setools/libapol/dta.py
2014-07-08 14:28:55 -04:00

438 lines
16 KiB
Python

# Copyright 2014, Tresys Technology, LLC
#
# This file is part of SETools.
#
# SETools is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 2.1 of
# the License, or (at your option) any later version.
#
# SETools is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with SETools. If not, see
# <http://www.gnu.org/licenses/>.
#
import itertools
from collections import defaultdict
import networkx as nx
class DomainTransitionAnalysis(object):
"""Domain transition analysis."""
def __init__(self, policy):
"""
Parameter:
policy The policy to analyze.
"""
self.policy = policy
self.rebuildgraph = True
self.G = nx.DiGraph()
def __get_entrypoints(self, source, target):
"""
Generator which returns the entrypoint, execute, and
type_transition rules for each entrypoint.
Parameter:
source The source node for the transition.
target The target node for the transition.
Yield: tuple(type, entry, exec, trans)
type The entrypoint type.
entry The entrypoint rules.
exec The execute rules.
trans The type_transition rules.
"""
for e in self.G.edge[source][target]['entrypoint']:
if self.G.edge[source][target]['type_transition'][e]:
yield e, \
self.G.edge[source][target]['entrypoint'][e], \
self.G.edge[source][target]['execute'][e], \
self.G.edge[source][target]['type_transition'][e]
else:
yield e, \
self.G.edge[source][target]['entrypoint'][e], \
self.G.edge[source][target]['execute'][e], \
[]
# TODO: consider making sure source and target are valid
# both as types and also in graph
# TODO: make reverse an option. on that option,
# simply reverse the graph. Will probably have to fix up
# __get_steps to output correctly so sedta doesn't have to
# change.
def __get_steps(self, path):
"""
Generator which returns the source, target, and associated rules
for each domain transition.
Parameter:
path A list of graph node names representing an information flow path.
Yield: tuple(source, target, transition, entrypoints,
setexec, dyntransition, setcurrent)
source The source type for this step of the domain transition.
target The target type for this step of the domain transition.
transition The list of TE rules providing transition permissions.
entrypoints Generator which provides entrypoint-related rules.
setexec The list of setexec rules.
dyntranstion The list of dynamic transition rules.
setcurrent The list of setcurrent rules.
"""
for s in range(1, len(path)):
source = path[s - 1]
target = path[s]
yield source, target, \
self.G.edge[source][target]['transition'], \
self.__get_entrypoints(source, target), \
self.G.edge[source][target]['setexec'], \
self.G.edge[source][target]['dyntransition'], \
self.G.edge[source][target]['setcurrent']
def shortest_path(self, source, target):
"""
Generator which yields one shortest domain transition path
between the source and target types (there may be more).
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
domain transition.
"""
if self.rebuildgraph:
self._build_graph()
if source in self.G and target in self.G:
try:
path = nx.shortest_path(self.G, source, target)
except nx.exception.NetworkXNoPath:
pass
else:
yield self.__get_steps(path)
def all_paths(self, source, target, maxlen=2):
"""
Generator which yields all domain transition paths between
the source and target up to the specified maximum path
length.
Parameters:
source The source type.
target The target type.
maxlen Maximum length of paths.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
domain transition.
"""
if self.rebuildgraph:
self._build_graph()
if source in self.G and target in self.G:
try:
paths = nx.all_simple_paths(self.G, source, target, maxlen)
except nx.exception.NetworkXNoPath:
pass
else:
for p in paths:
yield self.__get_steps(p)
def all_shortest_paths(self, source, target):
"""
Generator which yields all shortest domain transition paths
between the source and target types.
Parameters:
source The source type.
target The target type.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
domain transition.
"""
if self.rebuildgraph:
self._build_graph()
if source in self.G and target in self.G:
try:
paths = nx.all_shortest_paths(self.G, source, target)
except nx.exception.NetworkXNoPath:
pass
else:
for p in paths:
yield self.__get_steps(p)
def transitions(self, source):
"""
Generator which yields all domain transitions out of a
specified source type.
Parameters:
source The starting type.
Yield: generator(steps)
steps A generator that returns the tuple of
source, target, and rules for each
domain transition.
"""
if self.rebuildgraph:
self._build_graph()
for source, target in self.G.out_edges_iter(source):
yield source, target, \
self.G.edge[source][target]['transition'], \
self.__get_entrypoints(source, target), \
self.G.edge[source][target]['setexec'], \
self.G.edge[source][target]['dyntransition'], \
self.G.edge[source][target]['setcurrent']
def get_stats(self):
"""
Get the domain transition graph statistics.
Return: tuple(nodes, edges)
nodes The number of nodes (types) in the graph.
edges The number of edges (domain transitions) in the graph.
"""
return (self.G.number_of_nodes(), self.G.number_of_edges())
# Graph edge properties:
# Each entry in the property dict corresponds to
# a rule list. For entrypoint/execute/type_transition
# it is a dictionary keyed on the entrypoint type.
def __add_edge(self, source, target):
self.G.add_edge(source, target)
if not 'transition' in self.G[source][target]:
self.G[source][target]['transition'] = []
if not 'entrypoint' in self.G[source][target]:
self.G[source][target]['entrypoint'] = defaultdict(list)
if not 'execute' in self.G[source][target]:
self.G[source][target]['execute'] = defaultdict(list)
if not 'type_transition'in self.G[source][target]:
self.G[source][target]['type_transition'] = defaultdict(list)
if not 'setexec' in self.G[source][target]:
self.G[source][target]['setexec'] = []
if not 'dyntransition' in self.G[source][target]:
self.G[source][target]['dyntransition'] = []
if not 'setcurrent' in self.G[source][target]:
self.G[source][target]['setcurrent'] = []
# Domain transition requirements:
#
# Standard transitions a->b:
# allow a b:process transition;
# allow a b_exec:file execute;
# allow b b_exec:file entrypoint;
#
# and at least one of:
# allow a self:process setexec;
# type_transition a b_exec:process b;
#
# Dynamic transition x->y:
# allow x y:process dyntransition;
# allow x self:process setcurrent;
#
# Algorithm summary:
# 1. iterate over all rules
# 1. skip non allow/type_transition rules
# 2. if process transition or dyntransition, create edge,
# initialize rule lists, add the (dyn)transition rule
# 3. if process setexec or setcurrent, add to appropriate dict
# keyed on the subject
# 4. if file exec, entrypoint, or type_transition:process,
# add to appropriate dict keyed on subject,object.
# 2. Iterate over all graph edges:
# 1. if there is a transition rule (else add to invalid
# transition list):
# 1. use set intersection to find matching exec
# and entrypoint rules. If none, add to invalid
# transition list.
# 2. for each valid entrypoint, add rules to the
# edge's lists if there is either a
# type_transition for it or the source process
# has setexec permissions.
# 3. If there are neither type_transitions nor
# setexec permissions, add to the invalid
# transition list
# 2. if there is a dyntransition rule (else add to invalid
# dyntrans list):
# 1. If the source has a setcurrent rule, add it
# to the edge's list, else add to invalid
# dyntransition list.
# 3. Iterate over all graph edges:
# 1. if the edge has an invalid trans and dyntrans, delete
# the edge.
# 2. if the edge has an invalid trans, clear the related
# lists on the edge.
# 3. if the edge has an invalid dyntrans, clear the related
# lists on the edge.
#
# Note: strings are used for node names temporarily, until the
# string->TypeAttr object lookup code is implemented.
def _build_graph(self):
self.G.clear()
# hash tables keyed on domain type
setexec = defaultdict(list)
setcurrent = defaultdict(list)
# hash tables keyed on (domain, entrypoint file type)
# the parameter for defaultdict has to be callable
# hence the lambda for the nested defaultdict
execute = defaultdict(lambda: defaultdict(list))
entrypoint = defaultdict(lambda: defaultdict(list))
# hash table keyed on (domain, entrypoint, target domain)
type_trans = defaultdict(
lambda: defaultdict(lambda: defaultdict(list)))
for r in self.policy.terules():
if r.ruletype == "allow":
if str(r.tclass) not in ["process", "file"]:
continue
perms = r.perms
if r.tclass == "process":
if "transition" in perms:
for s, t in itertools.product(
(str(s) for s in r.source.expand()),
(str(t) for t in r.target.expand())):
self.__add_edge(s, t)
self.G[s][t]['transition'].append(r)
if "dyntransition" in perms:
for s, t in itertools.product(
(str(s) for s in r.source.expand()),
(str(t) for t in r.target.expand())):
self.__add_edge(s, t)
self.G[s][t]['dyntransition'].append(r)
if "setexec" in perms:
for s in r.source.expand():
setexec[str(s)].append(r)
if "setcurrent" in perms:
for s in r.source.expand():
setcurrent[str(s)].append(r)
else:
if "execute" in perms:
for s, t in itertools.product(
(str(s) for s in r.source.expand()),
(str(t) for t in r.target.expand())):
execute[s][t].append(r)
if "entrypoint" in perms:
for s, t in itertools.product(
(str(s) for s in r.source.expand()),
(str(t) for t in r.target.expand())):
entrypoint[s][t].append(r)
elif r.ruletype == "type_transition":
if r.tclass != "process":
continue
d = str(r.default)
for s, t in itertools.product(
(str(s) for s in r.source.expand()),
(str(t) for t in r.target.expand())):
type_trans[s][t][d].append(r)
else:
continue
invalid_edge = []
clear_transition = []
clear_dyntransition = []
for s, t in self.G.edges_iter():
invalid_trans = False
invalid_dyntrans = False
if self.G[s][t]['transition']:
# get matching domain exec w/entrypoint type
entry = set(entrypoint[t].keys())
exe = set(execute[s].keys())
match = entry.intersection(exe)
if not match:
# there are no valid entrypoints
invalid_trans = True
else:
# TODO try to improve the
# efficiency in this loop
for m in match:
if s in setexec or type_trans[s][m]:
# add subkey for each entrypoint
self.G[s][t]['entrypoint'][m] += entrypoint[t][m]
self.G[s][t]['execute'][m] += execute[s][m]
if type_trans[s][m][t]:
self.G[s][t]['type_transition'][
m] += type_trans[s][m][t]
if s in setexec:
self.G[s][t]['setexec'] += setexec[s]
if not self.G[s][t]['setexec'] and not self.G[s][t]['type_transition']:
invalid_trans = True
else:
invalid_trans = True
if self.G[s][t]['dyntransition']:
if s in setcurrent:
self.G[s][t]['setcurrent'] += setcurrent[s]
else:
invalid_dyntrans = True
else:
invalid_dyntrans = True
# cannot change the edges while iterating over them,
# so keep appropriate lists
if invalid_trans and invalid_dyntrans:
invalid_edge.append((s, t))
elif invalid_trans:
clear_transition.append((s, t))
elif invalid_dyntrans:
clear_dyntransition.append((s, t))
# Remove invalid transitions
self.G.remove_edges_from(invalid_edge)
for s, t in clear_transition:
# if only the regular transition is invalid,
# clear the relevant lists
del self.G[s][t]['transition'][:]
self.G[s][t]['execute'].clear()
self.G[s][t]['entrypoint'].clear()
self.G[s][t]['type_transition'].clear()
del self.G[s][t]['setexec'][:]
for s, t in clear_dyntransition:
# if only the dynamic transition is invalid,
# clear the relevant lists
del self.G[s][t]['dyntransition'][:]
del self.G[s][t]['setcurrent'][:]
self.rebuildgraph = False