mirror of https://github.com/mpv-player/mpv
df58e82237
The VO is run inside its own thread. It also does most of video timing. The playloop hands the image data and a realtime timestamp to the VO, and the VO does the rest. In particular, this allows the playloop to do other things, instead of blocking for video redraw. But if anything accesses the VO during video timing, it will block. This also fixes vo_sdl.c event handling; but that is only a side-effect, since reimplementing the broken way would require more effort. Also drop --softsleep. In theory, this option helps if the kernel's sleeping mechanism is too inaccurate for video timing. In practice, I haven't ever encountered a situation where it helps, and it just burns CPU cycles. On the other hand it's probably actively harmful, because it prevents the libavcodec decoder threads from doing real work. Side note: Originally, I intended that multiple frames can be queued to the VO. But this is not done, due to problems with OSD and other certain features. OSD in particular is simply designed in a way that it can be neither timed nor copied, so you do have to render it into the video frame before you can draw the next frame. (Subtitles have no such restriction. sd_lavc was even updated to fix this.) It seems the right solution to queuing multiple VO frames is rendering on VO-backed framebuffers, like vo_vdpau.c does. This requires VO driver support, and is out of scope of this commit. As consequence, the VO has a queue size of 1. The existing video queue is just needed to compute frame duration, and will be moved out in the next commit. |
||
---|---|---|
.. | ||
dec_video.c | ||
dec_video.h | ||
lavc.h | ||
vaapi.c | ||
vd.h | ||
vd_lavc.c | ||
vda.c | ||
vdpau.c |