.
Node start = min;
Node w = min;
do {
Node x = w;
// Because x might be moved, save its sibling now.
Node nextW = w.right;
int d = x.degree;
while (A[d] != null) {
// Make one of the nodes a child of the other.
Node y = A[d];
if (x.key > y.key) {
Node temp = y;
y = x;
x = temp;
}
if (y == start) {
// Because removeMin() arbitrarily assigned the min
// reference, we have to ensure we do not miss the
// end of the root node list.
start = start.right;
}
if (y == nextW) {
// If we wrapped around we need to check for this case.
nextW = nextW.right;
}
// Node y disappears from root list.
y.link(x);
// We've handled this degree, go to next one.
A[d] = null;
d++;
}
// Save this node for later when we might encounter another
// of the same degree.
A[d] = x;
// Move forward through list.
w = nextW;
} while (w != start);
// The node considered to be min may have been changed above.
min = start;
// Find the minimum key again.
for (Node a : A) {
if (a != null && a.key < min.key) {
min = a;
}
}
}
/**
* Decreases the key value for a heap node, given the new value
* to take on. The structure of the heap may be changed, but will
* not be consolidated.
*
* <p><em>Running time: O(1) amortized</em></p>
*
* @param x node to decrease the key of
* @param k new key value for node x
* @throws IllegalArgumentException if k is larger than x.key value.
*/
public void decreaseKey(Node x, double k) {
decreaseKey(x, k, false);
}
/**
* Decrease the key value of a node, or simply bubble it up to the
* top of the heap in preparation for a delete operation.
*
* @param x node to decrease the key of.
* @param k new key value for node x.
* @param delete true if deleting node (in which case, k is ignored).
*/
private void decreaseKey(Node x, double k, boolean delete) {
if (!delete && k > x.key) {
throw new IllegalArgumentException("cannot increase key value");
}
x.key = k;
Node y = x.parent;
if (y != null && (delete || k < y.key)) {
y.cut(x, min);
y.cascadingCut(min);
}
if (delete || k < min.key) {
min = x;
}
}
/**
* Deletes a node from the heap given the reference to the node.
* The trees in the heap will be consolidated, if necessary.
*
* <p><em>Running time: O(log n) amortized</em></p>
*
* @param x node to remove from heap.
*/
public void delete(Node x) {
// make x as small as possible
decreaseKey(x, 0, true);
// remove the smallest, which decreases n also
removeMin();
}
/**
* Tests if the Fibonacci heap is empty or not. Returns true if
* the heap is empty, false otherwise.
*
* <p><em>Running time: O(1)</em></p>
*
* @return true if the heap is empty, false otherwise.
*/
public boolean isEmpty() {
return min == null;
}
/**
* Inserts a new data element into the heap. No heap consolidation
* is performed at this time, the new node is simply inserted into
* the root list of this heap.
*
* <p><em>Running time: O(1)</em></p>
*
* @param x data object to insert into heap.
* @param key key value associated with data object.
* @return newly created heap node.
*/
public Node insert(PathNode x, double key) {
Node node = new Node(x, key);
x.parent = node;
// concatenate node into min list
if (min != null) {
node.right = min;
node.left = min.left;
min.left = node;
node.left.right = node;
if (key < min.key) {
min = node;
}
} else {
min = node;
}
n++;
return node;
}
/**
* Returns the smallest element in the heap. This smallest element
* is the one with the minimum key value.
*
* <p><em>Running time: O(1)</em></p>
*
* @return heap node with the smallest key, or null if empty.
*/
public Node min() {
return min;
}
/**
* Removes the smallest element from the heap. This will cause
* the trees in the heap to be consolidated, if necessary.
*
* <p><em>Running time: O(log n) amortized</em></p>
*
* @return data object with the smallest key.
*/
public PathNode removeMin() {
Node z = min;
if (z == null) {
return null;
}
if (z.child != null) {
z.child.parent = null;
// for each child of z do...
for (Node x = z.child.right; x != z.child; x = x.right) {
// set parent[x] to null
x.parent = null;
}
// merge the children into root list
Node minleft = min.left;
Node zchildleft = z.child.left;
min.left = zchildleft;
zchildleft.right = min;
z.child.left = minleft;
minleft.right = z.child;
}
// remove z from root list of heap
z.left.right = z.right;
z.right.left = z.left;
if (z == z.right) {
min = null;
} else {
min = z.right;
consolidate();
}
// decrement size of heap
n--;
return z.data;
}
/**
* Returns the size of the heap which is measured in the
* number of elements contained in the heap.
*
* <p><em>Running time: O(1)</em></p>
*
* @return number of elements in the heap.
*/
public int size() {
return n;
}
/**
* Implements a node of the Fibonacci heap. It holds the information
* necessary for maintaining the structure of the heap. It acts as
* an opaque handle for the data element, and serves as the key to
* retrieving the data from the heap.
*
* @author Nathan Fiedler
*/
public static class Node {
/**
* Data object for this node, holds the key value.
*/
private PathNode data;
/**
* Key value for this node.
*/
private double key;
/**
* Parent node.
*/
private Node parent;
/**
* First child node.
*/
private Node child;
/**
* Right sibling node.
*/
private Node right;
/**
* Left sibling node.
*/
private Node left;
/**
* Number of children of this node.
*/
private int degree;
/**
* True if this node has had a child removed since this node was
* added to its parent.
*/
private boolean mark;
/**
* Two-arg constructor which sets the data and key fields to the
* passed arguments. It also initializes the right and left pointers,
* making this a circular doubly-linked list.
*
* @param data data object to associate with this node
* @param key key value for this data object
*/
public Node(PathNode data, double key) {
this.data = data;
this.key = key;
right = this;
left = this;
}
/**
* Performs a cascading cut operation. Cuts this from its parent
* and then does the same for its parent, and so on up the tree.
*
* <p><em>Running time: O(log n)</em></p>
*
* @param min the minimum heap node, to which nodes will be added.
*/
public void cascadingCut(Node min) {
Node z = parent;
// if there's a parent...
if (z != null) {
if (mark) {
// it's marked, cut it from parent
z.cut(this, min);
// cut its parent as well
z.cascadingCut(min);
} else {
// if y is unmarked, set it marked
mark = true;
}
}
}
/**
* The reverse of the link operation: removes x from the child
* list of this node.
*
* <p><em>Running time: O(1)</em></p>
*
* @param x child to be removed from this node's child list
* @param min the minimum heap node, to which x is added.
*/
public void cut(Node x, Node min) {
// remove x from childlist and decrement degree
x.left.right = x.right;
x.right.left = x.left;
degree--;
// reset child if necessary
if (degree == 0) {
child = null;
} else if (child == x) {
child = x.right;
}
// add x to root list of heap
x.right = min;
x.left = min.left;
min.left = x;
x.left.right = x;
// set parent[x] to nil
x.parent = null;
// set mark[x] to false
x.mark = false;
}
/**
* Make this node a child of the given parent node. All linkages
* are updated, the degree of the parent is incremented, and
* mark is set to false.
*
* @param parent the new parent node.
*/
public void link(Node parent) {
// Note: putting this code here in Node makes it 7x faster
// because it doesn't have to use generated accessor methods,
// which add a lot of time when called millions of times.
// remove this from its circular list
left.right = right;
right.left = left;
// make this a child of x
this.parent = parent;
if (parent.child == null) {
parent.child = this;
right = this;
left = this;
} else {
left = parent.child;
right = parent.child.right;
parent.child.right = this;
right.left = this;
}
// increase degree[x]
parent.degree++;
// set mark false
mark = false;
}
}
}

View File

@ -19,7 +19,7 @@ package baritone.bot.utils;
import baritone.bot.chunk.CachedWorld;
import baritone.bot.chunk.CachedWorldProvider;
import baritone.bot.pathing.util.PathingBlockType;
import baritone.bot.utils.pathing.PathingBlockType;
import net.minecraft.block.Block;
import net.minecraft.block.BlockFalling;
import net.minecraft.block.BlockLiquid;

View File

@ -15,7 +15,7 @@
* along with Baritone. If not, see <https://www.gnu.org/licenses/>.
*/
package baritone.bot.pathing.util;
package baritone.bot.utils.pathing;
import baritone.bot.utils.Helper;
import net.minecraft.util.math.BlockPos;

View File

@ -15,7 +15,7 @@
* along with Baritone. If not, see <https://www.gnu.org/licenses/>.
*/
package baritone.bot.pathing.util;
package baritone.bot.utils.pathing;
/**
* @author Brady

View File

@ -446,7 +446,7 @@ public class MickeyMine extends ManagerTick {
tempDisable = false;
}
public static class IntegerTuple {//why not use the normal net.minecraft.util.Tuple? Because it doesn't implement equals or hashCode
public static class IntegerTuple {//why not use the normal net.minecraft.pathing.Tuple? Because it doesn't implement equals or hashCode
private final int a;
private final int b;

View File

@ -38,7 +38,7 @@ public class Out {
* This mode signifies that all messages should be sent to the chat.
* This mode should not exclude any messages Additionally, if this is
* set all messages will begin with a file trace:
* "baritone.util.Out:44\tMessage"
* "baritone.pathing.Out:44\tMessage"
*/
Debug,
/**

View File

@ -65,7 +65,7 @@ public class OpenSetsTest {
System.out.println("Testing size " + size);
// Include LinkedListOpenSet even though it's not performant because I absolutely trust that it behaves properly
// I'm really testing the heap implementations against it as the ground truth
IOpenSet[] test = new IOpenSet[]{new BinaryHeapOpenSet(), new LinkedListOpenSet(), new FibonacciHeapOpenSet()};
IOpenSet[] test = new IOpenSet[]{new BinaryHeapOpenSet(), new LinkedListOpenSet()};
for (IOpenSet set : test) {
assertTrue(set.isEmpty());
}