1

Group 14 Project 4: VolP

Dylan Callaghan: 21831599@sun.ac.za
Stephen Cochrane: 21748209Qsun.ac.za

October 22, 2020

Introduction

The goal of this project was to implement a full VoIP application with both
voice and text communication. The communication was to be between one or
many clients in the form of personal chats or conference calls (and chats). All
calls were to be done direct from client to client, with a server for only messages
and setting up of communications. As said above, the calls were to include
one or multiple clients, and the quality of these calls was to be improved by
minimising echo, distortions, and noise.

2
3

Unimplemented Features

Additional features

In addition to the IP addresses used for each client, a nickname assignment
was added to allow for personalization of the client Gui. This nickname is
transparent to the user, and is translated to the IP addresses when used
for sending over the applications network.

Description of files

Client Holds all logic for the communication between the separate client
functionalities. This file contains methods that are called by other com-
ponents of the client, and calls components in these methods, providing a
bridge between the different aspects.

ClientFuncPass The abstract interface that the Client uses to facilitate
two-way communication between it’s components.

Chats This class represents the object that holds all the chats of a user.
The chats include any number of single user chats or groups, made from
conference calls. The class contains methods for concurrently updating
the list of chats and its members.



Group This class represents a group object. The group object holds mul-
tiple users which are connected to a certain group/conference call. The
group has a root member which is used to facilitate the call.

User Class for the User object. This object is a simplistic structure mainly
used for Gui displaying and for the transformation between nickname and
IP address.

Gui The Gui component of the client. This is a modular Gui which com-
municates with the client when receiving or sending updates. The Gui
handles only drawing of the client graphically and does not have any logic
for the client.

JGroup A class used by the Gui to display multiple strings concatenated
together, where each string can have a different colour.

AudioHandler The audio component of the client. This class handles all
audio related functions, which includes input from the microphone, and
output to the speakers. Components wishing to interact with the audio
of the computer must interact with this class using byte arrays.

ByteArraylOStream This class represents a custom object used for the
purpose of storing the byte arrays for audio in the project. The object
is an extension of both the InputStream and OutputStream in java, and
includes all the methods for both of these. The purpose in this, is to have
a structure that can exactly control bytes being written to and read from
the stream, used as a buffer for the application.

MultiStream This class facilitates a collection of ByteArraylOStreams,
and for the specific purpose of the audio handler, allows for writing to
multiple streams, and reading (and merging by audio) from the streams.
The reading is done by reading from each ByteArraylOStream, and the
output is merged using DSP into one signal to be sent to the audio handler.

ServLink This class provides a link to the server, acting as a form of
structured message passing, using the send and recv functions. ServLink
communication has a guarantee of a send, and recv is blocking. Servlink
just sends and receives streams of bytes, and hence makes use of the helper
class Message to assist in this.

Message The Message class acts as a wrapper for byte arrays allowing for
easy creation of messages (or reading of) for the ServLink. This class has
3 fields, in order they are:

— tag The tag specifies the type of message.

— len The length of the payload.

— payload The payload being sent.



e GroupMessage GroupMessage Allows for easy encoding a Group into a
Message, and also decoding a message into a Group. When we want to
send a group message (i.e we are encoding a Group) we can construct the
GroupMessage and then use sendAll to send the GroupMessage to every-
one in the group. Conversely, we can pass a message into GroupMessage
to obtain a Group.

e UDP This class allows for easy sending and receiving of UDP packets, this
class is only used for sending VoIP packets to other clients.

e Server This class is used to run the server, when started it blocks on
accepting new client connections. When a client gets accepted a handler
process gets forked (and the server will continue blocking until a new client
attempts to connect), and all this process does is forward messages from
one client to other connected clients.

e ServerGui A gui for the Server, it flushes events that occur to the gui as
well as to standard out.

e optargs Simple argument parsing, makes handling command line argu-
ments trivial. Very similar to getopt in C.

5 Program description

For the client, we implemented a mediator design pattern to facilitate commu-
nication between separate modular components of the system. The mediator in
our case was the general client class, which had components:

e Audio handler
e Server link

o Gui

e UDP object

The client had a general interface which it used for two-way communication be-
tween each component. Each component was therefore responsible for it’s own
functionality, and passed “messages” to other components when they had fin-
ished their tasks. This allowed for a very simplistic design, which allowed us to
abstract away the full functionality of the system, and just consider the individ-
ual modular components. Each component was responsible for interacting with
it’s part of the system, and in a sense communicating with it’s object. In the
case of the Gui, this was the graphical display, the audio handler communicated
with the computers audio, the Server link with the server, and UDP with the
other UDP client. We used a very simplistic server, that just facilitated commu-
nication and sent messages. The server only receives messages from clients and
passes them on to other clients. These messages can either be text messages,



user joining or leaving requests, or call configuration messages. In this way, the
server was used as a look-up and facilitator to the connection between clients.
It deals with all set up between clients whether it be for calls or for connecting
to the server. For client connection, the server forks a thread that will set up a
connection with the client and maintain this. The server also notifies all other
clients of the new user. For calls, the call initiation messages are sent through
the server, as well as updates when a client leaves a call, and when the root user
updates the call information.

6 Experiments

6.1 AudioFormat sample rate
6.1.1 Expectations

It is expected that increasing the sample rate for the call will increase the quality
of the call as the call would have more accurate data to work with.

6.1.2 Findings

The findings were different between local and hamachi testing. On the local
network the audio quality increased when the sample rate was increased. This
was detected as a clearer call quality, with less static and noise. On the hamachi
network however, the audio quality decreased with an increase in sample rate.
This was detected by more noise, and less audibility.

6.1.3 Conclusion

This led us to the conclusion that the sample rate increase provided more accu-
rate data, and therefore on a local network (or local machine) provided better
quality audio. However, when sending packets over hamachi, the network was
slower. This meant that the increase in sample rate (which led to an increase
of data size) will mean that less packets will go through on the slow hamachi
network, some maybe not going through at all. This would explain the audio
quality decreasing over hamachi when the audio sample rate is increased.

6.2 Input method change
6.2.1 Expectations

We expected that the features added to allow the user to change the audio
input method would give the user multiple input methods that they can switch
between, and decide which one works for them.



6.2.2 Findings

On startup, on devices that had different defaults set that may not have worked,
the user was able to change their input method using the framework we set up.
In most cases, this caused devices with audio not previously working to work
if the audio method chosen was the correct one. In some cases, however, the
change did not help, and this occurred mainly when experimenting over the
hamachi network for calls.

6.2.3 Conclusion

The conclusion for this result is that the audio input method changing that
was set up successfully changes the audio method. We also found that on most
devices, the “default” method was the best (i.e. working and best quality)
for input. The outlying cases with experiments involving hamachi could be
attributed to other external factors such as the speed of the network, or firewalls
in between devices, and so we concluded that the audio method was not the
cause of these problems.

6.3 Call quality over hamachi
6.3.1 Expectations

The hamachi network is not substantially fast, and so calls over the hamachi
network were expected to be somewhat different to those over a local network.
For this reason, some delay and maybe jittering was expected.

6.3.2 Findings

The call quality over hamachi proved to be quite stable and good. The voice
data had very little delay on average and little to no jitter. However, that being
said, some calls over hamachi would, for a varying amount of time at the start
of the call, not successfully transmit the correct audio packets from one user.
This was possibly attributed to hamachi due to the call working perfectly over
local networks. Also, at certain times in certain calls, the audio data would be
delayed, which would cause the delay in the call to worsen.

6.3.3 Conclusion

These results showed, on average, that the call quality over hamachi was quite
stable and good. However, the findings about calls not transmitting data from
one user seem to conclude that hamachi, although having its benefits, has down-
sides too, those being some unpredictable behavior in certain cases.



7

Issues encountered

The only issues we encountered was that of hamachi being hamachi (that is
insane packet loss and or connection issues), as well as Dylan Callaghan’s mic
not always working. We solved this issue by allowing the client to select which
mic to use. This is achieved by first typing /1 will list all devices, and then
typing /a <num> to use the device labeled as <num>.

8

Significant Data Structures

e ByteArraylOStream:

This structure is used as an Input/Output stream, and functions as a
thread safe buffer. The way this structure works is by having a byte array
with various pointers that can be read from and written to (thread safely).
The array can be resized, and wraps around after data has been read. This
way, the array always has enough size to store the data, and only uses as
much as it needs. The structure has two main functions:

— Writing arrays of bytes to the structure

— Reading arrays of bytes from the structure

These functions can be done with any size of array to read/write. In this
sense, the stream is both an input stream (allowing for reading of bytes
how an input stream would), and an output stream (same for writing).
All the other methods in the ByteArraylOStream are variants of these
functions, or helper methods for them. For instance, for reading, there
is both a blocking and non-blocking function to read from the structure
(based on whether there is enough data to read).

Design

Roots in calls:

The calling mechanism in our project relies on the fact that a single person
is in charge of a call so that any configuration messages can go through
them. Say for example, if someone joins the call, the root must be asked to
accept the request, and then should tell the other users about this change.
The root of a call is initially set as the user who is being called (when the
call is just between two people). This means very little for a two-person
call as the root user has no real other tasks. However, when someone else
joins the call and so creates a conference call, the root attribute takes
effect. The most important thing is that a root user is the only user that
will send out group messages (configuration messages). This is because the
root will be the only user who knows of all the activity in the conference
call. In addition, the following conditions apply:



— Any call requests received by anyone on the call will be forwarded to
the root.

— Any user leaving the call will notify the root user that they are leaving
— The root user is the only user able to change the name of the group

(on starting the group)

On receiving any of the above changes, the root user will update it’s group
object, and then broadcast this update to the rest of the group.

e Passing of root in calls:
The root mechanism allows for effective message passing, but presents a
problem when the root user leaves a call. For this situation, we have a
mechanism in place to transfer the “root” attribute between users.

This works by having the root user update their group object to exclude
them as root of the group, and allocate another random user as the root.
They then broadcast this group update message to all users as their last
message to the group. When each group member receives this message,
they will update their root to be the new root, and remove the root user
from their list. If they are the user which is the new root, they will change
their state to reflect this. Since all users in the group receive this message,
the new root will now receive any changes, and can pass these along in
group messages.

10 Compilation

$ make

11 Execution

11.1 Server
11.1.1 Running

$ ./server [options]

11.1.2 Help

$ ./server -h

11.2 Client
11.2.1 Running

$ ./client [options]



11.2.2 Help

$ ./client -h

12 Libraries used

e java.awt.*;

e java.io.*;

e java.lang.String;

e java.net.*;

e java.nio.ByteBuffer;
e java.util. ArrayList;
e java.util. HashMap;
e java.util.Hashtable;
e java.util.Iterator;

e java.util.LinkedList;
e java.util.Objects;

e java.util.Scanner;

e javax.swing.*;



