mpv/video/out/filter_kernels.c

386 lines
11 KiB
C

/*
* This file is part of mplayer2.
*
* Most code for computing the weights is taken from Anti-Grain Geometry (AGG)
* (licensed under GPL 2 or later), with modifications.
* Copyright (C) 2002-2006 Maxim Shemanarev
* http://vector-agg.cvs.sourceforge.net/viewvc/vector-agg/agg-2.5/include/agg_image_filters.h?view=markup
*
* Also see glumpy (BSD licensed), contains the same code in Python:
* http://code.google.com/p/glumpy/source/browse/glumpy/image/filter.py
*
* Also see Vapoursynth plugin fmtconv (WTFPL Licensed), which is based on
* dither plugin for avisynth from the same author:
* https://github.com/vapoursynth/fmtconv/tree/master/src/fmtc
*
* Also see: Paul Heckbert's "zoom"
*
* Also see XBMC: ConvolutionKernels.cpp etc.
*
* mplayer2 is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mplayer2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mplayer2; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stddef.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "filter_kernels.h"
// NOTE: all filters are separable, symmetric, and are intended for use with
// a lookup table/texture.
const struct filter_kernel *mp_find_filter_kernel(const char *name)
{
for (const struct filter_kernel *k = mp_filter_kernels; k->name; k++) {
if (strcmp(k->name, name) == 0)
return k;
}
return NULL;
}
// sizes = sorted list of available filter sizes, terminated with size 0
// inv_scale = source_size / dest_size
bool mp_init_filter(struct filter_kernel *filter, const int *sizes,
double inv_scale)
{
if (filter->radius < 0)
filter->radius = 2.0;
// polar filters can be of any radius, and nothing special is needed
if (filter->polar) {
filter->size = filter->radius;
filter->num_coefficients = 1;
return true;
}
// only downscaling requires widening the filter
filter->inv_scale = inv_scale >= 1.0 ? inv_scale : 1.0;
double support = filter->radius * filter->inv_scale;
int size = ceil(2.0 * support);
// round up to smallest available size that's still large enough
if (size < sizes[0])
size = sizes[0];
const int *cursize = sizes;
while (size > *cursize && *cursize)
cursize++;
if (*cursize) {
filter->size = *cursize;
filter->num_coefficients = filter->size;
return true;
} else {
// The filter doesn't fit - instead of failing completely, use the
// largest filter available. This is incorrect, but better than refusing
// to do anything.
filter->size = cursize[-1];
filter->num_coefficients = filter->size;
filter->inv_scale = filter->size / 2.0 / filter->radius;
return false;
}
}
// Calculate the 1D filtering kernel for N sample points.
// N = number of samples, which is filter->size
// The weights will be stored in out_w[0] to out_w[N - 1]
// f = x0 - abs(x0), subpixel position in the range [0,1) or [0,1].
void mp_compute_weights(struct filter_kernel *filter, double f, float *out_w)
{
assert(filter->size > 0);
double sum = 0;
for (int n = 0; n < filter->size; n++) {
double x = f - (n - filter->size / 2 + 1);
double c = fabs(x) / filter->inv_scale;
double w = c <= filter->radius ? filter->weight(filter, c) : 0;
out_w[n] = w;
sum += w;
}
//normalize
for (int n = 0; n < filter->size; n++)
out_w[n] /= sum;
}
// Fill the given array with weights for the range [0.0, 1.0]. The array is
// interpreted as rectangular array of count * filter->num_coefficients items.
void mp_compute_lut(struct filter_kernel *filter, int count, float *out_array)
{
if (filter->polar) {
assert(filter->radius > 0);
for (int x = 0; x < count; x++) {
double r = x * filter->radius / (count - 1);
out_array[x] = r <= filter->radius ? filter->weight(filter, r) : 0;
}
} else {
for (int n = 0; n < count; n++) {
mp_compute_weights(filter, n / (double)(count - 1),
out_array + filter->size * n);
}
}
}
typedef struct filter_kernel kernel;
static double nearest(kernel *k, double x)
{
return x > 0.5 ? 0.0 : 1.0;
}
static double bilinear(kernel *k, double x)
{
return 1.0 - x;
}
static double hanning(kernel *k, double x)
{
return 0.5 + 0.5 * cos(M_PI * x);
}
static double hamming(kernel *k, double x)
{
return 0.54 + 0.46 * cos(M_PI * x);
}
static double hermite(kernel *k, double x)
{
return (2.0 * x - 3.0) * x * x + 1.0;
}
static double quadric(kernel *k, double x)
{
// NOTE: glumpy uses 0.75, AGG uses 0.5
if (x < 0.5)
return 0.75 - x * x;
if (x < 1.5)
return 0.5 * (x - 1.5) * (x - 1.5);
return 0;
}
static double bc_pow3(double x)
{
return (x <= 0) ? 0 : x * x * x;
}
static double bicubic(kernel *k, double x)
{
return (1.0/6.0) * ( bc_pow3(x + 2)
- 4 * bc_pow3(x + 1)
+ 6 * bc_pow3(x)
- 4 * bc_pow3(x - 1));
}
static double bessel_i0(double epsilon, double x)
{
double sum = 1;
double y = x * x / 4;
double t = y;
for (int i = 2; t > epsilon; i++) {
sum += t;
t *= y / (i * i);
}
return sum;
}
static double kaiser(kernel *k, double x)
{
double a = k->params[0];
double b = k->params[1];
double epsilon = 1e-12;
double i0a = 1 / bessel_i0(epsilon, b);
return bessel_i0(epsilon, a * sqrt(1 - x * x)) * i0a;
}
static double catmull_rom(kernel *k, double x)
{
if (x < 1.0)
return 0.5 * (2.0 + x * x * (-5.0 + x * 3.0));
if (x < 2.0)
return 0.5 * (4.0 + x * (-8.0 + x * (5.0 - x)));
return 0;
}
// Mitchell-Netravali
static double mitchell(kernel *k, double x)
{
double b = k->params[0];
double c = k->params[1];
double
p0 = (6.0 - 2.0 * b) / 6.0,
p2 = (-18.0 + 12.0 * b + 6.0 * c) / 6.0,
p3 = (12.0 - 9.0 * b - 6.0 * c) / 6.0,
q0 = (8.0 * b + 24.0 * c) / 6.0,
q1 = (-12.0 * b - 48.0 * c) / 6.0,
q2 = (6.0 * b + 30.0 * c) / 6.0,
q3 = (-b - 6.0 * c) / 6.0;
if (x < 1.0)
return p0 + x * x * (p2 + x * p3);
if (x < 2.0)
return q0 + x * (q1 + x * (q2 + x * q3));
return 0;
}
static double spline16(kernel *k, double x)
{
if (x < 1.0)
return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
}
static double spline36(kernel *k, double x)
{
if(x < 1.0)
return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
if(x < 2.0)
return ((-6.0/11.0 * (x - 1) + 270.0/209.0) * (x - 1) - 156.0/209.0)
* (x - 1);
return ((1.0/11.0 * (x - 2) - 45.0/209.0) * (x - 2) + 26.0/209.0)
* (x - 2);
}
static double spline64(kernel *k, double x)
{
if (x < 1.0)
return ((49.0 / 41.0 * x - 6387.0 / 2911.0) * x - 3.0 / 2911.0) * x + 1.0;
if (x < 2.0)
return ((-24.0 / 41.0 * (x - 1) + 4032.0 / 2911.0) * (x - 1) - 2328.0 / 2911.0)
* (x - 1);
if (x < 3.0)
return ((6.0 / 41.0 * (x - 2) - 1008.0 / 2911.0) * (x - 2) + 582.0 / 2911.0)
* (x - 2);
return ((-1.0 / 41.0 * (x - 3) + 168.0 / 2911.0) * (x - 3) - 97.0 / 2911.0)
* (x - 3);
}
static double gaussian(kernel *k, double x)
{
double p = k->params[0];
if (p > 100.0)
p = 100.0;
if (p < 1.0)
p = 1.0;
return pow(2.0, -(p / 10.0) * x * x);
}
static double sinc(kernel *k, double x)
{
if (x == 0.0)
return 1.0;
double pix = M_PI * x;
return sin(pix) / pix;
}
static double jinc(kernel *k, double x)
{
if (x == 0.0)
return 1.0;
double pix = M_PI * x;
return 2.0 * j1(pix) / pix;
}
static double lanczos(kernel *k, double x)
{
double radius = k->size / 2;
if (x < -radius || x > radius)
return 0;
if (x == 0)
return 1;
double pix = M_PI * x;
return radius * sin(pix) * sin(pix / radius) / (pix * pix);
}
static double ewa_lanczos(kernel *k, double x)
{
double radius = k->radius;
assert(radius >= 1.0);
// This is already three orders of magnitude slower than anything you could
// possibly hope to play back in realtime and results in tons of ringing
// artifacts, so I doubt anybody will complain.
if (radius > 16)
radius = 16;
if (fabs(x) < 1e-8)
return 1.0;
if (fabs(x) >= radius)
return 0.0;
// Precomputed zeros of the jinc() function, needed to adjust the
// window size. Computing this at runtime is nontrivial.
// Copied from: https://github.com/AviSynth/jinc-resize/blob/master/JincResize/JincFilter.cpp#L171
static double jinc_zeros[16] = {
1.2196698912665045,
2.2331305943815286,
3.2383154841662362,
4.2410628637960699,
5.2427643768701817,
6.2439216898644877,
7.2447598687199570,
8.2453949139520427,
9.2458926849494673,
10.246293348754916,
11.246622794877883,
12.246898461138105,
13.247132522181061,
14.247333735806849,
15.247508563037300,
16.247661874700962
};
double window = jinc_zeros[0] / jinc_zeros[(int)radius - 1];
return jinc(k, x) * jinc(k, x*window);
}
static double blackman(kernel *k, double x)
{
double radius = k->size / 2;
if (x == 0.0)
return 1.0;
if (x > radius)
return 0.0;
x *= M_PI;
double xr = x / radius;
return (sin(x) / x) * (0.42 + 0.5 * cos(xr) + 0.08 * cos(2 * xr));
}
const struct filter_kernel mp_filter_kernels[] = {
{"nearest", 0.5, nearest},
{"bilinear_slow", 1, bilinear},
{"hanning", 1, hanning},
{"hamming", 1, hamming},
{"hermite", 1, hermite},
{"quadric", 1.5, quadric},
{"bicubic", 2, bicubic},
{"kaiser", 1, kaiser, .params = {6.33, 6.33} },
{"catmull_rom", 2, catmull_rom},
{"mitchell", 2, mitchell, .params = {1.0/3.0, 1.0/3.0} },
{"spline16", 2, spline16},
{"spline36", 3, spline36},
{"spline64", 4, spline64},
{"gaussian", -1, gaussian, .params = {28.85390081777927, NAN} },
{"sinc2", 2, sinc},
{"sinc3", 3, sinc},
{"sinc4", 4, sinc},
{"sinc", -1, sinc},
{"ewa_lanczos2", 2, ewa_lanczos, .polar = true},
{"ewa_lanczos3", 3, ewa_lanczos, .polar = true},
{"ewa_lanczos4", 4, ewa_lanczos, .polar = true},
{"ewa_lanczos", -1, ewa_lanczos, .polar = true},
{"lanczos2", 2, lanczos},
{"lanczos3", 3, lanczos},
{"lanczos4", 4, lanczos},
{"lanczos", -1, lanczos},
{"blackman2", 2, blackman},
{"blackman3", 3, blackman},
{"blackman4", 4, blackman},
{"blackman", -1, blackman},
{0}
};