tdesktop/Telegram/SourceFiles/core/basic_types.h

1283 lines
33 KiB
C++

/*
This file is part of Telegram Desktop,
the official desktop version of Telegram messaging app, see https://telegram.org
Telegram Desktop is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition, as a special exception, the copyright holders give permission
to link the code of portions of this program with the OpenSSL library.
Full license: https://github.com/telegramdesktop/tdesktop/blob/master/LICENSE
Copyright (c) 2014-2016 John Preston, https://desktop.telegram.org
*/
#pragma once
template <typename T>
void deleteAndMark(T *&link) {
delete link;
link = reinterpret_cast<T*>(0x00000BAD);
}
template <typename T>
T *getPointerAndReset(T *&ptr) {
T *result = nullptr;
qSwap(result, ptr);
return result;
}
template <typename T>
T createAndSwap(T &value) {
T result;
std::swap(result, value);
return result;
}
struct NullType {
};
// ordered set template based on QMap
template <typename T>
class OrderedSet {
typedef OrderedSet<T> Self;
typedef QMap<T, NullType> Impl;
typedef typename Impl::iterator IteratorImpl;
typedef typename Impl::const_iterator ConstIteratorImpl;
Impl impl_;
public:
inline bool operator==(const Self &other) const { return impl_ == other.impl_; }
inline bool operator!=(const Self &other) const { return impl_ != other.impl_; }
inline int size() const { return impl_.size(); }
inline bool isEmpty() const { return impl_.isEmpty(); }
inline void detach() { return impl_.detach(); }
inline bool isDetached() const { return impl_.isDetached(); }
inline void clear() { return impl_.clear(); }
inline QList<T> values() const { return impl_.keys(); }
inline const T &first() const { return impl_.firstKey(); }
inline const T &last() const { return impl_.lastKey(); }
class const_iterator;
class iterator {
public:
typedef typename IteratorImpl::iterator_category iterator_category;
typedef typename IteratorImpl::difference_type difference_type;
typedef T value_type;
typedef T *pointer;
typedef T &reference;
explicit iterator(const IteratorImpl &impl) : impl_(impl) {
}
inline const T &operator*() const { return impl_.key(); }
inline const T *operator->() const { return &impl_.key(); }
inline bool operator==(const iterator &other) const { return impl_ == other.impl_; }
inline bool operator!=(const iterator &other) const { return impl_ != other.impl_; }
inline iterator &operator++() { ++impl_; return *this; }
inline iterator operator++(int) { return iterator(impl_++); }
inline iterator &operator--() { --impl_; return *this; }
inline iterator operator--(int) { return iterator(impl_--); }
inline iterator operator+(int j) const { return iterator(impl_ + j); }
inline iterator operator-(int j) const { return iterator(impl_ - j); }
inline iterator &operator+=(int j) { impl_ += j; return *this; }
inline iterator &operator-=(int j) { impl_ -= j; return *this; }
friend class const_iterator;
inline bool operator==(const const_iterator &other) const { return impl_ == other.impl_; }
inline bool operator!=(const const_iterator &other) const { return impl_ != other.impl_; }
private:
IteratorImpl impl_;
friend class OrderedSet<T>;
};
friend class iterator;
class const_iterator {
public:
typedef typename IteratorImpl::iterator_category iterator_category;
typedef typename IteratorImpl::difference_type difference_type;
typedef T value_type;
typedef T *pointer;
typedef T &reference;
explicit const_iterator(const ConstIteratorImpl &impl) : impl_(impl) {
}
inline const T &operator*() const { return impl_.key(); }
inline const T *operator->() const { return &impl_.key(); }
inline bool operator==(const const_iterator &other) const { return impl_ == other.impl_; }
inline bool operator!=(const const_iterator &other) const { return impl_ != other.impl_; }
inline const_iterator &operator++() { ++impl_; return *this; }
inline const_iterator operator++(int) { return const_iterator(impl_++); }
inline const_iterator &operator--() { --impl_; return *this; }
inline const_iterator operator--(int) { return const_iterator(impl_--); }
inline const_iterator operator+(int j) const { return const_iterator(impl_ + j); }
inline const_iterator operator-(int j) const { return const_iterator(impl_ - j); }
inline const_iterator &operator+=(int j) { impl_ += j; return *this; }
inline const_iterator &operator-=(int j) { impl_ -= j; return *this; }
friend class iterator;
inline bool operator==(const iterator &other) const { return impl_ == other.impl_; }
inline bool operator!=(const iterator &other) const { return impl_ != other.impl_; }
private:
ConstIteratorImpl impl_;
friend class OrderedSet<T>;
};
friend class const_iterator;
// STL style
inline iterator begin() { return iterator(impl_.begin()); }
inline const_iterator begin() const { return const_iterator(impl_.cbegin()); }
inline const_iterator constBegin() const { return const_iterator(impl_.cbegin()); }
inline const_iterator cbegin() const { return const_iterator(impl_.cbegin()); }
inline iterator end() { detach(); return iterator(impl_.end()); }
inline const_iterator end() const { return const_iterator(impl_.cend()); }
inline const_iterator constEnd() const { return const_iterator(impl_.cend()); }
inline const_iterator cend() const { return const_iterator(impl_.cend()); }
inline iterator erase(iterator it) { return iterator(impl_.erase(it.impl_)); }
inline iterator insert(const T &value) { return iterator(impl_.insert(value, NullType())); }
inline iterator insert(const_iterator pos, const T &value) { return iterator(impl_.insert(pos.impl_, value, NullType())); }
inline int remove(const T &value) { return impl_.remove(value); }
inline bool contains(const T &value) const { return impl_.contains(value); }
// more Qt
typedef iterator Iterator;
typedef const_iterator ConstIterator;
inline int count() const { return impl_.count(); }
inline iterator find(const T &value) { return iterator(impl_.find(value)); }
inline const_iterator find(const T &value) const { return const_iterator(impl_.constFind(value)); }
inline const_iterator constFind(const T &value) const { return const_iterator(impl_.constFind(value)); }
inline Self &unite(const Self &other) { impl_.unite(other.impl_); return *this; }
// STL compatibility
typedef typename Impl::difference_type difference_type;
typedef typename Impl::size_type size_type;
inline bool empty() const { return impl_.empty(); }
};
// thanks Chromium see https://blogs.msdn.microsoft.com/the1/2004/05/07/how-would-you-get-the-count-of-an-array-in-c-2/
template <typename T, size_t N> char(&ArraySizeHelper(T(&array)[N]))[N];
#define arraysize(array) (sizeof(ArraySizeHelper(array)))
#define qsl(s) QStringLiteral(s)
#define qstr(s) QLatin1String(s, sizeof(s) - 1)
// For QFlags<> declared in private section of a class we need to declare
// operators from Q_DECLARE_OPERATORS_FOR_FLAGS as friend functions.
#define Q_DECLARE_FRIEND_INCOMPATIBLE_FLAGS(Flags) \
friend Q_DECL_CONSTEXPR QIncompatibleFlag operator|(Flags::enum_type f1, int f2) Q_DECL_NOTHROW;
#define Q_DECLARE_FRIEND_OPERATORS_FOR_FLAGS(Flags) \
friend Q_DECL_CONSTEXPR QFlags<Flags::enum_type> operator|(Flags::enum_type f1, Flags::enum_type f2) Q_DECL_NOTHROW; \
friend Q_DECL_CONSTEXPR QFlags<Flags::enum_type> operator|(Flags::enum_type f1, QFlags<Flags::enum_type> f2) Q_DECL_NOTHROW; \
Q_DECLARE_FRIEND_INCOMPATIBLE_FLAGS(Flags)
// using for_const instead of plain range-based for loop to ensure usage of const_iterator
// it is important for the copy-on-write Qt containers
// if you have "QVector<T*> v" then "for (T * const p : v)" will still call QVector::detach(),
// while "for_const (T *p, v)" won't and "for_const (T *&p, v)" won't compile
#define for_const(range_declaration, range_expression) for (range_declaration : std_::as_const(range_expression))
template <typename Enum>
inline QFlags<Enum> qFlags(Enum v) {
return QFlags<Enum>(v);
}
//typedef unsigned char uchar; // Qt has uchar
typedef qint16 int16;
typedef quint16 uint16;
typedef qint32 int32;
typedef quint32 uint32;
typedef qint64 int64;
typedef quint64 uint64;
static const int32 ScrollMax = INT_MAX;
extern uint64 _SharedMemoryLocation[];
template <typename T, unsigned int N>
T *SharedMemoryLocation() {
static_assert(N < 4, "Only 4 shared memory locations!");
return reinterpret_cast<T*>(_SharedMemoryLocation + N);
}
// see https://github.com/boostcon/cppnow_presentations_2012/blob/master/wed/schurr_cpp11_tools_for_class_authors.pdf
class str_const { // constexpr string
public:
template<std::size_t N>
constexpr str_const(const char(&a)[N]) : _str(a), _size(N - 1) {
}
constexpr char operator[](std::size_t n) const {
return (n < _size) ? _str[n] :
throw std::out_of_range("");
}
constexpr std::size_t size() const { return _size; }
const char *c_str() const { return _str; }
private:
const char* const _str;
const std::size_t _size;
};
inline QString str_const_toString(const str_const &str) {
return QString::fromUtf8(str.c_str(), str.size());
}
template <typename T>
inline void accumulate_max(T &a, const T &b) { if (a < b) a = b; }
template <typename T>
inline void accumulate_min(T &a, const T &b) { if (a > b) a = b; }
#ifdef Q_OS_WIN
typedef float float32;
typedef double float64;
#else
typedef float float32;
typedef double float64;
#endif
#include <string>
#include <exception>
#include <QtCore/QReadWriteLock>
#include <ctime>
using std::string;
using std::exception;
// we copy some parts of C++11/14/17 std:: library, because on OS X 10.6+
// version we can use C++11/14/17, but we can not use its library :(
namespace std_ {
template <typename T, T V>
struct integral_constant {
static constexpr T value = V;
using value_type = T;
using type = integral_constant<T, V>;
constexpr operator value_type() const noexcept {
return (value);
}
constexpr value_type operator()() const noexcept {
return (value);
}
};
using true_type = integral_constant<bool, true>;
using false_type = integral_constant<bool, false>;
template <typename T>
struct remove_reference {
using type = T;
};
template <typename T>
struct remove_reference<T&> {
using type = T;
};
template <typename T>
struct remove_reference<T&&> {
using type = T;
};
template <typename T>
struct is_lvalue_reference : false_type {
};
template <typename T>
struct is_lvalue_reference<T&> : true_type {
};
template <typename T>
struct is_rvalue_reference : false_type {
};
template <typename T>
struct is_rvalue_reference<T&&> : true_type {
};
template <typename T>
inline constexpr T &&forward(typename remove_reference<T>::type &value) noexcept {
return static_cast<T&&>(value);
}
template <typename T>
inline constexpr T &&forward(typename remove_reference<T>::type &&value) noexcept {
static_assert(!is_lvalue_reference<T>::value, "bad forward call");
return static_cast<T&&>(value);
}
template <typename T>
inline constexpr typename remove_reference<T>::type &&move(T &&value) noexcept {
return static_cast<typename remove_reference<T>::type&&>(value);
}
template <typename T>
struct add_const {
using type = const T;
};
template <typename T>
using add_const_t = typename add_const<T>::type;
template <typename T>
constexpr add_const_t<T> &as_const(T& t) noexcept {
return t;
}
template <typename T>
void as_const(const T&&) = delete;
// This is not full unique_ptr, but at least with std interface.
template <typename T>
class unique_ptr {
public:
constexpr unique_ptr() noexcept = default;
unique_ptr(const unique_ptr<T> &) = delete;
unique_ptr<T> &operator=(const unique_ptr<T> &) = delete;
constexpr unique_ptr(std::nullptr_t) {
}
unique_ptr<T> &operator=(std::nullptr_t) noexcept {
reset();
return (*this);
}
explicit unique_ptr(T *p) noexcept : _p(p) {
}
template <typename U>
unique_ptr(unique_ptr<U> &&other) noexcept : _p(other.release()) {
}
template <typename U>
unique_ptr<T> &operator=(unique_ptr<U> &&other) noexcept {
reset(other.release());
return (*this);
}
unique_ptr<T> &operator=(unique_ptr<T> &&other) noexcept {
if (this != &other) {
reset(other.release());
}
return (*this);
}
void swap(unique_ptr<T> &other) noexcept {
std::swap(_p, other._p);
}
~unique_ptr() noexcept {
delete _p;
}
T &operator*() const {
return (*get());
}
T *operator->() const noexcept {
return get();
}
T *get() const noexcept {
return _p;
}
explicit operator bool() const noexcept {
return get() != nullptr;
}
T *release() noexcept {
return getPointerAndReset(_p);
}
void reset(T *p = nullptr) noexcept {
T *old = _p;
_p = p;
if (old) {
delete old;
}
}
private:
T *_p = nullptr;
};
template <typename T, typename... Args>
inline unique_ptr<T> make_unique(Args&&... args) {
return unique_ptr<T>(new T(forward<Args>(args)...));
}
template <typename T>
inline bool operator==(const unique_ptr<T> &a, std::nullptr_t) noexcept {
return !a;
}
template <typename T>
inline bool operator==(std::nullptr_t, const unique_ptr<T> &b) noexcept {
return !b;
}
template <typename T>
inline bool operator!=(const unique_ptr<T> &a, std::nullptr_t b) noexcept {
return !(a == b);
}
template <typename T>
inline bool operator!=(std::nullptr_t a, const unique_ptr<T> &b) noexcept {
return !(a == b);
}
using _yes = char(&)[1];
using _no = char(&)[2];
template <typename Base, typename Derived>
struct _host {
operator Base*() const;
operator Derived*();
};
template <typename Base, typename Derived>
struct is_base_of {
template <typename T>
static _yes check(Derived*, T);
static _no check(Base*, int);
static constexpr bool value = sizeof(check(_host<Base, Derived>(), int())) == sizeof(_yes);
};
} // namespace std_
#include "logs.h"
static volatile int *t_assert_nullptr = nullptr;
inline void t_noop() {}
inline void t_assert_fail(const char *message, const char *file, int32 line) {
QString info(qsl("%1 %2:%3").arg(message).arg(file).arg(line));
LOG(("Assertion Failed! %1 %2:%3").arg(info));
SignalHandlers::setCrashAnnotation("Assertion", info);
*t_assert_nullptr = 0;
}
#define t_assert_full(condition, message, file, line) ((!(condition)) ? t_assert_fail(message, file, line) : t_noop())
#define t_assert_c(condition, comment) t_assert_full(condition, "\"" #condition "\" (" comment ")", __FILE__, __LINE__)
#define t_assert(condition) t_assert_full(condition, "\"" #condition "\"", __FILE__, __LINE__)
class Exception : public exception {
public:
Exception(const QString &msg, bool isFatal = true) : _fatal(isFatal), _msg(msg.toUtf8()) {
LOG(("Exception: %1").arg(msg));
}
bool fatal() const {
return _fatal;
}
virtual const char *what() const throw() {
return _msg.constData();
}
virtual ~Exception() throw() {
}
private:
bool _fatal;
QByteArray _msg;
};
class MTPint;
typedef int32 TimeId;
TimeId myunixtime();
void unixtimeInit();
void unixtimeSet(TimeId servertime, bool force = false);
TimeId unixtime();
TimeId fromServerTime(const MTPint &serverTime);
void toServerTime(const TimeId &clientTime, MTPint &outServerTime);
uint64 msgid();
int32 reqid();
inline QDateTime date(int32 time = -1) {
QDateTime result;
if (time >= 0) result.setTime_t(time);
return result;
}
inline QDateTime dateFromServerTime(const MTPint &time) {
return date(fromServerTime(time));
}
inline QDateTime date(const MTPint &time) {
return dateFromServerTime(time);
}
QDateTime dateFromServerTime(TimeId time);
inline void mylocaltime(struct tm * _Tm, const time_t * _Time) {
#ifdef Q_OS_WIN
localtime_s(_Tm, _Time);
#else
localtime_r(_Time, _Tm);
#endif
}
namespace ThirdParty {
void start();
void finish();
}
bool checkms(); // returns true if time has changed
uint64 getms(bool checked = false);
class SingleTimer : public QTimer { // single shot timer with check
Q_OBJECT
public:
SingleTimer();
void setSingleShot(bool); // is not available
void start(); // is not available
public slots:
void start(int msec);
void startIfNotActive(int msec);
void adjust() {
uint64 n = getms(true);
if (isActive()) {
if (n >= _finishing) {
start(0);
} else {
start(_finishing - n);
}
}
}
private:
uint64 _finishing;
bool _inited;
};
const static uint32 _md5_block_size = 64;
class HashMd5 {
public:
HashMd5(const void *input = 0, uint32 length = 0);
void feed(const void *input, uint32 length);
int32 *result();
private:
void init();
void finalize();
void transform(const uchar *block);
bool _finalized;
uchar _buffer[_md5_block_size];
uint32 _count[2];
uint32 _state[4];
uchar _digest[16];
};
int32 hashCrc32(const void *data, uint32 len);
int32 *hashSha1(const void *data, uint32 len, void *dest); // dest - ptr to 20 bytes, returns (int32*)dest
int32 *hashSha256(const void *data, uint32 len, void *dest); // dest - ptr to 32 bytes, returns (int32*)dest
int32 *hashMd5(const void *data, uint32 len, void *dest); // dest = ptr to 16 bytes, returns (int32*)dest
char *hashMd5Hex(const int32 *hashmd5, void *dest); // dest = ptr to 32 bytes, returns (char*)dest
inline char *hashMd5Hex(const void *data, uint32 len, void *dest) { // dest = ptr to 32 bytes, returns (char*)dest
return hashMd5Hex(HashMd5(data, len).result(), dest);
}
// good random (using openssl implementation)
void memset_rand(void *data, uint32 len);
template <typename T>
T rand_value() {
T result;
memset_rand(&result, sizeof(result));
return result;
}
inline void memset_rand_bad(void *data, uint32 len) {
for (uchar *i = reinterpret_cast<uchar*>(data), *e = i + len; i != e; ++i) {
*i = uchar(rand() & 0xFF);
}
}
template <typename T>
inline void memsetrnd_bad(T &value) {
memset_rand_bad(&value, sizeof(value));
}
class ReadLockerAttempt {
public:
ReadLockerAttempt(QReadWriteLock *_lock) : success(_lock->tryLockForRead()), lock(_lock) {
}
~ReadLockerAttempt() {
if (success) {
lock->unlock();
}
}
operator bool() const {
return success;
}
private:
bool success;
QReadWriteLock *lock;
};
inline QString fromUtf8Safe(const char *str, int32 size = -1) {
if (!str || !size) return QString();
if (size < 0) size = int32(strlen(str));
QString result(QString::fromUtf8(str, size));
QByteArray back = result.toUtf8();
if (back.size() != size || memcmp(back.constData(), str, size)) return QString::fromLocal8Bit(str, size);
return result;
}
inline QString fromUtf8Safe(const QByteArray &str) {
return fromUtf8Safe(str.constData(), str.size());
}
static const QRegularExpression::PatternOptions reMultiline(QRegularExpression::DotMatchesEverythingOption | QRegularExpression::MultilineOption);
template <typename T>
inline T snap(const T &v, const T &_min, const T &_max) {
return (v < _min) ? _min : ((v > _max) ? _max : v);
}
template <typename T>
class ManagedPtr {
public:
ManagedPtr() : ptr(0) {
}
ManagedPtr(T *p) : ptr(p) {
}
T *operator->() const {
return ptr;
}
T *v() const {
return ptr;
}
protected:
T *ptr;
typedef ManagedPtr<T> Parent;
};
QString translitRusEng(const QString &rus);
QString rusKeyboardLayoutSwitch(const QString &from);
enum DBISendKey {
dbiskEnter = 0,
dbiskCtrlEnter = 1,
};
enum DBINotifyView {
dbinvShowPreview = 0,
dbinvShowName = 1,
dbinvShowNothing = 2,
};
enum DBIWorkMode {
dbiwmWindowAndTray = 0,
dbiwmTrayOnly = 1,
dbiwmWindowOnly = 2,
};
enum DBIConnectionType {
dbictAuto = 0,
dbictHttpAuto = 1, // not used
dbictHttpProxy = 2,
dbictTcpProxy = 3,
};
enum DBIDefaultAttach {
dbidaDocument = 0,
dbidaPhoto = 1,
};
struct ConnectionProxy {
ConnectionProxy() : port(0) {
}
QString host;
uint32 port;
QString user, password;
};
enum DBIScale {
dbisAuto = 0,
dbisOne = 1,
dbisOneAndQuarter = 2,
dbisOneAndHalf = 3,
dbisTwo = 4,
dbisScaleCount = 5,
};
static const int MatrixRowShift = 40000;
enum DBIEmojiTab {
dbietRecent = -1,
dbietPeople = 0,
dbietNature = 1,
dbietFood = 2,
dbietActivity = 3,
dbietTravel = 4,
dbietObjects = 5,
dbietSymbols = 6,
dbietStickers = 666,
};
static const int emojiTabCount = 8;
inline DBIEmojiTab emojiTabAtIndex(int index) {
return (index < 0 || index >= emojiTabCount) ? dbietRecent : DBIEmojiTab(index - 1);
}
enum DBIPlatform {
dbipWindows = 0,
dbipMac = 1,
dbipLinux64 = 2,
dbipLinux32 = 3,
dbipMacOld = 4,
};
enum DBIPeerReportSpamStatus {
dbiprsNoButton = 0, // hidden, but not in the cloud settings yet
dbiprsUnknown = 1, // contacts not loaded yet
dbiprsShowButton = 2, // show report spam button, each show peer request setting from cloud
dbiprsReportSent = 3, // report sent, but the report spam panel is not hidden yet
dbiprsHidden = 4, // hidden in the cloud or not needed (bots, contacts, etc), no more requests
dbiprsRequesting = 5, // requesting the cloud setting right now
};
typedef enum {
HitTestNone = 0,
HitTestClient,
HitTestSysButton,
HitTestIcon,
HitTestCaption,
HitTestTop,
HitTestTopRight,
HitTestRight,
HitTestBottomRight,
HitTestBottom,
HitTestBottomLeft,
HitTestLeft,
HitTestTopLeft,
} HitTestType;
inline QString strMakeFromLetters(const uint32 *letters, int32 len) {
QString result;
result.reserve(len);
for (int32 i = 0; i < len; ++i) {
result.push_back(QChar((((letters[i] << 16) & 0xFF) >> 8) | (letters[i] & 0xFF)));
}
return result;
}
class MimeType {
public:
enum TypeEnum {
Unknown,
WebP,
};
MimeType(const QMimeType &type) : _typeStruct(type), _type(Unknown) {
}
MimeType(TypeEnum type) : _type(type) {
}
QStringList globPatterns() const;
QString filterString() const;
QString name() const;
private:
QMimeType _typeStruct;
TypeEnum _type;
};
MimeType mimeTypeForName(const QString &mime);
MimeType mimeTypeForFile(const QFileInfo &file);
MimeType mimeTypeForData(const QByteArray &data);
#include <cmath>
inline int rowscount(int fullCount, int countPerRow) {
return (fullCount + countPerRow - 1) / countPerRow;
}
inline int floorclamp(int value, int step, int lowest, int highest) {
return qMin(qMax(value / step, lowest), highest);
}
inline int floorclamp(float64 value, int step, int lowest, int highest) {
return qMin(qMax(static_cast<int>(std::floor(value / step)), lowest), highest);
}
inline int ceilclamp(int value, int step, int lowest, int highest) {
return qMax(qMin((value + step - 1) / step, highest), lowest);
}
inline int ceilclamp(float64 value, int32 step, int32 lowest, int32 highest) {
return qMax(qMin(static_cast<int>(std::ceil(value / step)), highest), lowest);
}
enum ForwardWhatMessages {
ForwardSelectedMessages,
ForwardContextMessage,
ForwardPressedMessage,
ForwardPressedLinkMessage
};
enum ShowLayerOption {
CloseOtherLayers = 0x00,
KeepOtherLayers = 0x01,
ShowAfterOtherLayers = 0x03,
AnimatedShowLayer = 0x00,
ForceFastShowLayer = 0x04,
};
typedef QFlags<ShowLayerOption> ShowLayerOptions;
static int32 FullArcLength = 360 * 16;
static int32 QuarterArcLength = (FullArcLength / 4);
static int32 MinArcLength = (FullArcLength / 360);
static int32 AlmostFullArcLength = (FullArcLength - MinArcLength);
template <typename T, typename... Args>
inline QSharedPointer<T> MakeShared(Args&&... args) {
return QSharedPointer<T>(new T(std_::forward<Args>(args)...));
}
// This pointer is used for global non-POD variables that are allocated
// on demand by createIfNull(lambda) and are never automatically freed.
template <typename T>
class NeverFreedPointer {
public:
NeverFreedPointer() = default;
NeverFreedPointer(const NeverFreedPointer<T> &other) = delete;
NeverFreedPointer &operator=(const NeverFreedPointer<T> &other) = delete;
template <typename U>
void createIfNull(U creator) {
if (isNull()) {
reset(creator());
}
}
template <typename... Args>
void makeIfNull(Args&&... args) {
if (isNull()) {
reset(new T(std::forward<Args>(args)...));
}
};
T *data() const {
return _p;
}
T *release() {
return getPointerAndReset(_p);
}
void reset(T *p = nullptr) {
delete _p;
_p = p;
}
bool isNull() const {
return data() == nullptr;
}
void clear() {
reset();
}
T *operator->() const {
return data();
}
T &operator*() const {
t_assert(!isNull());
return *data();
}
explicit operator bool() const {
return !isNull();
}
private:
T *_p;
};
// This pointer is used for static non-POD variables that are allocated
// on first use by constructor and are never automatically freed.
template <typename T>
class StaticNeverFreedPointer {
public:
explicit StaticNeverFreedPointer(T *p) : _p(p) {
}
StaticNeverFreedPointer(const StaticNeverFreedPointer<T> &other) = delete;
StaticNeverFreedPointer &operator=(const StaticNeverFreedPointer<T> &other) = delete;
T *data() const {
return _p;
}
T *release() {
return getPointerAndReset(_p);
}
void reset(T *p = nullptr) {
delete _p;
_p = p;
}
bool isNull() const {
return data() == nullptr;
}
void clear() {
reset();
}
T *operator->() const {
return data();
}
T &operator*() const {
t_assert(!isNull());
return *data();
}
explicit operator bool() const {
return !isNull();
}
private:
T *_p = nullptr;
};
class Composer;
typedef void(*ComponentConstruct)(void *location, Composer *composer);
typedef void(*ComponentDestruct)(void *location);
typedef void(*ComponentMove)(void *location, void *waslocation);
struct ComponentWrapStruct {
// don't init any fields, because it is only created in
// global scope, so it will be filled by zeros from the start
ComponentWrapStruct() {
}
ComponentWrapStruct(int size, ComponentConstruct construct, ComponentDestruct destruct, ComponentMove move)
: Size(size)
, Construct(construct)
, Destruct(destruct)
, Move(move) {
}
int Size;
ComponentConstruct Construct;
ComponentDestruct Destruct;
ComponentMove Move;
};
template <int Value, int Denominator>
struct CeilDivideMinimumOne {
static const int Result = ((Value / Denominator) + ((!Value || (Value % Denominator)) ? 1 : 0));
};
extern ComponentWrapStruct ComponentWraps[64];
extern QAtomicInt ComponentIndexLast;
template <typename Type>
struct BaseComponent {
BaseComponent() {
}
BaseComponent(const BaseComponent &other) = delete;
BaseComponent &operator=(const BaseComponent &other) = delete;
BaseComponent(BaseComponent &&other) = delete;
BaseComponent &operator=(BaseComponent &&other) = default;
static int Index() {
static QAtomicInt _index(0);
if (int index = _index.loadAcquire()) {
return index - 1;
}
while (true) {
int last = ComponentIndexLast.loadAcquire();
if (ComponentIndexLast.testAndSetOrdered(last, last + 1)) {
t_assert(last < 64);
if (_index.testAndSetOrdered(0, last + 1)) {
ComponentWraps[last] = ComponentWrapStruct(
CeilDivideMinimumOne<sizeof(Type), sizeof(uint64)>::Result * sizeof(uint64),
Type::ComponentConstruct, Type::ComponentDestruct, Type::ComponentMove);
}
break;
}
}
return _index.loadAcquire() - 1;
}
static uint64 Bit() {
return (1ULL << Index());
}
protected:
static void ComponentConstruct(void *location, Composer *composer) {
new (location) Type();
}
static void ComponentDestruct(void *location) {
((Type*)location)->~Type();
}
static void ComponentMove(void *location, void *waslocation) {
*(Type*)location = std_::move(*(Type*)waslocation);
}
};
class ComposerMetadata {
public:
ComposerMetadata(uint64 mask) : size(0), last(64), _mask(mask) {
for (int i = 0; i < 64; ++i) {
uint64 m = (1ULL << i);
if (_mask & m) {
int s = ComponentWraps[i].Size;
if (s) {
offsets[i] = size;
size += s;
} else {
offsets[i] = -1;
}
} else if (_mask < m) {
last = i;
for (; i < 64; ++i) {
offsets[i] = -1;
}
} else {
offsets[i] = -1;
}
}
}
int size, last;
int offsets[64];
bool equals(uint64 mask) const {
return _mask == mask;
}
uint64 maskadd(uint64 mask) const {
return _mask | mask;
}
uint64 maskremove(uint64 mask) const {
return _mask & (~mask);
}
private:
uint64 _mask;
};
const ComposerMetadata *GetComposerMetadata(uint64 mask);
class Composer {
public:
Composer(uint64 mask = 0) : _data(zerodata()) {
if (mask) {
const ComposerMetadata *meta = GetComposerMetadata(mask);
int size = sizeof(meta) + meta->size;
void *data = operator new(size);
if (!data) { // terminate if we can't allocate memory
throw "Can't allocate memory!";
}
_data = data;
_meta() = meta;
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i];
if (offset >= 0) {
try {
ComponentWraps[i].Construct(_dataptrunsafe(offset), this);
} catch (...) {
while (i > 0) {
--i;
offset = meta->offsets[--i];
if (offset >= 0) {
ComponentWraps[i].Destruct(_dataptrunsafe(offset));
}
}
throw;
}
}
}
}
}
Composer(const Composer &other) = delete;
Composer &operator=(const Composer &other) = delete;
~Composer() {
if (_data != zerodata()) {
const ComposerMetadata *meta = _meta();
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i];
if (offset >= 0) {
ComponentWraps[i].Destruct(_dataptrunsafe(offset));
}
}
operator delete(_data);
}
}
template <typename Type>
bool Has() const {
return (_meta()->offsets[Type::Index()] >= 0);
}
template <typename Type>
Type *Get() {
return static_cast<Type*>(_dataptr(_meta()->offsets[Type::Index()]));
}
template <typename Type>
const Type *Get() const {
return static_cast<const Type*>(_dataptr(_meta()->offsets[Type::Index()]));
}
protected:
void UpdateComponents(uint64 mask = 0) {
if (!_meta()->equals(mask)) {
Composer tmp(mask);
tmp.swap(*this);
if (_data != zerodata() && tmp._data != zerodata()) {
const ComposerMetadata *meta = _meta(), *wasmeta = tmp._meta();
for (int i = 0; i < meta->last; ++i) {
int offset = meta->offsets[i], wasoffset = wasmeta->offsets[i];
if (offset >= 0 && wasoffset >= 0) {
ComponentWraps[i].Move(_dataptrunsafe(offset), tmp._dataptrunsafe(wasoffset));
}
}
}
}
}
void AddComponents(uint64 mask = 0) {
UpdateComponents(_meta()->maskadd(mask));
}
void RemoveComponents(uint64 mask = 0) {
UpdateComponents(_meta()->maskremove(mask));
}
private:
static const ComposerMetadata *ZeroComposerMetadata;
static void *zerodata() {
return &ZeroComposerMetadata;
}
void *_dataptrunsafe(int skip) const {
return (char*)_data + sizeof(_meta()) + skip;
}
void *_dataptr(int skip) const {
return (skip >= 0) ? _dataptrunsafe(skip) : 0;
}
const ComposerMetadata *&_meta() const {
return *static_cast<const ComposerMetadata**>(_data);
}
void *_data;
void swap(Composer &other) {
std::swap(_data, other._data);
}
};
template <typename R, typename... Args>
class SharedCallback {
public:
virtual R call(Args... args) const = 0;
virtual ~SharedCallback() {
}
using Ptr = QSharedPointer<SharedCallback<R, Args...>>;
};
template <typename R, typename... Args>
class FunctionImplementation {
public:
virtual R call(Args... args) = 0;
virtual void destroy() { delete this; }
virtual ~FunctionImplementation() {}
};
template <typename R, typename... Args>
class NullFunctionImplementation : public FunctionImplementation<R, Args...> {
public:
virtual R call(Args... args) { return R(); }
virtual void destroy() {}
static NullFunctionImplementation<R, Args...> SharedInstance;
};
template <typename R, typename... Args>
NullFunctionImplementation<R, Args...> NullFunctionImplementation<R, Args...>::SharedInstance;
template <typename R, typename... Args>
class Function {
public:
Function() : _implementation(nullImpl()) {}
Function(FunctionImplementation<R, Args...> *implementation) : _implementation(implementation) {}
Function(const Function<R, Args...> &other) = delete;
Function<R, Args...> &operator=(const Function<R, Args...> &other) = delete;
Function(Function<R, Args...> &&other) : _implementation(other._implementation) {
other._implementation = nullImpl();
}
Function<R, Args...> &operator=(Function<R, Args...> &&other) {
std::swap(_implementation, other._implementation);
return *this;
}
bool isNull() const {
return (_implementation == nullImpl());
}
R call(Args... args) { return _implementation->call(args...); }
~Function() {
if (_implementation) {
_implementation->destroy();
_implementation = nullptr;
}
deleteAndMark(_implementation);
}
private:
static FunctionImplementation<R, Args...> *nullImpl() {
return &NullFunctionImplementation<R, Args...>::SharedInstance;
}
FunctionImplementation<R, Args...> *_implementation;
};
template <typename R, typename... Args>
class WrappedFunction : public FunctionImplementation<R, Args...> {
public:
using Method = R(*)(Args... args);
WrappedFunction(Method method) : _method(method) {}
virtual R call(Args... args) { return (*_method)(args...); }
private:
Method _method;
};
template <typename R, typename... Args>
inline Function<R, Args...> func(R(*method)(Args... args)) {
return Function<R, Args...>(new WrappedFunction<R, Args...>(method));
}
template <typename O, typename I, typename R, typename... Args>
class ObjectFunction : public FunctionImplementation<R, Args...> {
public:
using Method = R(I::*)(Args... args);
ObjectFunction(O *obj, Method method) : _obj(obj), _method(method) {}
virtual R call(Args... args) { return (_obj->*_method)(args...); }
private:
O *_obj;
Method _method;
};
template <typename O, typename I, typename R, typename... Args>
inline Function<R, Args...> func(O *obj, R(I::*method)(Args...)) {
return Function<R, Args...>(new ObjectFunction<O, I, R, Args...>(obj, method));
}