alertmanager/vendor/github.com/cznic/ql/doc.go
2015-10-08 10:51:22 +02:00

2607 lines
90 KiB
Go

// Copyright 2014 The ql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//MAYBE set operations
//MAYBE +=, -=, ...
//TODO verify there's a graceful failure for a 2G+ blob on a 32 bit machine.
// Package ql implements a pure Go embedded SQL database engine.
//
// QL is a member of the SQL family of languages. It is less complex and less
// powerful than SQL (whichever specification SQL is considered to be).
//
// Change list
//
// 2015-06-15: To improve compatibility with other SQL implementations, the
// count built-in aggregate function now accepts * as its argument.
//
// 2015-05-29: The execution planner was rewritten from scratch. It should use
// indices in all places where they were used before plus in some additional
// situations. It is possible to investigate the plan using the newly added
// EXPLAIN statement. The QL tool is handy for such analysis. If the planner
// would have used an index, but no such exists, the plan includes hints in
// form of copy/paste ready CREATE INDEX statements.
//
// The planner is still quite simple and a lot of work on it is yet ahead. You
// can help this process by filling an issue with a schema and query which
// fails to use an index or indices when it should, in your opinion. Bonus
// points for including output of `ql 'explain <query>'`.
//
// 2015-05-09: The grammar of the CREATE INDEX statement now accepts an
// expression list instead of a single expression, which was further limited to
// just a column name or the built-in id(). As a side effect, composite
// indices are now functional. However, the values in the expression-list style
// index are not yet used by other statements or the statement/query planner.
// The composite index is useful while having UNIQUE clause to check for
// semantically duplicate rows before they get added to the table or when such
// a row is mutated using the UPDATE statement and the expression-list style
// index tuple of the row is thus recomputed.
//
// 2015-05-02: The Schema field of table __Table now correctly reflects any
// column constraints and/or defaults. Also, the (*DB).Info method now has that
// information provided in new ColumInfo fields NotNull, Constraint and
// Default.
//
// 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN.
//
// 2015-04-18: Column definitions can now have constraints and defaults.
// Details are discussed in the "Constraints and defaults" chapter below the
// CREATE TABLE statement documentation.
//
// 2015-03-06: New built-in functions formatFloat and formatInt. Thanks
// urandom! (https://github.com/urandom)
//
// 2015-02-16: IN predicate now accepts a SELECT statement. See the updated
// "Predicates" section.
//
// 2015-01-17: Logical operators || and && have now alternative spellings: OR
// and AND (case insensitive). AND was a keyword before, but OR is a new one.
// This can possibly break existing queries. For the record, it's a good idea
// to not use any name appearing in, for example, [7] in your queries as the
// list of QL's keywords may expand for gaining better compatibility with
// existing SQL "standards".
//
// 2015-01-12: ACID guarantees were tightened at the cost of performance in
// some cases. The write collecting window mechanism, a formerly used
// implementation detail, was removed. Inserting rows one by one in a
// transaction is now slow. I mean very slow. Try to avoid inserting single
// rows in a transaction. Instead, whenever possible, perform batch updates of
// tens to, say thousands of rows in a single transaction. See also:
// http://www.sqlite.org/faq.html#q19, the discussed synchronization principles
// involved are the same as for QL, modulo minor details.
//
// Note: A side effect is that closing a DB before exiting an application, both
// for the Go API and through database/sql driver, is no more required,
// strictly speaking. Beware that exiting an application while there is an open
// (uncommitted) transaction in progress means losing the transaction data.
// However, the DB will not become corrupted because of not closing it. Nor
// that was the case before, but formerly failing to close a DB could have
// resulted in losing the data of the last transaction.
//
// 2014-09-21: id() now optionally accepts a single argument - a table name.
//
// 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching
// predicate.
//
// 2014-08-08: The built in functions max and min now accept also time values.
// Thanks opennota! (https://github.com/opennota)
//
// 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows.
//
// 2014-06-02: Indices on id() are now used by SELECT statements.
//
// 2014-05-07: Introduction of Marshal, Schema, Unmarshal.
//
// 2014-04-15:
//
// Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS
// clause to DROP INDEX.
//
// 2014-04-12:
//
// The column Unique in the virtual table __Index was renamed to IsUnique
// because the old name is a keyword. Unfortunately, this is a breaking change,
// sorry.
//
// 2014-04-11: Introduction of LIMIT, OFFSET.
//
// 2014-04-10: Introduction of query rewriting.
//
// 2014-04-07: Introduction of indices.
//
// Building non CGO QL
//
// QL imports zappy[8], a block-based compressor, which speeds up its
// performance by using a C version of the compression/decompression
// algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is
// required, please include 'purego' in the -tags option of go
// {build,get,install}. For example:
//
// $ go get -tags purego github.com/cznic/ql
//
// If zappy was installed before installing QL, it might be necessary to
// rebuild zappy first (or rebuild QL with all its dependencies using the -a
// option):
//
// $ touch "$GOPATH"/src/github.com/cznic/zappy/*.go
// $ go install -tags purego github.com/cznic/zappy
// $ go install github.com/cznic/ql
//
// Notation
//
// The syntax is specified using Extended Backus-Naur Form (EBNF)
//
// Production = production_name "=" [ Expression ] "." .
// Expression = Alternative { "|" Alternative } .
// Alternative = Term { Term } .
// Term = production_name | token [ "…" token ] | Group | Option | Repetition .
// Group = "(" Expression ")" .
// Option = "[" Expression "]" .
// Repetition = "{" Expression "}" .
// Productions are expressions constructed from terms and the following operators, in increasing precedence
//
// | alternation
// () grouping
// [] option (0 or 1 times)
// {} repetition (0 to n times)
//
// Lower-case production names are used to identify lexical tokens.
// Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes
// "" or back quotes ``.
//
// The form a … b represents the set of characters from a through b as
// alternatives. The horizontal ellipsis … is also used elsewhere in the spec
// to informally denote various enumerations or code snippets that are not
// further specified.
//
// QL source code representation
//
// QL source code is Unicode text encoded in UTF-8. The text is not
// canonicalized, so a single accented code point is distinct from the same
// character constructed from combining an accent and a letter; those are
// treated as two code points. For simplicity, this document will use the
// unqualified term character to refer to a Unicode code point in the source
// text.
//
// Each code point is distinct; for instance, upper and lower case letters are
// different characters.
//
// Implementation restriction: For compatibility with other tools, the parser
// may disallow the NUL character (U+0000) in the statement.
//
// Implementation restriction: A byte order mark is disallowed anywhere in QL
// statements.
//
// Characters
//
// The following terms are used to denote specific character classes
//
// newline = . // the Unicode code point U+000A
// unicode_char = . // an arbitrary Unicode code point except newline
// ascii_letter = "a" … "z" | "A" … "Z" .
//
// Letters and digits
//
// The underscore character _ (U+005F) is considered a letter.
//
// letter = ascii_letter | "_" .
// decimal_digit = "0" … "9" .
// octal_digit = "0" … "7" .
// hex_digit = "0" … "9" | "A" … "F" | "a" … "f" .
//
// Lexical elements
//
// Lexical elements are comments, tokens, identifiers, keywords, operators and
// delimiters, integer, floating-point, imaginary, rune and string literals and
// QL parameters.
//
// Comments
//
// There are three forms of comments
//
// Line comments start with the character sequence // or -- and stop at the end
// of the line. A line comment acts like a space.
//
// General comments start with the character sequence /* and continue through
// the character sequence */. A general comment acts like a space.
//
// Comments do not nest.
//
// Tokens
//
// Tokens form the vocabulary of QL. There are four classes: identifiers,
// keywords, operators and delimiters, and literals. White space, formed from
// spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and
// newlines (U+000A), is ignored except as it separates tokens that would
// otherwise combine into a single token.
//
// Semicolons
//
// The formal grammar uses semicolons ";" as separators of QL statements. A
// single QL statement or the last QL statement in a list of statements can
// have an optional semicolon terminator. (Actually a separator from the
// following empty statement.)
//
// Identifiers
//
// Identifiers name entities such as tables or record set columns. An
// identifier is a sequence of one or more letters and digits. The first
// character in an identifier must be a letter.
//
// identifier = letter { letter | decimal_digit } .
//
// For example
//
// price
// _tmp42
// Sales
//
// No identifiers are predeclared, however note that no keyword can be used as
// an identifier. Identifiers starting with two underscores are used for meta
// data virtual tables names. For forward compatibility, users should generally
// avoid using any identifiers starting with two underscores. For example
//
// __Column
// __Column2
// __Index
// __Table
//
// Keywords
//
// The following keywords are reserved and may not be used as identifiers.
//
// ADD COLUMN false int32 ORDER uint16
// ALTER complex128 float int64 OUTER uint32
// AND complex64 float32 int8 RIGHT uint64
// AS CREATE float64 INTO SELECT uint8
// ASC DEFAULT FROM JOIN SET UNIQUE
// BETWEEN DELETE GROUP LEFT string UPDATE
// bigint DESC IF LIMIT TABLE VALUES
// bigrat DISTINCT IN LIKE time WHERE
// blob DROP INDEX NOT true
// bool duration INSERT NULL OR
// BY EXISTS int OFFSET TRUNCATE
// byte EXPLAIN int16 ON uint
//
// Keywords are not case sensitive.
//
// Operators and Delimiters
//
// The following character sequences represent operators, delimiters, and other
// special tokens
//
// + & && == != ( )
// - | || < <= [ ]
// * ^ > >= , ;
// / << = .
// % >> !
// &^
//
// Operators consisting of more than one character are referred to by names in
// the rest of the documentation
//
// andand = "&&" .
// andnot = "&^" .
// lsh = "<<" .
// le = "<=" .
// eq = "==" .
// ge = ">=" .
// neq = "!=" .
// oror = "||" .
// rsh = ">>" .
//
// Integer literals
//
// An integer literal is a sequence of digits representing an integer constant.
// An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for
// hexadecimal. In hexadecimal literals, letters a-f and A-F represent values
// 10 through 15.
//
// int_lit = decimal_lit | octal_lit | hex_lit .
// decimal_lit = ( "1" … "9" ) { decimal_digit } .
// octal_lit = "0" { octal_digit } .
// hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } .
//
// For example
//
// 42
// 0600
// 0xBadFace
// 1701411834604692
//
// Floating-point literals
//
// A floating-point literal is a decimal representation of a floating-point
// constant. It has an integer part, a decimal point, a fractional part, and an
// exponent part. The integer and fractional part comprise decimal digits; the
// exponent part is an e or E followed by an optionally signed decimal
// exponent. One of the integer part or the fractional part may be elided; one
// of the decimal point or the exponent may be elided.
//
// float_lit = decimals "." [ decimals ] [ exponent ] |
// decimals exponent |
// "." decimals [ exponent ] .
// decimals = decimal_digit { decimal_digit } .
// exponent = ( "e" | "E" ) [ "+" | "-" ] decimals .
//
// For example
//
// 0.
// 72.40
// 072.40 // == 72.40
// 2.71828
// 1.e+0
// 6.67428e-11
// 1E6
// .25
// .12345E+5
//
// Imaginary literals
//
// An imaginary literal is a decimal representation of the imaginary part of a
// complex constant. It consists of a floating-point literal or decimal integer
// followed by the lower-case letter i.
//
// imaginary_lit = (decimals | float_lit) "i" .
//
// For example
//
// 0i
// 011i // == 11i
// 0.i
// 2.71828i
// 1.e+0i
// 6.67428e-11i
// 1E6i
// .25i
// .12345E+5i
//
// Rune literals
//
// A rune literal represents a rune constant, an integer value identifying a
// Unicode code point. A rune literal is expressed as one or more characters
// enclosed in single quotes. Within the quotes, any character may appear
// except single quote and newline. A single quoted character represents the
// Unicode value of the character itself, while multi-character sequences
// beginning with a backslash encode values in various formats.
//
// The simplest form represents the single character within the quotes; since
// QL statements are Unicode characters encoded in UTF-8, multiple
// UTF-8-encoded bytes may represent a single integer value. For instance, the
// literal 'a' holds a single byte representing a literal a, Unicode U+0061,
// value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal
// a-dieresis, U+00E4, value 0xe4.
//
// Several backslash escapes allow arbitrary values to be encoded as ASCII
// text. There are four ways to represent the integer value as a numeric
// constant: \x followed by exactly two hexadecimal digits; \u followed by
// exactly four hexadecimal digits; \U followed by exactly eight hexadecimal
// digits, and a plain backslash \ followed by exactly three octal digits. In
// each case the value of the literal is the value represented by the digits in
// the corresponding base.
//
// Although these representations all result in an integer, they have different
// valid ranges. Octal escapes must represent a value between 0 and 255
// inclusive. Hexadecimal escapes satisfy this condition by construction. The
// escapes \u and \U represent Unicode code points so within them some values
// are illegal, in particular those above 0x10FFFF and surrogate halves.
//
// After a backslash, certain single-character escapes represent special
// values
//
// \a U+0007 alert or bell
// \b U+0008 backspace
// \f U+000C form feed
// \n U+000A line feed or newline
// \r U+000D carriage return
// \t U+0009 horizontal tab
// \v U+000b vertical tab
// \\ U+005c backslash
// \' U+0027 single quote (valid escape only within rune literals)
// \" U+0022 double quote (valid escape only within string literals)
//
// All other sequences starting with a backslash are illegal inside rune
// literals.
//
// rune_lit = "'" ( unicode_value | byte_value ) "'" .
// unicode_value = unicode_char | little_u_value | big_u_value | escaped_char .
// byte_value = octal_byte_value | hex_byte_value .
// octal_byte_value = `\` octal_digit octal_digit octal_digit .
// hex_byte_value = `\` "x" hex_digit hex_digit .
// little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit .
// big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit
// hex_digit hex_digit hex_digit hex_digit .
// escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
//
// For example
//
// 'a'
// 'ä'
// '本'
// '\t'
// '\000'
// '\007'
// '\377'
// '\x07'
// '\xff'
// '\u12e4'
// '\U00101234'
// 'aa' // illegal: too many characters
// '\xa' // illegal: too few hexadecimal digits
// '\0' // illegal: too few octal digits
// '\uDFFF' // illegal: surrogate half
// '\U00110000' // illegal: invalid Unicode code point
//
// String literals
//
// A string literal represents a string constant obtained from concatenating a
// sequence of characters. There are two forms: raw string literals and
// interpreted string literals.
//
// Raw string literals are character sequences between back quotes ``. Within
// the quotes, any character is legal except back quote. The value of a raw
// string literal is the string composed of the uninterpreted (implicitly
// UTF-8-encoded) characters between the quotes; in particular, backslashes
// have no special meaning and the string may contain newlines. Carriage
// returns inside raw string literals are discarded from the raw string value.
//
// Interpreted string literals are character sequences between double quotes
// "". The text between the quotes, which may not contain newlines, forms the
// value of the literal, with backslash escapes interpreted as they are in rune
// literals (except that \' is illegal and \" is legal), with the same
// restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn)
// escapes represent individual bytes of the resulting string; all other
// escapes represent the (possibly multi-byte) UTF-8 encoding of individual
// characters. Thus inside a string literal \377 and \xFF represent a single
// byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent
// the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF.
//
// string_lit = raw_string_lit | interpreted_string_lit .
// raw_string_lit = "`" { unicode_char | newline } "`" .
// interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
//
// For example
//
// `abc` // same as "abc"
// `\n
// \n` // same as "\\n\n\\n"
// "\n"
// ""
// "Hello, world!\n"
// "日本語"
// "\u65e5本\U00008a9e"
// "\xff\u00FF"
// "\uD800" // illegal: surrogate half
// "\U00110000" // illegal: invalid Unicode code point
//
// These examples all represent the same string
//
// "日本語" // UTF-8 input text
// `日本語` // UTF-8 input text as a raw literal
// "\u65e5\u672c\u8a9e" // the explicit Unicode code points
// "\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points
// "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes
//
// If the statement source represents a character as two code points, such as a
// combining form involving an accent and a letter, the result will be an error
// if placed in a rune literal (it is not a single code point), and will appear
// as two code points if placed in a string literal.
//
// QL parameters
//
// Literals are assigned their values from the respective text representation
// at "compile" (parse) time. QL parameters provide the same functionality as
// literals, but their value is assigned at execution time from an expression
// list passed to DB.Run or DB.Execute. Using '?' or '$' is completely
// equivalent.
//
// ql_parameter = ( "?" | "$" ) "1" … "9" { "0" … "9" } .
//
// For example
//
// SELECT DepartmentID
// FROM department
// WHERE DepartmentID == ?1
// ORDER BY DepartmentName;
//
// SELECT employee.LastName
// FROM department, employee
// WHERE department.DepartmentID == $1 && employee.LastName > $2
// ORDER BY DepartmentID;
//
// Constants
//
// Keywords 'false' and 'true' (not case sensitive) represent the two possible
// constant values of type bool (also not case sensitive).
//
// Keyword 'NULL' (not case sensitive) represents an untyped constant which is
// assignable to any type. NULL is distinct from any other value of any type.
//
// Types
//
// A type determines the set of values and operations specific to values of
// that type. A type is specified by a type name.
//
// Type = "bigint" // http://golang.org/pkg/math/big/#Int
// | "bigrat" // http://golang.org/pkg/math/big/#Rat
// | "blob" // []byte
// | "bool"
// | "byte" // alias for uint8
// | "complex128"
// | "complex64"
// | "duration" // http://golang.org/pkg/time/#Duration
// | "float" // alias for float64
// | "float32"
// | "float64"
// | "int" // alias for int64
// | "int16"
// | "int32"
// | "int64"
// | "int8"
// | "rune" // alias for int32
// | "string"
// | "time" // http://golang.org/pkg/time/#Time
// | "uint" // alias for uint64
// | "uint16"
// | "uint32"
// | "uint64"
// | "uint8" .
//
// Named instances of the boolean, numeric, and string types are keywords. The
// names are not case sensitive.
//
// Note: The blob type is exchanged between the back end and the API as []byte.
// On 32 bit platforms this limits the size which the implementation can handle
// to 2G.
//
// Boolean types
//
// A boolean type represents the set of Boolean truth values denoted by the
// predeclared constants true and false. The predeclared boolean type is bool.
//
// Duration type
//
// A duration type represents the elapsed time between two instants as an int64
// nanosecond count. The representation limits the largest representable
// duration to approximately 290 years.
//
// Numeric types
//
// A numeric type represents sets of integer or floating-point values. The
// predeclared architecture-independent numeric types are
//
// uint8 the set of all unsigned 8-bit integers (0 to 255)
// uint16 the set of all unsigned 16-bit integers (0 to 65535)
// uint32 the set of all unsigned 32-bit integers (0 to 4294967295)
// uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615)
//
// int8 the set of all signed 8-bit integers (-128 to 127)
// int16 the set of all signed 16-bit integers (-32768 to 32767)
// int32 the set of all signed 32-bit integers (-2147483648 to 2147483647)
// int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
// duration the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
// bigint the set of all integers
//
// bigrat the set of all rational numbers
//
// float32 the set of all IEEE-754 32-bit floating-point numbers
// float64 the set of all IEEE-754 64-bit floating-point numbers
//
// complex64 the set of all complex numbers with float32 real and imaginary parts
// complex128 the set of all complex numbers with float64 real and imaginary parts
//
// byte alias for uint8
// float alias for float64
// int alias for int64
// rune alias for int32
// uint alias for uint64
//
// The value of an n-bit integer is n bits wide and represented using two's
// complement arithmetic.
//
// Conversions are required when different numeric types are mixed in an
// expression or assignment.
//
// String types
//
// A string type represents the set of string values. A string value is a
// (possibly empty) sequence of bytes. The case insensitive keyword for the
// string type is 'string'.
//
// The length of a string (its size in bytes) can be discovered using the
// built-in function len.
//
// Time types
//
// A time type represents an instant in time with nanosecond precision. Each
// time has associated with it a location, consulted when computing the
// presentation form of the time.
//
// Predeclared functions
//
// The following functions are implicitly declared
//
// avg complex contains count date
// day formatTime formatFloat formatInt
// hasPrefix hasSuffix hour hours id
// imag len max min minute
// minutes month nanosecond nanoseconds now
// parseTime real second seconds since
// sum timeIn weekday year yearDay
//
// Expressions
//
// An expression specifies the computation of a value by applying operators and
// functions to operands.
//
// Operands
//
// Operands denote the elementary values in an expression. An operand may be a
// literal, a (possibly qualified) identifier denoting a constant or a function
// or a table/record set column, or a parenthesized expression.
//
// Operand = Literal | QualifiedIdent | "(" Expression ")" .
// Literal = "FALSE" | "NULL" | "TRUE"
// | float_lit | imaginary_lit | int_lit | rune_lit | string_lit
// | ql_parameter .
//
// Qualified identifiers
//
// A qualified identifier is an identifier qualified with a table/record set
// name prefix.
//
// QualifiedIdent = identifier [ "." identifier ] .
//
// For example
//
// invoice.Num // might denote column 'Num' from table 'invoice'
//
// Primary expressions
//
// Primary expression are the operands for unary and binary expressions.
//
// PrimaryExpression = Operand
// | Conversion
// | PrimaryExpression Index
// | PrimaryExpression Slice
// | PrimaryExpression Call .
//
// Call = "(" [ "*" | ExpressionList ] ")" . // * only in count(*).
// Index = "[" Expression "]" .
// Slice = "[" [ Expression ] ":" [ Expression ] "]" .
//
// For example
//
// x
// 2
// (s + ".txt")
// f(3.1415, true)
// s[i : j + 1]
//
// Index expressions
//
// A primary expression of the form
//
// s[x]
//
// denotes the element of a string indexed by x. Its type is byte. The value x
// is called the index. The following rules apply
//
// - The index x must be of integer type except bigint or duration; it is in
// range if 0 <= x < len(s), otherwise it is out of range.
//
// - A constant index must be non-negative and representable by a value of type
// int.
//
// - A constant index must be in range if the string a is a literal.
//
// - If x is out of range at run time, a run-time error occurs.
//
// - s[x] is the byte at index x and the type of s[x] is byte.
//
// If s is NULL or x is NULL then the result is NULL.
//
// Otherwise s[x] is illegal.
//
// Slices
//
// For a string, the primary expression
//
// s[low : high]
//
// constructs a substring. The indices low and high select which elements
// appear in the result. The result has indices starting at 0 and length equal
// to high - low.
//
// For convenience, any of the indices may be omitted. A missing low index
// defaults to zero; a missing high index defaults to the length of the sliced
// operand
//
// s[2:] // same s[2 : len(s)]
// s[:3] // same as s[0 : 3]
// s[:] // same as s[0 : len(s)]
//
// The indices low and high are in range if 0 <= low <= high <= len(a),
// otherwise they are out of range. A constant index must be non-negative and
// representable by a value of type int. If both indices are constant, they
// must satisfy low <= high. If the indices are out of range at run time, a
// run-time error occurs.
//
// Integer values of type bigint or duration cannot be used as indices.
//
// If s is NULL the result is NULL. If low or high is not omitted and is NULL
// then the result is NULL.
//
// Calls
//
// Given an identifier f denoting a predeclared function,
//
// f(a1, a2, … an)
//
// calls f with arguments a1, a2, … an. Arguments are evaluated before the
// function is called. The type of the expression is the result type of f.
//
// complex(x, y)
// len(name)
//
// In a function call, the function value and arguments are evaluated in the
// usual order. After they are evaluated, the parameters of the call are passed
// by value to the function and the called function begins execution. The
// return value of the function is passed by value when the function returns.
//
// Calling an undefined function causes a compile-time error.
//
// Operators
//
// Operators combine operands into expressions.
//
// Expression = Term { ( oror | "OR" ) Term } .
//
// ExpressionList = Expression { "," Expression } [ "," ].
// Factor = PrimaryFactor { ( ge | ">" | le | "<" | neq | eq | "LIKE" ) PrimaryFactor } [ Predicate ] .
// PrimaryFactor = PrimaryTerm { ( "^" | "|" | "-" | "+" ) PrimaryTerm } .
// PrimaryTerm = UnaryExpr { ( andnot | "&" | lsh | rsh | "%" | "/" | "*" ) UnaryExpr } .
// Term = Factor { ( andand | "AND" ) Factor } .
// UnaryExpr = [ "^" | "!" | "-" | "+" ] PrimaryExpression .
//
// Comparisons are discussed elsewhere. For other binary operators, the operand
// types must be identical unless the operation involves shifts or untyped
// constants. For operations involving constants only, see the section on
// constant expressions.
//
// Except for shift operations, if one operand is an untyped constant and the
// other operand is not, the constant is converted to the type of the other
// operand.
//
// The right operand in a shift expression must have unsigned integer type or
// be an untyped constant that can be converted to unsigned integer type. If
// the left operand of a non-constant shift expression is an untyped constant,
// the type of the constant is what it would be if the shift expression were
// replaced by its left operand alone.
//
// Pattern matching
//
// Expressions of the form
//
// expr1 LIKE expr2
//
// yeild a boolean value true if expr2, a regular expression, matches expr1
// (see also [6]). Both expression must be of type string. If any one of the
// expressions is NULL the result is NULL.
//
// Predicates
//
// Predicates are special form expressions having a boolean result type.
//
// Expressions of the form
//
// expr IN ( expr1, expr2, expr3, ... ) // case A
//
// expr NOT IN ( expr1, expr2, expr3, ... ) // case B
//
// are equivalent, including NULL handling, to
//
// expr == expr1 || expr == expr2 || expr == expr3 || ... // case A
//
// expr != expr1 && expr != expr2 && expr != expr3 && ... // case B
//
// The types of involved expressions must be comparable as defined in
// "Comparison operators".
//
// Another form of the IN predicate creates the expression list from a result
// of a SelectStmt.
//
// DELETE FROM t WHERE id() IN (SELECT id_t FROM u WHERE inactive_days > 365)
//
// The SelectStmt must select only one column. The produced expression list is
// resource limited by the memory available to the process. NULL values
// produced by the SelectStmt are ignored, but if all records of the SelectStmt
// are NULL the predicate yields NULL. The select statement is evaluated only
// once. If the type of expr is not the same as the type of the field returned
// by the SelectStmt then the set operation yields false. The type of the
// column returned by the SelectStmt must be one of the simple (non blob-like)
// types:
//
// bool
// byte // alias uint8
// complex128
// complex64
// float // alias float64
// float32
// float64
// int // alias int64
// int16
// int32
// int64
// int8
// rune // alias int32
// string
// uint // alias uint64
// uint16
// uint32
// uint64
// uint8
//
// Expressions of the form
//
// expr BETWEEN low AND high // case A
//
// expr NOT BETWEEN low AND high // case B
//
// are equivalent, including NULL handling, to
//
// expr >= low && expr <= high // case A
//
// expr < low || expr > high // case B
//
// The types of involved expressions must be ordered as defined in "Comparison
// operators".
//
// Predicate = (
// [ "NOT" ] (
// "IN" "(" ExpressionList ")"
// | "IN" "(" SelectStmt [ ";" ] ")"
// | "BETWEEN" PrimaryFactor "AND" PrimaryFactor
// )
// | "IS" [ "NOT" ] "NULL"
// ).
//
// Expressions of the form
//
// expr IS NULL // case A
//
// expr IS NOT NULL // case B
//
// yeild a boolean value true if expr does not have a specific type (case A) or
// if expr has a specific type (case B). In other cases the result is a boolean
// value false.
//
// Operator precedence
//
// Unary operators have the highest precedence.
//
// There are five precedence levels for binary operators. Multiplication
// operators bind strongest, followed by addition operators, comparison
// operators, && (logical AND), and finally || (logical OR)
//
// Precedence Operator
// 5 * / % << >> & &^
// 4 + - | ^
// 3 == != < <= > >=
// 2 &&
// 1 ||
//
// Binary operators of the same precedence associate from left to right. For
// instance, x / y * z is the same as (x / y) * z.
//
// +x
// 23 + 3*x[i]
// x <= f()
// ^a >> b
// f() || g()
// x == y+1 && z > 0
//
// Note that the operator precedence is reflected explicitly by the grammar.
//
// Arithmetic operators
//
// Arithmetic operators apply to numeric values and yield a result of the same
// type as the first operand. The four standard arithmetic operators (+, -, *,
// /) apply to integer, rational, floating-point, and complex types; + also
// applies to strings; +,- also applies to times. All other arithmetic
// operators apply to integers only.
//
// + sum integers, rationals, floats, complex values, strings
// - difference integers, rationals, floats, complex values, times
// * product integers, rationals, floats, complex values
// / quotient integers, rationals, floats, complex values
// % remainder integers
//
// & bitwise AND integers
// | bitwise OR integers
// ^ bitwise XOR integers
// &^ bit clear (AND NOT) integers
//
// << left shift integer << unsigned integer
// >> right shift integer >> unsigned integer
//
// Strings can be concatenated using the + operator
//
// "hi" + string(c) + " and good bye"
//
// String addition creates a new string by concatenating the operands.
//
// A value of type duration can be added to or subtracted from a value of type time.
//
// now() + duration("1h") // time after 1 hour from now
// duration("1h") + now() // time after 1 hour from now
// now() - duration("1h") // time before 1 hour from now
// duration("1h") - now() // illegal, negative times do not exist
//
// Times can subtracted from each other producing a value of type duration.
//
// now() - t0 // elapsed time since t0
// now() + now() // illegal, operator + not defined for times
//
// For two integer values x and y, the integer quotient q = x / y and remainder
// r = x % y satisfy the following relationships
//
// x = q*y + r and |r| < |y|
//
// with x / y truncated towards zero ("truncated division").
//
// x y x / y x % y
// 5 3 1 2
// -5 3 -1 -2
// 5 -3 -1 2
// -5 -3 1 -2
//
// As an exception to this rule, if the dividend x is the most negative value
// for the int type of x, the quotient q = x / -1 is equal to x (and r = 0).
//
// x, q
// int8 -128
// int16 -32768
// int32 -2147483648
// int64 -9223372036854775808
//
// If the divisor is a constant expression, it must not be zero. If the divisor
// is zero at run time, a run-time error occurs. If the dividend is
// non-negative and the divisor is a constant power of 2, the division may be
// replaced by a right shift, and computing the remainder may be replaced by a
// bitwise AND operation
//
// x x / 4 x % 4 x >> 2 x & 3
// 11 2 3 2 3
// -11 -2 -3 -3 1
//
// The shift operators shift the left operand by the shift count specified by
// the right operand. They implement arithmetic shifts if the left operand is a
// signed integer and logical shifts if it is an unsigned integer. There is no
// upper limit on the shift count. Shifts behave as if the left operand is
// shifted n times by 1 for a shift count of n. As a result, x << 1 is the same
// as x*2 and x >> 1 is the same as x/2 but truncated towards negative
// infinity.
//
// For integer operands, the unary operators +, -, and ^ are defined as follows
//
// +x is 0 + x
// -x negation is 0 - x
// ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x
// and m = -1 for signed x
//
// For floating-point and complex numbers, +x is the same as x, while -x is the
// negation of x. The result of a floating-point or complex division by zero is
// not specified beyond the IEEE-754 standard; whether a run-time error occurs
// is implementation-specific.
//
// Whenever any operand of any arithmetic operation, unary or binary, is NULL,
// as well as in the case of the string concatenating operation, the result is
// NULL.
//
// 42*NULL // the result is NULL
// NULL/x // the result is NULL
// "foo"+NULL // the result is NULL
//
// Integer overflow
//
// For unsigned integer values, the operations +, -, *, and << are computed
// modulo 2n, where n is the bit width of the unsigned integer's type. Loosely
// speaking, these unsigned integer operations discard high bits upon overflow,
// and expressions may rely on ``wrap around''.
//
// For signed integers with a finite bit width, the operations +, -, *, and <<
// may legally overflow and the resulting value exists and is deterministically
// defined by the signed integer representation, the operation, and its
// operands. No exception is raised as a result of overflow. An evaluator may
// not optimize an expression under the assumption that overflow does not
// occur. For instance, it may not assume that x < x + 1 is always true.
//
// Integers of type bigint and rationals do not overflow but their handling is
// limited by the memory resources available to the program.
//
// Comparison operators
//
// Comparison operators compare two operands and yield a boolean value.
//
// == equal
// != not equal
// < less
// <= less or equal
// > greater
// >= greater or equal
//
// In any comparison, the first operand must be of same type as is the second
// operand, or vice versa.
//
// The equality operators == and != apply to operands that are comparable. The
// ordering operators <, <=, >, and >= apply to operands that are ordered.
// These terms and the result of the comparisons are defined as follows
//
// - Boolean values are comparable. Two boolean values are equal if they are
// either both true or both false.
//
// - Complex values are comparable. Two complex values u and v are equal if
// both real(u) == real(v) and imag(u) == imag(v).
//
// - Integer values are comparable and ordered, in the usual way. Note that
// durations are integers.
//
// - Floating point values are comparable and ordered, as defined by the
// IEEE-754 standard.
//
// - Rational values are comparable and ordered, in the usual way.
//
// - String values are comparable and ordered, lexically byte-wise.
//
// - Time values are comparable and ordered.
//
// Whenever any operand of any comparison operation is NULL, the result is
// NULL.
//
// Note that slices are always of type string.
//
// Logical operators
//
// Logical operators apply to boolean values and yield a boolean result. The
// right operand is evaluated conditionally.
//
// && conditional AND p && q is "if p then q else false"
// || conditional OR p || q is "if p then true else q"
// ! NOT !p is "not p"
//
// The truth tables for logical operations with NULL values
//
// +-------+-------+---------+---------+
// | p | q | p || q | p && q |
// +-------+-------+---------+---------+
// | true | true | *true | true |
// | true | false | *true | false |
// | true | NULL | *true | NULL |
// | false | true | true | *false |
// | false | false | false | *false |
// | false | NULL | NULL | *false |
// | NULL | true | true | NULL |
// | NULL | false | NULL | false |
// | NULL | NULL | NULL | NULL |
// +-------+-------+---------+---------+
// * indicates q is not evaluated.
//
// +-------+-------+
// | p | !p |
// +-------+-------+
// | true | false |
// | false | true |
// | NULL | NULL |
// +-------+-------+
//
// Conversions
//
// Conversions are expressions of the form T(x) where T is a type and x is an
// expression that can be converted to type T.
//
// Conversion = Type "(" Expression ")" .
//
// A constant value x can be converted to type T in any of these cases:
//
// - x is representable by a value of type T.
//
// - x is a floating-point constant, T is a floating-point type, and x is
// representable by a value of type T after rounding using IEEE 754
// round-to-even rules. The constant T(x) is the rounded value.
//
// - x is an integer constant and T is a string type. The same rule as for
// non-constant x applies in this case.
//
// Converting a constant yields a typed constant as result.
//
// float32(2.718281828) // 2.718281828 of type float32
// complex128(1) // 1.0 + 0.0i of type complex128
// float32(0.49999999) // 0.5 of type float32
// string('x') // "x" of type string
// string(0x266c) // "♬" of type string
// "foo" + "bar" // "foobar"
// int(1.2) // illegal: 1.2 cannot be represented as an int
// string(65.0) // illegal: 65.0 is not an integer constant
//
// A non-constant value x can be converted to type T in any of these cases:
//
// - x has type T.
//
// - x's type and T are both integer or floating point types.
//
// - x's type and T are both complex types.
//
// - x is an integer, except bigint or duration, and T is a string type.
//
// Specific rules apply to (non-constant) conversions between numeric types or
// to and from a string type. These conversions may change the representation
// of x and incur a run-time cost. All other conversions only change the type
// but not the representation of x.
//
// A conversion of NULL to any type yields NULL.
//
// Conversions between numeric types
//
// For the conversion of non-constant numeric values, the following rules
// apply
//
// 1. When converting between integer types, if the value is a signed integer,
// it is sign extended to implicit infinite precision; otherwise it is zero
// extended. It is then truncated to fit in the result type's size. For
// example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The
// conversion always yields a valid value; there is no indication of overflow.
//
// 2. When converting a floating-point number to an integer, the fraction is
// discarded (truncation towards zero).
//
// 3. When converting an integer or floating-point number to a floating-point
// type, or a complex number to another complex type, the result value is
// rounded to the precision specified by the destination type. For instance,
// the value of a variable x of type float32 may be stored using additional
// precision beyond that of an IEEE-754 32-bit number, but float32(x)
// represents the result of rounding x's value to 32-bit precision. Similarly,
// x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does
// not.
//
// In all non-constant conversions involving floating-point or complex values,
// if the result type cannot represent the value the conversion succeeds but
// the result value is implementation-dependent.
//
// Conversions to and from a string type
//
// 1. Converting a signed or unsigned integer value to a string type yields a
// string containing the UTF-8 representation of the integer. Values outside
// the range of valid Unicode code points are converted to "\uFFFD".
//
// string('a') // "a"
// string(-1) // "\ufffd" == "\xef\xbf\xbd"
// string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8"
// string(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5"
//
// 2. Converting a blob to a string type yields a string whose successive bytes
// are the elements of the blob.
//
// string(b /* []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} */) // "hellø"
// string(b /* []byte{} */) // ""
// string(b /* []byte(nil) */) // ""
//
// 3. Converting a value of a string type to a blob yields a blob whose
// successive elements are the bytes of the string.
//
// blob("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
// blob("") // []byte{}
//
// 4. Converting a value of a bigint type to a string yields a string
// containing the decimal decimal representation of the integer.
//
// string(M9) // "2305843009213693951"
//
// 5. Converting a value of a string type to a bigint yields a bigint value
// containing the integer represented by the string value. A prefix of “0x” or
// “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B”
// prefix selects base 2. Otherwise the value is interpreted in base 10. An
// error occurs if the string value is not in any valid format.
//
// bigint("2305843009213693951") // M9
// bigint("0x1ffffffffffffffffffffff") // M10 == 2^89-1
//
// 6. Converting a value of a rational type to a string yields a string
// containing the decimal decimal representation of the rational in the form
// "a/b" (even if b == 1).
//
// string(bigrat(355)/bigrat(113)) // "355/113"
//
// 7. Converting a value of a string type to a bigrat yields a bigrat value
// containing the rational represented by the string value. The string can be
// given as a fraction "a/b" or as a floating-point number optionally followed
// by an exponent. An error occurs if the string value is not in any valid
// format.
//
// bigrat("1.2e-34")
// bigrat("355/113")
//
// 8. Converting a value of a duration type to a string returns a string
// representing the duration in the form "72h3m0.5s". Leading zero units are
// omitted. As a special case, durations less than one second format using a
// smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading
// digit is non-zero. The zero duration formats as 0, with no unit.
//
// string(elapsed) // "1h", for example
//
// 9. Converting a string value to a duration yields a duration represented by
// the string. A duration string is a possibly signed sequence of decimal
// numbers, each with optional fraction and a unit suffix, such as "300ms",
// "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s",
// "m", "h".
//
// duration("1m") // http://golang.org/pkg/time/#Minute
//
// 10. Converting a time value to a string returns the time formatted using the
// format string
//
// "2006-01-02 15:04:05.999999999 -0700 MST"
//
// Order of evaluation
//
// When evaluating the operands of an expression or of function calls,
// operations are evaluated in lexical left-to-right order.
//
// For example, in the evaluation of
//
// g(h(), i()+x[j()], c)
//
// the function calls and evaluation of c happen in the order h(), i(), j(), c.
//
// Floating-point operations within a single expression are evaluated according
// to the associativity of the operators. Explicit parentheses affect the
// evaluation by overriding the default associativity. In the expression x + (y
// + z) the addition y + z is performed before adding x.
//
// Statements
//
// Statements control execution.
//
// Statement = EmptyStmt | AlterTableStmt | BeginTransactionStmt | CommitStmt
// | CreateIndexStmt | CreateTableStmt | DeleteFromStmt | DropIndexStmt
// | DropTableStmt | InsertIntoStmt | RollbackStmt | SelectStmt
// | TruncateTableStmt | UpdateStmt | ExplainStmt.
//
// StatementList = Statement { ";" Statement } .
//
// Empty statements
//
// The empty statement does nothing.
//
// EmptyStmt = .
//
// ALTER TABLE
//
// Alter table statements modify existing tables. With the ADD clause it adds
// a new column to the table. The column must not exist. With the DROP clause
// it removes an existing column from a table. The column must exist and it
// must be not the only (last) column of the table. IOW, there cannot be a
// table with no columns.
//
// AlterTableStmt = "ALTER" "TABLE" TableName ( "ADD" ColumnDef | "DROP" "COLUMN" ColumnName ) .
//
// For example
//
// BEGIN TRANSACTION;
// ALTER TABLE Stock ADD Qty int;
// ALTER TABLE Income DROP COLUMN Taxes;
// COMMIT;
//
// When adding a column to a table with existing data, the constraint clause of
// the ColumnDef cannot be used. Adding a constrained column to an empty table
// is fine.
//
// BEGIN TRANSACTION
//
// Begin transactions statements introduce a new transaction level. Every
// transaction level must be eventually balanced by exactly one of COMMIT or
// ROLLBACK statements. Note that when a transaction is roll-backed because of
// a statement failure then no explicit balancing of the respective BEGIN
// TRANSACTION is statement is required nor permitted.
//
// Failure to properly balance any opened transaction level may cause dead
// locks and/or lose of data updated in the uppermost opened but never properly
// closed transaction level.
//
// BeginTransactionStmt = "BEGIN" "TRANSACTION" .
//
// For example
//
// BEGIN TRANSACTION;
// INSERT INTO foo VALUES (42, 3.14);
// INSERT INTO foo VALUES (-1, 2.78);
// COMMIT;
//
// Mandatory transactions
//
// A database cannot be updated (mutated) outside of a transaction. Statements
// requiring a transaction
//
// ALTER TABLE
// COMMIT
// CREATE INDEX
// CREATE TABLE
// DELETE FROM
// DROP INDEX
// DROP TABLE
// INSERT INTO
// ROLLBACK
// TRUNCATE TABLE
// UPDATE
//
// A database is effectively read only outside of a transaction. Statements not
// requiring a transaction
//
// BEGIN TRANSACTION
// SELECT FROM
//
// COMMIT
//
// The commit statement closes the innermost transaction nesting level. If
// that's the outermost level then the updates to the DB made by the
// transaction are atomically made persistent.
//
// CommitStmt = "COMMIT" .
//
// For example
//
// BEGIN TRANSACTION;
// INSERT INTO AccountA (Amount) VALUES ($1);
// INSERT INTO AccountB (Amount) VALUES (-$1);
// COMMIT;
//
// CREATE INDEX
//
// Create index statements create new indices. Index is a named projection of
// ordered values of a table column to the respective records. As a special
// case the id() of the record can be indexed. Index name must not be the same
// as any of the existing tables and it also cannot be the same as of any
// column name of the table the index is on.
//
// CreateIndexStmt = "CREATE" [ "UNIQUE" ] "INDEX" [ "IF" "NOT" "EXISTS" ]
// IndexName "ON" TableName "(" ExpressionList ")" .
//
// For example
//
// BEGIN TRANSACTION;
// CREATE TABLE Orders (CustomerID int, Date time);
// CREATE INDEX OrdersID ON Orders (id());
// CREATE INDEX OrdersDate ON Orders (Date);
// CREATE TABLE Items (OrderID int, ProductID int, Qty int);
// CREATE INDEX ItemsOrderID ON Items (OrderID);
// COMMIT;
//
// Now certain SELECT statements may use the indices to speed up joins and/or
// to speed up record set filtering when the WHERE clause is used; or the
// indices might be used to improve the performance when the ORDER BY clause is
// present.
//
// The UNIQUE modifier requires the indexed values tuple to be index-wise
// unique or have all values NULL.
//
// The optional IF NOT EXISTS clause makes the statement a no operation if the
// index already exists.
//
// Simple index
//
// A simple index consists of only one expression which must be either a column
// name or the built-in id().
//
// Expression list index
//
// A more complex and more general index is one that consists of more than one
// expression or its single expression does not qualify as a simple index. In
// this case the type of all expressions in the list must be one of the non
// blob-like types.
//
// Note: Blob-like types are blob, bigint, bigrat, time and duration.
//
// CREATE TABLE
//
// Create table statements create new tables. A column definition declares the
// column name and type. Table names and column names are case sensitive.
// Neither a table or an index of the same name may exist in the DB.
//
// CreateTableStmt = "CREATE" "TABLE" [ "IF" "NOT" "EXISTS" ] TableName
// "(" ColumnDef { "," ColumnDef } [ "," ] ")" .
//
// ColumnDef = ColumnName Type [ "NOT" "NULL" | Expression ] [ "DEFAULT" Expression ] .
// ColumnName = identifier .
// TableName = identifier .
//
// For example
//
// BEGIN TRANSACTION;
// CREATE TABLE department (
// DepartmentID int,
// DepartmentName string,
// );
// CREATE TABLE employee (
// LastName string,
// DepartmentID int,
// );
// COMMIT;
//
// The optional IF NOT EXISTS clause makes the statement a no operation if the
// table already exists.
//
// The optional constraint clause has two forms. The first one is found in many
// SQL dialects.
//
// BEGIN TRANSACTION;
// CREATE TABLE department (
// DepartmentID int,
// DepartmentName string NOT NULL,
// );
// COMMIT;
//
// This form prevents the data in column DepartmentName to be NULL.
//
// The second form allows an arbitrary boolean expression to be used to
// validate the column. If the value of the expression is true then the
// validation succeeded. If the value of the expression is false or NULL then
// the validation fails. If the value of the expression is not of type bool an
// error occurs.
//
// BEGIN TRANSACTION;
// CREATE TABLE department (
// DepartmentID int,
// DepartmentName string DepartmentName IN ("HQ", "R/D", "Lab", "HR"),
// );
// COMMIT;
//
// BEGIN TRANSACTION;
// CREATE TABLE t (
// TimeStamp time TimeStamp < now() && since(TimeStamp) < duration("10s"),
// Event string Event != "" && Event like "[0-9]+:[ \t]+.*",
// );
// COMMIT;
//
// The optional DEFAULT clause is an expression which, if present, is
// substituted instead of a NULL value when the colum is assigned a value.
//
// BEGIN TRANSACTION;
// CREATE TABLE department (
// DepartmentID int,
// DepartmentName string DepartmentName IN ("HQ", "R/D", "Lab", "HR") DEFAULT "HQ",
// );
// COMMIT;
//
// Note that the constraint and/or default expressions may refer to other
// columns by name:
//
// BEGIN TRANSACTION;
// CREATE TABLE t (
// a int,
// b int b > a && b < c DEFAULT (a+c)/2,
// c int,
// );
// COMMIT;
//
//
// Constraints and defaults
//
// When a table row is inserted by the INSERT INTO statement or when a table
// row is updated by the UPDATE statement, the order of operations is as
// follows:
//
// 1. The new values of the affected columns are set and the values of all the
// row columns become the named values which can be referred to in default
// expressions evaluated in step 2.
//
// 2. If any row column value is NULL and the DEFAULT clause is present in the
// column's definition, the default expression is evaluated and its value is
// set as the respective column value.
//
// 3. The values, potentially updated, of row columns become the named values
// which can be referred to in constraint expressions evaluated during step 4.
//
// 4. All row columns which definition has the constraint clause present will
// have that constraint checked. If any constraint violation is detected, the
// overall operation fails and no changes to the table are made.
//
// DELETE FROM
//
// Delete from statements remove rows from a table, which must exist.
//
// DeleteFromStmt = "DELETE" "FROM" TableName [ WhereClause ] .
//
// For example
//
// BEGIN TRANSACTION;
// DELETE FROM DepartmentID
// WHERE DepartmentName == "Ponies";
// COMMIT;
//
// If the WHERE clause is not present then all rows are removed and the
// statement is equivalent to the TRUNCATE TABLE statement.
//
// DROP INDEX
//
// Drop index statements remove indices from the DB. The index must exist.
//
// DropIndexStmt = "DROP" "INDEX" [ "IF" "EXISTS" ] IndexName .
// IndexName = identifier .
//
// For example
//
// BEGIN TRANSACTION;
// DROP INDEX ItemsOrderID;
// COMMIT;
//
// The optional IF EXISTS clause makes the statement a no operation if the
// index does not exist.
//
// DROP TABLE
//
// Drop table statements remove tables from the DB. The table must exist.
//
// DropTableStmt = "DROP" "TABLE" [ "IF" "EXISTS" ] TableName .
//
// For example
//
// BEGIN TRANSACTION;
// DROP TABLE Inventory;
// COMMIT;
//
// The optional IF EXISTS clause makes the statement a no operation if the
// table does not exist.
//
// INSERT INTO
//
// Insert into statements insert new rows into tables. New rows come from
// literal data, if using the VALUES clause, or are a result of select
// statement. In the later case the select statement is fully evaluated before
// the insertion of any rows is performed, allowing to insert values calculated
// from the same table rows are to be inserted into. If the ColumnNameList part
// is omitted then the number of values inserted in the row must be the same as
// are columns in the table. If the ColumnNameList part is present then the
// number of values per row must be same as the same number of column names.
// All other columns of the record are set to NULL. The type of the value
// assigned to a column must be the same as is the column's type or the value
// must be NULL.
//
// InsertIntoStmt = "INSERT" "INTO" TableName [ "(" ColumnNameList ")" ] ( Values | SelectStmt ) .
//
// ColumnNameList = ColumnName { "," ColumnName } [ "," ] .
// Values = "VALUES" "(" ExpressionList ")" { "," "(" ExpressionList ")" } [ "," ] .
//
// For example
//
// BEGIN TRANSACTION;
// INSERT INTO department (DepartmentID) VALUES (42);
//
// INSERT INTO department (
// DepartmentName,
// DepartmentID,
// )
// VALUES (
// "R&D",
// 42,
// );
//
// INSERT INTO department VALUES
// (42, "R&D"),
// (17, "Sales"),
// ;
// COMMIT;
//
// BEGIN TRANSACTION;
// INSERT INTO department (DepartmentName, DepartmentID)
// SELECT DepartmentName+"/headquarters", DepartmentID+1000
// FROM department;
// COMMIT;
//
// If any of the columns of the table were defined using the optional
// constraints clause or the optional defaults clause then those are processed
// on a per row basis. The details are discussed in the "Constraints and
// defaults" chapter below the CREATE TABLE statement documentation.
//
// Explain statement
//
// Explain statement produces a recordset consisting of lines of text which
// describe the execution plan of a statement, if any.
//
// ExplainStmt = "EXPLAIN" Statement .
//
// For example, the QL tool treats the explain statement specially and outputs
// the joined lines:
//
// $ ql 'create table t(i int); create table u(j int)'
// $ ql 'explain select * from t, u where t.i > 42 && u.j < 314'
// ┌Compute Cartesian product of
// │ ┌Iterate all rows of table "t"
// │ └Output field names ["i"]
// │ ┌Iterate all rows of table "u"
// │ └Output field names ["j"]
// └Output field names ["t.i" "u.j"]
// ┌Filter on t.i > 42 && u.j < 314
// │Possibly useful indices
// │CREATE INDEX xt_i ON t(i);
// │CREATE INDEX xu_j ON u(j);
// └Output field names ["t.i" "u.j"]
// $ ql 'CREATE INDEX xt_i ON t(i); CREATE INDEX xu_j ON u(j);'
// $ ql 'explain select * from t, u where t.i > 42 && u.j < 314'
// ┌Compute Cartesian product of
// │ ┌Iterate all rows of table "t" using index "xt_i" where i > 42
// │ └Output field names ["i"]
// │ ┌Iterate all rows of table "u" using index "xu_j" where j < 314
// │ └Output field names ["j"]
// └Output field names ["t.i" "u.j"]
// $ ql 'explain select * from t where i > 12 and i between 10 and 20 and i < 42'
// ┌Iterate all rows of table "t" using index "xt_i" where i > 12 && i <= 20
// └Output field names ["i"]
// $
//
// The explanation may aid in uderstanding how a statement/query would be
// executed and if indices are used as expected - or which indices may possibly
// improve the statement performance. The create index statements above were
// directly copy/pasted in the terminal from the suggestions provided by the
// filter recordset pipeline part returned by the explain statement.
//
// If the statement has nothing special in its plan, the result is the original
// statement.
//
// $ ql 'explain delete from t where 42 < i'
// DELETE FROM t WHERE i > 42;
// $
//
// To get an explanation of the select statement of the IN predicate, use the EXPLAIN
// statement with that particular select statement.
//
// $ ql 'explain select * from t where i in (select j from u where j > 0)'
// ┌Iterate all rows of table "t"
// └Output field names ["i"]
// ┌Filter on i IN (SELECT j FROM u WHERE j > 0;)
// └Output field names ["i"]
// $ ql 'explain select j from u where j > 0'
// ┌Iterate all rows of table "u" using index "xu_j" where j > 0
// └Output field names ["j"]
// $
//
// ROLLBACK
//
// The rollback statement closes the innermost transaction nesting level
// discarding any updates to the DB made by it. If that's the outermost level
// then the effects on the DB are as if the transaction never happened.
//
// RollbackStmt = "ROLLBACK" .
//
// For example
//
// // First statement list
// BEGIN TRANSACTION
// SELECT * INTO tmp FROM foo;
// INSERT INTO tmp SELECT * from bar;
// SELECT * from tmp;
//
// The (temporary) record set from the last statement is returned and can be
// processed by the client.
//
// // Second statement list
// ROLLBACK;
//
// In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a
// more complex operation.
//
// SELECT FROM
//
// Select from statements produce recordsets. The optional DISTINCT modifier
// ensures all rows in the result recordset are unique. Either all of the
// resulting fields are returned ('*') or only those named in FieldList.
//
// RecordSetList is a list of table names or parenthesized select statements,
// optionally (re)named using the AS clause.
//
// The result can be filtered using a WhereClause and orderd by the OrderBy
// clause.
//
// SelectStmt = "SELECT" [ "DISTINCT" ] ( "*" | FieldList ) "FROM" RecordSetList
// [ JoinClause ] [ WhereClause ] [ GroupByClause ] [ OrderBy ] [ Limit ] [ Offset ].
//
// JoinClause = ( "LEFT" | "RIGHT" | "FULL" ) [ "OUTER" ] "JOIN" RecordSet "ON" Expression .
//
// RecordSet = ( TableName | "(" SelectStmt [ ";" ] ")" ) [ "AS" identifier ] .
// RecordSetList = RecordSet { "," RecordSet } [ "," ] .
//
// For example
//
// SELECT * FROM Stock;
//
// SELECT DepartmentID
// FROM department
// WHERE DepartmentID == 42
// ORDER BY DepartmentName;
//
// SELECT employee.LastName
// FROM department, employee
// WHERE department.DepartmentID == employee.DepartmentID
// ORDER BY DepartmentID;
//
// If Recordset is a nested, parenthesized SelectStmt then it must be given a
// name using the AS clause if its field are to be accessible in expressions.
//
// SELECT a.b, c.d
// FROM
// x AS a,
// (
// SELECT * FROM y;
// ) AS c
// WHERE a.e > c.e;
//
// Fields naming rules
//
// A field is an named expression. Identifiers, not used as a type in
// conversion or a function name in the Call clause, denote names of (other)
// fields, values of which should be used in the expression.
//
// Field = Expression [ "AS" identifier ] .
//
// The expression can be named using the AS clause. If the AS clause is not
// present and the expression consists solely of a field name, then that field
// name is used as the name of the resulting field. Otherwise the field is
// unnamed.
//
// For example
//
// SELECT 314, 42 as AUQLUE, DepartmentID, DepartmentID+1000, LastName as Name from employee;
// // Fields are []string{"", "AUQLUE", "DepartmentID", "", "Name"}
//
// The SELECT statement can optionally enumerate the desired/resulting fields
// in a list.
//
// FieldList = Field { "," Field } [ "," ] .
//
// No two identical field names can appear in the list.
//
// SELECT DepartmentID, LastName, DepartmentID from employee;
// // duplicate field name "DepartmentID"
//
// SELECT DepartmentID, LastName, DepartmentID as ID2 from employee;
// // works
//
// When more than one record set is used in the FROM clause record set list,
// the result record set field names are rewritten to be qualified using
// the record set names.
//
// SELECT * FROM employee, department;
// // Fields are []string{"employee.LastName", "employee.DepartmentID", "department.DepartmentID", "department.DepartmentName"
//
// If a particular record set doesn't have a name, its respective fields became
// unnamed.
//
// SELECT * FROM employee as e, ( SELECT * FROM department);
// // Fields are []string{"e.LastName", "e.DepartmentID", "", ""
//
// SELECT * FROM employee AS e, ( SELECT * FROM department) AS d;
// // Fields are []string{"e.LastName", "e.DepartmentID", "d.DepartmentID", "d.DepartmentName"
//
// Outer joins
//
// The optional JOIN clause, for example
//
// SELECT *
// FROM a
// LEFT OUTER JOIN b ON expr;
//
// is mostly equal to
//
// SELECT *
// FROM a, b
// WHERE expr;
//
// except that the rows from a which, when they appear in the cross join, never
// made expr to evaluate to true, are combined with a virtual row from b,
// containing all nulls, and added to the result set. For the RIGHT JOIN
// variant the discussed rules are used for rows from b not satisfying expr ==
// true and the virtual, all-null row "comes" from a. The FULL JOIN adds the
// respective rows which would be otherwise provided by the separate executions
// of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN
// discussion please see the Wikipedia article at [10].
//
// Recordset ordering
//
// Resultins rows of a SELECT statement can be optionally ordered by the ORDER
// BY clause. Collating proceeds by considering the expressions in the
// expression list left to right until a collating order is determined. Any
// possibly remaining expressions are not evaluated.
//
// OrderBy = "ORDER" "BY" ExpressionList [ "ASC" | "DESC" ] .
//
// All of the expression values must yield an ordered type or NULL. Ordered
// types are defined in "Comparison operators". Collating of elements having a
// NULL value is different compared to what the comparison operators yield in
// expression evaluation (NULL result instead of a boolean value).
//
// Below, T denotes a non NULL value of any QL type.
//
// NULL < T
//
// NULL collates before any non NULL value (is considered smaller than T).
//
// NULL == NULL
//
// Two NULLs have no collating order (are considered equal).
//
// Recordset filtering
//
// The WHERE clause restricts records considered by some statements, like
// SELECT FROM, DELETE FROM, or UPDATE.
//
// expression value consider the record
// ---------------- -------------------
// true yes
// false or NULL no
//
// It is an error if the expression evaluates to a non null value of non bool
// type.
//
// WhereClause = "WHERE" Expression .
//
// Recordset grouping
//
// The GROUP BY clause is used to project rows having common values into a
// smaller set of rows.
//
// For example
//
// SELECT Country, sum(Qty) FROM Sales GROUP BY Country;
//
// SELECT Country, Product FROM Sales GROUP BY Country, Product;
//
// SELECT DISTINCT Country, Product FROM Sales;
//
// Using the GROUP BY without any aggregate functions in the selected fields is
// in certain cases equal to using the DISTINCT modifier. The last two examples
// above produce the same resultsets.
//
// GroupByClause = "GROUP BY" ColumnNameList .
//
// Skipping records
//
// The optional OFFSET clause allows to ignore first N records. For example
//
// SELECT * FROM t OFFSET 10;
//
// The above will produce only rows 11, 12, ... of the record set, if they
// exist. The value of the expression must a non negative integer, but not
// bigint or duration.
//
// Offset = "OFFSET" Expression .
//
// Limiting the result set size
//
// The optional LIMIT clause allows to ignore all but first N records. For
// example
//
// SELECT * FROM t LIMIT 10;
//
// The above will return at most the first 10 records of the record set. The
// value of the expression must a non negative integer, but not bigint or
// duration.
//
// Limit = "Limit" Expression .
//
// The LIMIT and OFFSET clauses can be combined. For example
//
// SELECT * FROM t LIMIT 5 OFFSET 3;
//
// Considering table t has, say 10 records, the above will produce only records
// 4 - 8.
//
// #1: Ignore 1/3
// #2: Ignore 2/3
// #3: Ignore 3/3
// #4: Return 1/5
// #5: Return 2/5
// #6: Return 3/5
// #7: Return 4/5
// #8: Return 5/5
//
// After returning record #8, no more result rows/records are computed.
//
// Select statement evaluation order
//
// 1. The FROM clause is evaluated, producing a Cartesian product of its source
// record sets (tables or nested SELECT statements).
//
// 2. If present, the JOIN cluase is evaluated on the result set of the
// previous evaluation and the recordset specified by the JOIN clause. (...
// JOIN Recordset ON ...)
//
// 3. If present, the WHERE clause is evaluated on the result set of the
// previous evaluation.
//
// 4. If present, the GROUP BY clause is evaluated on the result set of the
// previous evaluation(s).
//
// 5. The SELECT field expressions are evaluated on the result set of the
// previous evaluation(s).
//
// 6. If present, the DISTINCT modifier is evaluated on the result set of the
// previous evaluation(s).
//
// 7. If present, the ORDER BY clause is evaluated on the result set of the
// previous evaluation(s).
//
// 8. If present, the OFFSET clause is evaluated on the result set of the
// previous evaluation(s). The offset expression is evaluated once for the
// first record produced by the previous evaluations.
//
// 9. If present, the LIMIT clause is evaluated on the result set of the
// previous evaluation(s). The limit expression is evaluated once for the first
// record produced by the previous evaluations.
//
//
// TRUNCATE TABLE
//
// Truncate table statements remove all records from a table. The table must
// exist.
//
// TruncateTableStmt = "TRUNCATE" "TABLE" TableName .
//
// For example
//
// BEGIN TRANSACTION
// TRUNCATE TABLE department;
// COMMIT;
//
// UPDATE
//
// Update statements change values of fields in rows of a table.
//
// UpdateStmt = "UPDATE" TableName [ "SET" ] AssignmentList [ WhereClause ] .
//
// AssignmentList = Assignment { "," Assignment } [ "," ] .
// Assignment = ColumnName "=" Expression .
//
// For example
//
// BEGIN TRANSACTION
// UPDATE department
// DepartmentName = DepartmentName + " dpt.",
// DepartmentID = 1000+DepartmentID,
// WHERE DepartmentID < 1000;
// COMMIT;
//
// Note: The SET clause is optional.
//
// If any of the columns of the table were defined using the optional
// constraints clause or the optional defaults clause then those are processed
// on a per row basis. The details are discussed in the "Constraints and
// defaults" chapter below the CREATE TABLE statement documentation.
//
// System Tables
//
// To allow to query for DB meta data, there exist specially named tables, some
// of them being virtual.
//
// Note: Virtual system tables may have fake table-wise unique but meaningless
// and unstable record IDs. Do not apply the built-in id() to any system table.
//
// Tables Table
//
// The table __Table lists all tables in the DB. The schema is
//
// CREATE TABLE __Table (Name string, Schema string);
//
// The Schema column returns the statement to (re)create table Name. This table
// is virtual.
//
// Columns Table
//
// The table __Colum lists all columns of all tables in the DB. The schema is
//
// CREATE TABLE __Column (TableName string, Ordinal int, Name string, Type string);
//
// The Ordinal column defines the 1-based index of the column in the record.
// This table is virtual.
//
// Columns2 Table
//
// The table __Colum2 lists all columns of all tables in the DB which have the
// constraint NOT NULL or which have a constraint expression defined or which
// have a default expression defined. The schema is
//
// CREATE TABLE __Column2 (TableName string, Name string, NotNull bool, ConstraintExpr string, DefaultExpr string)
//
// It's possible to obtain a consolidated recordset for all properties of all
// DB columns using
//
// SELECT
// __Column.TableName, __Column.Ordinal, __Column.Name, __Column.Type,
// __Column2.NotNull, __Column2.ConstraintExpr, __Column2.DefaultExpr,
// FROM __Column
// LEFT JOIN __Column2
// ON __Column.TableName == __Column2.TableName && __Column.Name == __Column2.Name
// ORDER BY __Column.TableName, __Column.Ordinal;
//
// The Name column is the column name in TableName.
//
// Indices table
//
// The table __Index lists all indices in the DB. The schema is
//
// CREATE TABLE __Index (TableName string, ColumnName string, Name string, IsUnique bool);
//
// The IsUnique columns reflects if the index was created using the optional
// UNIQUE clause. This table is virtual.
//
// Built-in functions
//
// Built-in functions are predeclared.
//
// Average
//
// The built-in aggregate function avg returns the average of values of an
// expression. Avg ignores NULL values, but returns NULL if all values of a
// column are NULL or if avg is applied to an empty record set.
//
// func avg(e numeric) typeof(e)
//
// The column values must be of a numeric type.
//
// SELECT salesperson, avg(sales) FROM salesforce GROUP BY salesperson;
//
// Contains
//
// The built-in function contains returns true if substr is within s.
//
// func contains(s, substr string) bool
//
// If any argument to contains is NULL the result is NULL.
//
// Count
//
// The built-in aggregate function count returns how many times an expression
// has a non NULL values or the number of rows in a record set. Note: count()
// returns 0 for an empty record set.
//
// func count() int // The number of rows in a record set.
// func count(*) int // Equivalent to count().
// func count(e expression) int // The number of cases where the expression value is not NULL.
//
// For example
//
// SELECT count() FROM department; // # of rows
//
// SELECT count(*) FROM department; // # of rows
//
// SELECT count(DepartmentID) FROM department; // # of records with non NULL field DepartmentID
//
// SELECT count()-count(DepartmentID) FROM department; // # of records with NULL field DepartmentID
//
// SELECT count(foo+bar*3) AS y FROM t; // # of cases where 'foo+bar*3' is non NULL
//
// Date
//
// Date returns the time corresponding to
//
// yyyy-mm-dd hh:mm:ss + nsec nanoseconds
//
// in the appropriate zone for that time in the given location.
//
// The month, day, hour, min, sec, and nsec values may be outside their usual
// ranges and will be normalized during the conversion. For example, October 32
// converts to November 1.
//
// A daylight savings time transition skips or repeats times. For example, in
// the United States, March 13, 2011 2:15am never occurred, while November 6,
// 2011 1:15am occurred twice. In such cases, the choice of time zone, and
// therefore the time, is not well-defined. Date returns a time that is correct
// in one of the two zones involved in the transition, but it does not
// guarantee which.
//
// func date(year, month, day, hour, min, sec, nsec int, loc string) time
//
// A location maps time instants to the zone in use at that time. Typically,
// the location represents the collection of time offsets in use in a
// geographical area, such as "CEST" and "CET" for central Europe. "local"
// represents the system's local time zone. "UTC" represents Universal
// Coordinated Time (UTC).
//
// The month specifies a month of the year (January = 1, ...).
//
// If any argument to date is NULL the result is NULL.
//
// Day
//
// The built-in function day returns the day of the month specified by t.
//
// func day(t time) int
//
// If the argument to day is NULL the result is NULL.
//
// Format time
//
// The built-in function formatTime returns a textual representation of the
// time value formatted according to layout, which defines the format by
// showing how the reference time,
//
// Mon Jan 2 15:04:05 -0700 MST 2006
//
// would be displayed if it were the value; it serves as an example of the
// desired output. The same display rules will then be applied to the time
// value.
//
// func formatTime(t time, layout string) string
//
// If any argument to formatTime is NULL the result is NULL.
//
// NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent
// on the time zone of the machine the function is run on. For example, if the
// t value is in "CET", but the machine is in "ACDT", instead of "CET" the
// result is "+0100". This is the same what Go (time.Time).String() returns and
// in fact formatTime directly calls t.String().
//
// formatTime(date(2006, 1, 2, 15, 4, 5, 999999999, "CET"))
//
// returns
//
// 2006-01-02 15:04:05.999999999 +0100 CET
//
// on a machine in the CET time zone, but may return
//
// 2006-01-02 15:04:05.999999999 +0100 +0100
//
// on a machine in the ACDT zone. The time value is in both cases the same so
// its ordering and comparing is correct. Only the display value can differ.
//
// Format numbers
//
// The built-in functions formatFloat and formatInt format numbers
// to strings using go's number format functions in the `strconv` package. For
// all three functions, only the first argument is mandatory. The default values
// of the rest are shown in the examples. If the first argument is NULL, the
// result is NULL.
//
// formatFloat(43.2[, 'g', -1, 64]) string
//
// returns
//
// "43.2"
//
// formatInt(-42[, 10]) string
//
// returns
//
// "-42"
//
// formatInt(uint32(42)[, 10]) string
//
// returns
//
// "42"
//
// Unlike the `strconv` equivalent, the formatInt function handles all integer
// types, both signed and unsigned.
//
// HasPrefix
//
// The built-in function hasPrefix tests whether the string s begins with prefix.
//
// func hasPrefix(s, prefix string) bool
//
// If any argument to hasPrefix is NULL the result is NULL.
//
// HasSuffix
//
// The built-in function hasSuffix tests whether the string s ends with suffix.
//
// func hasSuffix(s, suffix string) bool
//
// If any argument to hasSuffix is NULL the result is NULL.
//
// Hour
//
// The built-in function hour returns the hour within the day specified by t,
// in the range [0, 23].
//
// func hour(t time) int
//
// If the argument to hour is NULL the result is NULL.
//
// Hours
//
// The built-in function hours returns the duration as a floating point number
// of hours.
//
// func hours(d duration) float
//
// If the argument to hours is NULL the result is NULL.
//
// Record id
//
// The built-in function id takes zero or one arguments. If no argument is
// provided, id() returns a table-unique automatically assigned numeric
// identifier of type int. Ids of deleted records are not reused unless the DB
// becomes completely empty (has no tables).
//
// func id() int
//
// For example
//
// SELECT id(), LastName
// FROM employee;
//
// If id() without arguments is called for a row which is not a table record
// then the result value is NULL.
//
// For example
//
// SELECT id(), e.LastName, e.DepartmentID, d.DepartmentID
// FROM
// employee AS e,
// department AS d,
// WHERE e.DepartmentID == d.DepartmentID;
// // Will always return NULL in first field.
//
// SELECT e.ID, e.LastName, e.DepartmentID, d.DepartmentID
// FROM
// (SELECT id() AS ID, LastName, DepartmentID FROM employee) AS e,
// department as d,
// WHERE e.DepartmentID == d.DepartmentID;
// // Will work.
//
// If id() has one argument it must be a table name of a table in a cross join.
//
// For example
//
// SELECT *
// FROM foo, bar
// WHERE bar.fooID == id(foo)
// ORDER BY id(foo);
//
// Length
//
// The built-in function len takes a string argument and returns the lentgh of
// the string in bytes.
//
// func len(s string) int
//
// The expression len(s) is constant if s is a string constant.
//
// If the argument to len is NULL the result is NULL.
//
// Maximum
//
// The built-in aggregate function max returns the largest value of an
// expression in a record set. Max ignores NULL values, but returns NULL if
// all values of a column are NULL or if max is applied to an empty record set.
//
// func max(e expression) typeof(e) // The largest value of the expression.
//
// The expression values must be of an ordered type.
//
// For example
//
// SELECT department, max(sales) FROM t GROUP BY department;
//
// Minimum
//
// The built-in aggregate function min returns the smallest value of an
// expression in a record set. Min ignores NULL values, but returns NULL if
// all values of a column are NULL or if min is applied to an empty record set.
//
// func min(e expression) typeof(e) // The smallest value of the expression.
//
// For example
//
// SELECT a, min(b) FROM t GROUP BY a;
//
// The column values must be of an ordered type.
//
// Minute
//
// The built-in function minute returns the minute offset within the hour
// specified by t, in the range [0, 59].
//
// func minute(t time) int
//
// If the argument to minute is NULL the result is NULL.
//
// Minutes
//
// The built-in function minutes returns the duration as a floating point
// number of minutes.
//
// func minutes(d duration) float
//
// If the argument to minutes is NULL the result is NULL.
//
// Month
//
// The built-in function month returns the month of the year specified by t
// (January = 1, ...).
//
// func month(t time) int
//
// If the argument to month is NULL the result is NULL.
//
// Nanosecond
//
// The built-in function nanosecond returns the nanosecond offset within the
// second specified by t, in the range [0, 999999999].
//
// func nanosecond(t time) int
//
// If the argument to nanosecond is NULL the result is NULL.
//
// Nanoseconds
//
// The built-in function nanoseconds returns the duration as an integer
// nanosecond count.
//
// func nanoseconds(d duration) float
//
// If the argument to nanoseconds is NULL the result is NULL.
//
// Now
//
// The built-in function now returns the current local time.
//
// func now() time
//
// Parse time
//
// The built-in function parseTime parses a formatted string and returns the
// time value it represents. The layout defines the format by showing how the
// reference time,
//
// Mon Jan 2 15:04:05 -0700 MST 2006
//
// would be interpreted if it were the value; it serves as an example of the
// input format. The same interpretation will then be made to the input string.
//
// Elements omitted from the value are assumed to be zero or, when zero is
// impossible, one, so parsing "3:04pm" returns the time corresponding to Jan
// 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is
// before the zero Time). Years must be in the range 0000..9999. The day of the
// week is checked for syntax but it is otherwise ignored.
//
// In the absence of a time zone indicator, parseTime returns a time in UTC.
//
// When parsing a time with a zone offset like -0700, if the offset corresponds
// to a time zone used by the current location, then parseTime uses that
// location and zone in the returned time. Otherwise it records the time as
// being in a fabricated location with time fixed at the given zone offset.
//
// When parsing a time with a zone abbreviation like MST, if the zone
// abbreviation has a defined offset in the current location, then that offset
// is used. The zone abbreviation "UTC" is recognized as UTC regardless of
// location. If the zone abbreviation is unknown, Parse records the time as
// being in a fabricated location with the given zone abbreviation and a zero
// offset. This choice means that such a time can be parses and reformatted
// with the same layout losslessly, but the exact instant used in the
// representation will differ by the actual zone offset. To avoid such
// problems, prefer time layouts that use a numeric zone offset.
//
// func parseTime(layout, value string) time
//
// If any argument to parseTime is NULL the result is NULL.
//
// Second
//
// The built-in function second returns the second offset within the minute
// specified by t, in the range [0, 59].
//
// func second(t time) int
//
// If the argument to second is NULL the result is NULL.
//
// Seconds
//
// The built-in function seconds returns the duration as a floating point
// number of seconds.
//
// func seconds(d duration) float
//
// If the argument to seconds is NULL the result is NULL.
//
// Since
//
// The built-in function since returns the time elapsed since t. It is
// shorthand for now()-t.
//
// func since(t time) duration
//
// If the argument to since is NULL the result is NULL.
//
// Sum
//
// The built-in aggregate function sum returns the sum of values of an
// expression for all rows of a record set. Sum ignores NULL values, but
// returns NULL if all values of a column are NULL or if sum is applied to an
// empty record set.
//
// func sum(e expression) typeof(e) // The sum of the values of the expression.
//
// The column values must be of a numeric type.
//
// SELECT salesperson, sum(sales) FROM salesforce GROUP BY salesperson;
//
// Time in a specific zone
//
// The built-in function timeIn returns t with the location information set to
// loc. For discussion of the loc argument please see date().
//
// func timeIn(t time, loc string) time
//
// If any argument to timeIn is NULL the result is NULL.
//
// Weekday
//
// The built-in function weekday returns the day of the week specified by t.
// Sunday == 0, Monday == 1, ...
//
// func weekday(t time) int
//
// If the argument to weekday is NULL the result is NULL.
//
// Year
//
// The built-in function year returns the year in which t occurs.
//
// func year(t time) int
//
// If the argument to year is NULL the result is NULL.
//
// Year day
//
// The built-in function yearDay returns the day of the year specified by t, in
// the range [1,365] for non-leap years, and [1,366] in leap years.
//
// func yearDay(t time) int
//
// If the argument to yearDay is NULL the result is NULL.
//
// Manipulating complex numbers
//
// Three functions assemble and disassemble complex numbers. The built-in
// function complex constructs a complex value from a floating-point real and
// imaginary part, while real and imag extract the real and imaginary parts of
// a complex value.
//
// complex(realPart, imaginaryPart floatT) complexT
// real(complexT) floatT
// imag(complexT) floatT
//
// The type of the arguments and return value correspond. For complex, the two
// arguments must be of the same floating-point type and the return type is the
// complex type with the corresponding floating-point constituents: complex64
// for float32, complex128 for float64. The real and imag functions together
// form the inverse, so for a complex value z, z == complex(real(z), imag(z)).
//
// If the operands of these functions are all constants, the return value is a
// constant.
//
// complex(2, -2) // complex128
// complex(1.0, -1.4) // complex128
// float32(math.Cos(math.Pi/2)) // float32
// complex(5, float32(-x)) // complex64
// imag(b) // float64
// real(complex(5, float32(-x))) // float32
//
// If any argument to any of complex, real, imag functions is NULL the result
// is NULL.
//
// Size guarantees
//
// For the numeric types, the following sizes are guaranteed
//
// type size in bytes
//
// byte, uint8, int8 1
// uint16, int16 2
// uint32, int32, float32 4
// uint, uint64, int, int64, float64, complex64 8
// complex128 16
//
// License
//
// Portions of this specification page are modifications based on work[2]
// created and shared by Google[3] and used according to terms described in the
// Creative Commons 3.0 Attribution License[4].
//
// This specification is licensed under the Creative Commons Attribution 3.0
// License, and code is licensed under a BSD license[5].
//
// References
//
// Links from the above documentation
//
// [1]: http://golang.org/ref/spec#Notation
// [2]: http://golang.org/ref/spec
// [3]: http://code.google.com/policies.html
// [4]: http://creativecommons.org/licenses/by/3.0/
// [5]: http://golang.org/LICENSE
// [6]: http://golang.org/pkg/regexp/#Regexp.MatchString
// [7]: http://developer.mimer.com/validator/sql-reserved-words.tml
// [8]: http://godoc.org/github.com/cznic/zappy
// [9]: http://www.w3schools.com/sql/sql_default.asp
// [10]: http://en.wikipedia.org/wiki/Join_(SQL)#Outer_join
//
// Implementation details
//
// This section is not part of the specification.
//
// Indices
//
// WARNING: The implementation of indices is new and it surely needs more time
// to become mature.
//
// Indices are used currently used only by the WHERE clause. The following
// expression patterns of 'WHERE expression' are recognized and trigger index
// use.
//
// - WHERE c // For bool typed indexed column c
// - WHERE !c // For bool typed indexed column c
// - WHERE c relOp constExpr // For indexed column c
// - WHERE c relOp parameter // For indexed column c
// - WHERE parameter relOp c // For indexed column c
// - WHERE constExpr relOp c // For indexed column c
//
// The relOp is one of the relation operators <, <=, ==, >=, >. For the
// equality operator both operands must be of comparable types. For all other
// operators both operands must be of ordered types. The constant expression is
// a compile time constant expression. Some constant folding is still a TODO.
// Parameter is a QL parameter ($1 etc.).
//
// Query rewriting
//
// Consider tables t and u, both with an indexed field f. The WHERE expression
// doesn't comply with the above simple detected cases.
//
// SELECT * FROM t, u WHERE t.f < x && u.f < y;
//
// However, such query is now automatically rewritten to
//
// SELECT * FROM
// (SELECT * FROM t WHERE f < x),
// (SELECT * FROM u WHERE f < y);
//
// which will use both of the indices. The impact of using the indices can be
// substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low
// "selectivity", ie. only few rows from both tables are selected by the
// respective WHERE filtering.
//
// Note: Existing QL DBs can be used and indices can be added to them. However,
// once any indices are present in the DB, the old QL versions cannot work with
// such DB anymore.
//
// Benchmarks
//
// Running a benchmark with -v (-test.v) outputs information about the scale
// used to report records/s and a brief description of the benchmark. For
// example
//
// $ go test -run NONE -bench 'SelectMem.*1e[23]' -v
// PASS
// BenchmarkSelectMem1kBx1e2 50000 67680 ns/op 1477537.05 MB/s
// --- BENCH: BenchmarkSelectMem1kBx1e2
// all_test.go:310:
// =============================================================
// NOTE: All benchmarks report records/s as 1000000 bytes/s.
// =============================================================
// all_test.go:321: Having a table of 100 records, each of size 1kB, measure the performance of
// SELECT * FROM t;
//
// BenchmarkSelectMem1kBx1e3 5000 634819 ns/op 1575251.01 MB/s
// --- BENCH: BenchmarkSelectMem1kBx1e3
// all_test.go:321: Having a table of 1000 records, each of size 1kB, measure the performance of
// SELECT * FROM t;
//
// ok github.com/cznic/ql 7.496s
// $
//
// Running the full suite of benchmarks takes a lot of time. Use the -timeout
// flag to avoid them being killed after the default time limit (10 minutes).
package ql