1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-10 08:59:45 +00:00
mpv/video/out/opengl/utils.c

1055 lines
32 KiB
C

/*
* This file is part of mpv.
* Parts based on MPlayer code by Reimar Döffinger.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <assert.h>
#include "common/common.h"
#include "utils.h"
// GLU has this as gluErrorString (we don't use GLU, as it is legacy-OpenGL)
static const char *gl_error_to_string(GLenum error)
{
switch (error) {
case GL_INVALID_ENUM: return "INVALID_ENUM";
case GL_INVALID_VALUE: return "INVALID_VALUE";
case GL_INVALID_OPERATION: return "INVALID_OPERATION";
case GL_INVALID_FRAMEBUFFER_OPERATION: return "INVALID_FRAMEBUFFER_OPERATION";
case GL_OUT_OF_MEMORY: return "OUT_OF_MEMORY";
default: return "unknown";
}
}
void glCheckError(GL *gl, struct mp_log *log, const char *info)
{
for (;;) {
GLenum error = gl->GetError();
if (error == GL_NO_ERROR)
break;
mp_msg(log, MSGL_ERR, "%s: OpenGL error %s.\n", info,
gl_error_to_string(error));
}
}
// return the number of bytes per pixel for the given format
// does not handle all possible variants, just those used by mpv
int glFmt2bpp(GLenum format, GLenum type)
{
int component_size = 0;
switch (type) {
case GL_UNSIGNED_BYTE_3_3_2:
case GL_UNSIGNED_BYTE_2_3_3_REV:
return 1;
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
return 2;
case GL_UNSIGNED_BYTE:
component_size = 1;
break;
case GL_UNSIGNED_SHORT:
component_size = 2;
break;
}
switch (format) {
case GL_LUMINANCE:
case GL_ALPHA:
return component_size;
case GL_RGB_422_APPLE:
return 2;
case GL_RGB:
case GL_BGR:
case GL_RGB_INTEGER:
return 3 * component_size;
case GL_RGBA:
case GL_BGRA:
case GL_RGBA_INTEGER:
return 4 * component_size;
case GL_RED:
case GL_RED_INTEGER:
return component_size;
case GL_RG:
case GL_LUMINANCE_ALPHA:
case GL_RG_INTEGER:
return 2 * component_size;
}
abort(); // unknown
}
static int get_alignment(int stride)
{
if (stride % 8 == 0)
return 8;
if (stride % 4 == 0)
return 4;
if (stride % 2 == 0)
return 2;
return 1;
}
// upload a texture, handling things like stride and slices
// target: texture target, usually GL_TEXTURE_2D
// format, type: texture parameters
// dataptr, stride: image data
// x, y, width, height: part of the image to upload
// slice: height of an upload slice, 0 for all at once
void glUploadTex(GL *gl, GLenum target, GLenum format, GLenum type,
const void *dataptr, int stride,
int x, int y, int w, int h, int slice)
{
const uint8_t *data = dataptr;
int y_max = y + h;
if (w <= 0 || h <= 0)
return;
if (slice <= 0)
slice = h;
if (stride < 0) {
data += (h - 1) * stride;
stride = -stride;
}
gl->PixelStorei(GL_UNPACK_ALIGNMENT, get_alignment(stride));
bool use_rowlength = slice > 1 && (gl->mpgl_caps & MPGL_CAP_ROW_LENGTH);
if (use_rowlength) {
// this is not always correct, but should work for MPlayer
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, stride / glFmt2bpp(format, type));
} else {
if (stride != glFmt2bpp(format, type) * w)
slice = 1; // very inefficient, but at least it works
}
for (; y + slice <= y_max; y += slice) {
gl->TexSubImage2D(target, 0, x, y, w, slice, format, type, data);
data += stride * slice;
}
if (y < y_max)
gl->TexSubImage2D(target, 0, x, y, w, y_max - y, format, type, data);
if (use_rowlength)
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
// Like glUploadTex, but upload a byte array with all elements set to val.
// If scratch is not NULL, points to a resizeable talloc memory block than can
// be freely used by the function (for avoiding temporary memory allocations).
void glClearTex(GL *gl, GLenum target, GLenum format, GLenum type,
int x, int y, int w, int h, uint8_t val, void **scratch)
{
int bpp = glFmt2bpp(format, type);
int stride = w * bpp;
int size = h * stride;
if (size < 1)
return;
void *data = scratch ? *scratch : NULL;
if (talloc_get_size(data) < size)
data = talloc_realloc(NULL, data, char *, size);
memset(data, val, size);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, get_alignment(stride));
gl->TexSubImage2D(target, 0, x, y, w, h, format, type, data);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
if (scratch) {
*scratch = data;
} else {
talloc_free(data);
}
}
mp_image_t *glGetWindowScreenshot(GL *gl)
{
if (gl->es)
return NULL; // ES can't read from front buffer
GLint vp[4]; //x, y, w, h
gl->GetIntegerv(GL_VIEWPORT, vp);
mp_image_t *image = mp_image_alloc(IMGFMT_RGB24, vp[2], vp[3]);
if (!image)
return NULL;
gl->PixelStorei(GL_PACK_ALIGNMENT, 1);
gl->ReadBuffer(GL_FRONT);
//flip image while reading (and also avoid stride-related trouble)
for (int y = 0; y < vp[3]; y++) {
gl->ReadPixels(vp[0], vp[1] + vp[3] - y - 1, vp[2], 1,
GL_RGB, GL_UNSIGNED_BYTE,
image->planes[0] + y * image->stride[0]);
}
gl->PixelStorei(GL_PACK_ALIGNMENT, 4);
return image;
}
void mp_log_source(struct mp_log *log, int lev, const char *src)
{
int line = 1;
if (!src)
return;
while (*src) {
const char *end = strchr(src, '\n');
const char *next = end + 1;
if (!end)
next = end = src + strlen(src);
mp_msg(log, lev, "[%3d] %.*s\n", line, (int)(end - src), src);
line++;
src = next;
}
}
static void gl_vao_enable_attribs(struct gl_vao *vao)
{
GL *gl = vao->gl;
for (int n = 0; vao->entries[n].name; n++) {
const struct gl_vao_entry *e = &vao->entries[n];
gl->EnableVertexAttribArray(n);
gl->VertexAttribPointer(n, e->num_elems, e->type, e->normalized,
vao->stride, (void *)(intptr_t)e->offset);
}
}
void gl_vao_init(struct gl_vao *vao, GL *gl, int stride,
const struct gl_vao_entry *entries)
{
assert(!vao->vao);
assert(!vao->buffer);
*vao = (struct gl_vao){
.gl = gl,
.stride = stride,
.entries = entries,
};
gl->GenBuffers(1, &vao->buffer);
if (gl->BindVertexArray) {
gl->BindBuffer(GL_ARRAY_BUFFER, vao->buffer);
gl->GenVertexArrays(1, &vao->vao);
gl->BindVertexArray(vao->vao);
gl_vao_enable_attribs(vao);
gl->BindVertexArray(0);
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
}
}
void gl_vao_uninit(struct gl_vao *vao)
{
GL *gl = vao->gl;
if (!gl)
return;
if (gl->DeleteVertexArrays)
gl->DeleteVertexArrays(1, &vao->vao);
gl->DeleteBuffers(1, &vao->buffer);
*vao = (struct gl_vao){0};
}
void gl_vao_bind(struct gl_vao *vao)
{
GL *gl = vao->gl;
if (gl->BindVertexArray) {
gl->BindVertexArray(vao->vao);
} else {
gl->BindBuffer(GL_ARRAY_BUFFER, vao->buffer);
gl_vao_enable_attribs(vao);
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
}
}
void gl_vao_unbind(struct gl_vao *vao)
{
GL *gl = vao->gl;
if (gl->BindVertexArray) {
gl->BindVertexArray(0);
} else {
for (int n = 0; vao->entries[n].name; n++)
gl->DisableVertexAttribArray(n);
}
}
// Draw the vertex data (as described by the gl_vao_entry entries) in ptr
// to the screen. num is the number of vertexes. prim is usually GL_TRIANGLES.
// If ptr is NULL, then skip the upload, and use the data uploaded with the
// previous call.
void gl_vao_draw_data(struct gl_vao *vao, GLenum prim, void *ptr, size_t num)
{
GL *gl = vao->gl;
if (ptr) {
gl->BindBuffer(GL_ARRAY_BUFFER, vao->buffer);
gl->BufferData(GL_ARRAY_BUFFER, num * vao->stride, ptr, GL_DYNAMIC_DRAW);
gl->BindBuffer(GL_ARRAY_BUFFER, 0);
}
gl_vao_bind(vao);
gl->DrawArrays(prim, 0, num);
gl_vao_unbind(vao);
}
struct gl_format {
GLenum format;
GLenum type;
GLint internal_format;
};
static const struct gl_format gl_formats[] = {
// GLES 3.0
{GL_RGB, GL_UNSIGNED_BYTE, GL_RGB},
{GL_RGBA, GL_UNSIGNED_BYTE, GL_RGBA},
{GL_RGB, GL_UNSIGNED_BYTE, GL_RGB8},
{GL_RGBA, GL_UNSIGNED_BYTE, GL_RGBA8},
{GL_RGB, GL_UNSIGNED_SHORT, GL_RGB16},
{GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, GL_RGB10_A2},
// not texture filterable in GLES 3.0
{GL_RGB, GL_FLOAT, GL_RGB16F},
{GL_RGBA, GL_FLOAT, GL_RGBA16F},
{GL_RGB, GL_FLOAT, GL_RGB32F},
{GL_RGBA, GL_FLOAT, GL_RGBA32F},
// Desktop GL
{GL_RGB, GL_UNSIGNED_SHORT, GL_RGB10},
{GL_RGBA, GL_UNSIGNED_SHORT, GL_RGBA12},
{GL_RGBA, GL_UNSIGNED_SHORT, GL_RGBA16},
{0}
};
// Create a texture and a FBO using the texture as color attachments.
// iformat: texture internal format
// Returns success.
bool fbotex_init(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
GLenum iformat)
{
assert(!fbo->fbo);
assert(!fbo->texture);
return fbotex_change(fbo, gl, log, w, h, iformat, 0);
}
// Like fbotex_init(), except it can be called on an already initialized FBO;
// and if the parameters are the same as the previous call, do not touch it.
// flags can be 0, or a combination of FBOTEX_FUZZY_W and FBOTEX_FUZZY_H.
// Enabling FUZZY for W or H means the w or h does not need to be exact.
bool fbotex_change(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
GLenum iformat, int flags)
{
bool res = true;
int cw = w, ch = h;
if ((flags & FBOTEX_FUZZY_W) && cw < fbo->rw)
cw = fbo->rw;
if ((flags & FBOTEX_FUZZY_H) && ch < fbo->rh)
ch = fbo->rh;
if (fbo->rw == cw && fbo->rh == ch && fbo->iformat == iformat) {
fbo->lw = w;
fbo->lh = h;
return true;
}
int lw = w, lh = h;
if (flags & FBOTEX_FUZZY_W)
w = MP_ALIGN_UP(w, 256);
if (flags & FBOTEX_FUZZY_H)
h = MP_ALIGN_UP(h, 256);
GLenum filter = fbo->tex_filter;
struct gl_format format = {
.format = GL_RGBA,
.type = GL_UNSIGNED_BYTE,
.internal_format = iformat,
};
for (int n = 0; gl_formats[n].format; n++) {
if (gl_formats[n].internal_format == format.internal_format) {
format = gl_formats[n];
break;
}
}
*fbo = (struct fbotex) {
.gl = gl,
.rw = w,
.rh = h,
.lw = lw,
.lh = lh,
.iformat = iformat,
};
mp_verbose(log, "Create FBO: %dx%d -> %dx%d\n", fbo->lw, fbo->lh,
fbo->rw, fbo->rh);
if (!(gl->mpgl_caps & MPGL_CAP_FB))
return false;
gl->GenFramebuffers(1, &fbo->fbo);
gl->GenTextures(1, &fbo->texture);
gl->BindTexture(GL_TEXTURE_2D, fbo->texture);
gl->TexImage2D(GL_TEXTURE_2D, 0, format.internal_format, fbo->rw, fbo->rh, 0,
format.format, format.type, NULL);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl->BindTexture(GL_TEXTURE_2D, 0);
fbotex_set_filter(fbo, filter ? filter : GL_LINEAR);
glCheckError(gl, log, "after creating framebuffer texture");
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, fbo->texture, 0);
GLenum err = gl->CheckFramebufferStatus(GL_FRAMEBUFFER);
if (err != GL_FRAMEBUFFER_COMPLETE) {
mp_err(log, "Error: framebuffer completeness check failed (error=%d).\n",
(int)err);
res = false;
}
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
glCheckError(gl, log, "after creating framebuffer");
return res;
}
void fbotex_set_filter(struct fbotex *fbo, GLenum tex_filter)
{
GL *gl = fbo->gl;
if (fbo->tex_filter != tex_filter && fbo->texture) {
gl->BindTexture(GL_TEXTURE_2D, fbo->texture);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, tex_filter);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, tex_filter);
gl->BindTexture(GL_TEXTURE_2D, 0);
}
fbo->tex_filter = tex_filter;
}
void fbotex_uninit(struct fbotex *fbo)
{
GL *gl = fbo->gl;
if (gl && (gl->mpgl_caps & MPGL_CAP_FB)) {
gl->DeleteFramebuffers(1, &fbo->fbo);
gl->DeleteTextures(1, &fbo->texture);
*fbo = (struct fbotex) {0};
}
}
// Standard parallel 2D projection, except y1 < y0 means that the coordinate
// system is flipped, not the projection.
void gl_transform_ortho(struct gl_transform *t, float x0, float x1,
float y0, float y1)
{
if (y1 < y0) {
float tmp = y0;
y0 = tmp - y1;
y1 = tmp;
}
t->m[0][0] = 2.0f / (x1 - x0);
t->m[0][1] = 0.0f;
t->m[1][0] = 0.0f;
t->m[1][1] = 2.0f / (y1 - y0);
t->t[0] = -(x1 + x0) / (x1 - x0);
t->t[1] = -(y1 + y0) / (y1 - y0);
}
// Apply the effects of one transformation to another, transforming it in the
// process. In other words: post-composes t onto x
void gl_transform_trans(struct gl_transform t, struct gl_transform *x)
{
float x00 = x->m[0][0], x01 = x->m[0][1], x10 = x->m[1][0], x11 = x->m[1][1];
x->m[0][0] = t.m[0][0] * x00 + t.m[0][1] * x10;
x->m[1][0] = t.m[0][0] * x01 + t.m[0][1] * x11;
x->m[0][1] = t.m[1][0] * x00 + t.m[1][1] * x10;
x->m[1][1] = t.m[1][0] * x01 + t.m[1][1] * x11;
gl_transform_vec(t, &x->t[0], &x->t[1]);
}
static void GLAPIENTRY gl_debug_cb(GLenum source, GLenum type, GLuint id,
GLenum severity, GLsizei length,
const GLchar *message, const void *userParam)
{
// keep in mind that the debug callback can be asynchronous
struct mp_log *log = (void *)userParam;
int level = MSGL_ERR;
switch (severity) {
case GL_DEBUG_SEVERITY_NOTIFICATION:level = MSGL_V; break;
case GL_DEBUG_SEVERITY_LOW: level = MSGL_INFO; break;
case GL_DEBUG_SEVERITY_MEDIUM: level = MSGL_WARN; break;
case GL_DEBUG_SEVERITY_HIGH: level = MSGL_ERR; break;
}
mp_msg(log, level, "GL: %s\n", message);
}
void gl_set_debug_logger(GL *gl, struct mp_log *log)
{
if (gl->DebugMessageCallback) {
if (log) {
gl->DebugMessageCallback(gl_debug_cb, log);
} else {
gl->DebugMessageCallback(NULL, NULL);
}
}
}
#define SC_ENTRIES 32
#define SC_UNIFORM_ENTRIES 20
enum uniform_type {
UT_invalid,
UT_i,
UT_f,
UT_m,
UT_buffer,
};
union uniform_val {
GLfloat f[9];
GLint i[4];
struct {
char* text;
GLint binding;
} buffer;
};
struct sc_uniform {
char *name;
enum uniform_type type;
const char *glsl_type;
int size;
GLint loc;
union uniform_val v;
};
struct sc_entry {
GLuint gl_shader;
GLint uniform_locs[SC_UNIFORM_ENTRIES];
union uniform_val cached_v[SC_UNIFORM_ENTRIES];
bstr frag;
bstr vert;
struct gl_vao *vao;
};
struct gl_shader_cache {
GL *gl;
struct mp_log *log;
// this is modified during use (gl_sc_add() etc.)
bstr prelude_text;
bstr header_text;
bstr text;
struct gl_vao *vao;
struct sc_entry entries[SC_ENTRIES];
int num_entries;
struct sc_uniform uniforms[SC_UNIFORM_ENTRIES];
int num_uniforms;
// temporary buffers (avoids frequent reallocations)
bstr tmp[5];
};
struct gl_shader_cache *gl_sc_create(GL *gl, struct mp_log *log)
{
struct gl_shader_cache *sc = talloc_ptrtype(NULL, sc);
*sc = (struct gl_shader_cache){
.gl = gl,
.log = log,
};
return sc;
}
void gl_sc_reset(struct gl_shader_cache *sc)
{
sc->prelude_text.len = 0;
sc->header_text.len = 0;
sc->text.len = 0;
for (int n = 0; n < sc->num_uniforms; n++) {
talloc_free(sc->uniforms[n].name);
if (sc->uniforms[n].type == UT_buffer)
talloc_free(sc->uniforms[n].v.buffer.text);
}
sc->num_uniforms = 0;
}
static void sc_flush_cache(struct gl_shader_cache *sc)
{
for (int n = 0; n < sc->num_entries; n++) {
struct sc_entry *e = &sc->entries[n];
sc->gl->DeleteProgram(e->gl_shader);
talloc_free(e->vert.start);
talloc_free(e->frag.start);
}
sc->num_entries = 0;
}
void gl_sc_destroy(struct gl_shader_cache *sc)
{
if (!sc)
return;
gl_sc_reset(sc);
sc_flush_cache(sc);
talloc_free(sc);
}
void gl_sc_enable_extension(struct gl_shader_cache *sc, char *name)
{
bstr_xappend_asprintf(sc, &sc->prelude_text, "#extension %s : enable\n", name);
}
#define bstr_xappend0(sc, b, s) bstr_xappend(sc, b, bstr0(s))
void gl_sc_add(struct gl_shader_cache *sc, const char *text)
{
bstr_xappend0(sc, &sc->text, text);
}
void gl_sc_addf(struct gl_shader_cache *sc, const char *textf, ...)
{
va_list ap;
va_start(ap, textf);
bstr_xappend_vasprintf(sc, &sc->text, textf, ap);
va_end(ap);
}
void gl_sc_hadd(struct gl_shader_cache *sc, const char *text)
{
bstr_xappend0(sc, &sc->header_text, text);
}
void gl_sc_haddf(struct gl_shader_cache *sc, const char *textf, ...)
{
va_list ap;
va_start(ap, textf);
bstr_xappend_vasprintf(sc, &sc->header_text, textf, ap);
va_end(ap);
}
static struct sc_uniform *find_uniform(struct gl_shader_cache *sc,
const char *name)
{
for (int n = 0; n < sc->num_uniforms; n++) {
if (strcmp(sc->uniforms[n].name, name) == 0)
return &sc->uniforms[n];
}
// not found -> add it
assert(sc->num_uniforms < SC_UNIFORM_ENTRIES); // just don't have too many
struct sc_uniform *new = &sc->uniforms[sc->num_uniforms++];
*new = (struct sc_uniform) { .loc = -1, .name = talloc_strdup(NULL, name) };
return new;
}
const char* mp_sampler_type(GLenum texture_target)
{
switch (texture_target) {
case GL_TEXTURE_1D: return "sampler1D";
case GL_TEXTURE_2D: return "sampler2D";
case GL_TEXTURE_RECTANGLE: return "sampler2DRect";
case GL_TEXTURE_3D: return "sampler3D";
default: abort();
}
}
void gl_sc_uniform_sampler(struct gl_shader_cache *sc, char *name, GLenum target,
int unit)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_i;
u->size = 1;
u->glsl_type = mp_sampler_type(target);
u->v.i[0] = unit;
}
void gl_sc_uniform_sampler_ui(struct gl_shader_cache *sc, char *name, int unit)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_i;
u->size = 1;
u->glsl_type = sc->gl->es ? "highp usampler2D" : "usampler2D";
u->v.i[0] = unit;
}
void gl_sc_uniform_f(struct gl_shader_cache *sc, char *name, GLfloat f)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_f;
u->size = 1;
u->glsl_type = "float";
u->v.f[0] = f;
}
void gl_sc_uniform_i(struct gl_shader_cache *sc, char *name, GLint i)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_i;
u->size = 1;
u->glsl_type = "int";
u->v.i[0] = i;
}
void gl_sc_uniform_vec2(struct gl_shader_cache *sc, char *name, GLfloat f[2])
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_f;
u->size = 2;
u->glsl_type = "vec2";
u->v.f[0] = f[0];
u->v.f[1] = f[1];
}
void gl_sc_uniform_vec3(struct gl_shader_cache *sc, char *name, GLfloat f[3])
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_f;
u->size = 3;
u->glsl_type = "vec3";
u->v.f[0] = f[0];
u->v.f[1] = f[1];
u->v.f[2] = f[2];
}
static void transpose2x2(float r[2 * 2])
{
MPSWAP(float, r[0+2*1], r[1+2*0]);
}
void gl_sc_uniform_mat2(struct gl_shader_cache *sc, char *name,
bool transpose, GLfloat *v)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_m;
u->size = 2;
u->glsl_type = "mat2";
for (int n = 0; n < 4; n++)
u->v.f[n] = v[n];
if (transpose)
transpose2x2(&u->v.f[0]);
}
static void transpose3x3(float r[3 * 3])
{
MPSWAP(float, r[0+3*1], r[1+3*0]);
MPSWAP(float, r[0+3*2], r[2+3*0]);
MPSWAP(float, r[1+3*2], r[2+3*1]);
}
void gl_sc_uniform_mat3(struct gl_shader_cache *sc, char *name,
bool transpose, GLfloat *v)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_m;
u->size = 3;
u->glsl_type = "mat3";
for (int n = 0; n < 9; n++)
u->v.f[n] = v[n];
if (transpose)
transpose3x3(&u->v.f[0]);
}
void gl_sc_uniform_buffer(struct gl_shader_cache *sc, char *name,
const char *text, int binding)
{
struct sc_uniform *u = find_uniform(sc, name);
u->type = UT_buffer;
u->v.buffer.text = talloc_strdup(sc, text);
u->v.buffer.binding = binding;
}
// This will call glBindAttribLocation() on the shader before it's linked
// (OpenGL requires this to happen before linking). Basically, it associates
// the input variable names with the fields in the vao.
// The vertex shader is setup such that the elements are available as fragment
// shader variables using the names in the vao entries, which "position" being
// set to gl_Position.
void gl_sc_set_vao(struct gl_shader_cache *sc, struct gl_vao *vao)
{
sc->vao = vao;
}
static const char *vao_glsl_type(const struct gl_vao_entry *e)
{
// pretty dumb... too dumb, but works for us
switch (e->num_elems) {
case 1: return "float";
case 2: return "vec2";
case 3: return "vec3";
case 4: return "vec4";
default: abort();
}
}
// Assumes program is current (gl->UseProgram(program)).
static void update_uniform(GL *gl, struct sc_entry *e, struct sc_uniform *u, int n)
{
if (u->type == UT_buffer) {
GLuint idx = gl->GetUniformBlockIndex(e->gl_shader, u->name);
gl->UniformBlockBinding(e->gl_shader, idx, u->v.buffer.binding);
return;
}
GLint loc = e->uniform_locs[n];
if (loc < 0)
return;
switch (u->type) {
case UT_i:
assert(u->size == 1);
if (memcmp(e->cached_v[n].i, u->v.i, sizeof(u->v.i)) != 0) {
memcpy(e->cached_v[n].i, u->v.i, sizeof(u->v.i));
gl->Uniform1i(loc, u->v.i[0]);
}
break;
case UT_f:
if (memcmp(e->cached_v[n].f, u->v.f, sizeof(u->v.f)) != 0) {
memcpy(e->cached_v[n].f, u->v.f, sizeof(u->v.f));
switch (u->size) {
case 1: gl->Uniform1f(loc, u->v.f[0]); break;
case 2: gl->Uniform2f(loc, u->v.f[0], u->v.f[1]); break;
case 3: gl->Uniform3f(loc, u->v.f[0], u->v.f[1], u->v.f[2]); break;
case 4: gl->Uniform4f(loc, u->v.f[0], u->v.f[1], u->v.f[2],
u->v.f[3]); break;
default: abort();
}
}
break;
case UT_m:
if (memcmp(e->cached_v[n].f, u->v.f, sizeof(u->v.f)) != 0) {
memcpy(e->cached_v[n].f, u->v.f, sizeof(u->v.f));
switch (u->size) {
case 2: gl->UniformMatrix2fv(loc, 1, GL_FALSE, &u->v.f[0]); break;
case 3: gl->UniformMatrix3fv(loc, 1, GL_FALSE, &u->v.f[0]); break;
default: abort();
}
}
break;
default:
abort();
}
}
static void compile_attach_shader(struct gl_shader_cache *sc, GLuint program,
GLenum type, const char *source)
{
GL *gl = sc->gl;
GLuint shader = gl->CreateShader(type);
gl->ShaderSource(shader, 1, &source, NULL);
gl->CompileShader(shader);
GLint status;
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
GLint log_length;
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
if (mp_msg_test(sc->log, pri)) {
MP_MSG(sc, pri, "%s shader source:\n", typestr);
mp_log_source(sc->log, pri, source);
}
if (log_length > 1) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
MP_MSG(sc, pri, "%s shader compile log (status=%d):\n%s\n",
typestr, status, logstr);
talloc_free(logstr);
}
gl->AttachShader(program, shader);
gl->DeleteShader(shader);
}
static void link_shader(struct gl_shader_cache *sc, GLuint program)
{
GL *gl = sc->gl;
gl->LinkProgram(program);
GLint status;
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
GLint log_length;
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
if (mp_msg_test(sc->log, pri)) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
MP_MSG(sc, pri, "shader link log (status=%d): %s\n", status, logstr);
talloc_free(logstr);
}
}
static GLuint create_program(struct gl_shader_cache *sc, const char *vertex,
const char *frag)
{
GL *gl = sc->gl;
MP_VERBOSE(sc, "recompiling a shader program:\n");
if (sc->header_text.len) {
MP_VERBOSE(sc, "header:\n");
mp_log_source(sc->log, MSGL_V, sc->header_text.start);
MP_VERBOSE(sc, "body:\n");
}
if (sc->text.len)
mp_log_source(sc->log, MSGL_V, sc->text.start);
GLuint prog = gl->CreateProgram();
compile_attach_shader(sc, prog, GL_VERTEX_SHADER, vertex);
compile_attach_shader(sc, prog, GL_FRAGMENT_SHADER, frag);
for (int n = 0; sc->vao->entries[n].name; n++) {
char vname[80];
snprintf(vname, sizeof(vname), "vertex_%s", sc->vao->entries[n].name);
gl->BindAttribLocation(prog, n, vname);
}
link_shader(sc, prog);
return prog;
}
#define ADD(x, ...) bstr_xappend_asprintf(sc, (x), __VA_ARGS__)
#define ADD_BSTR(x, s) bstr_xappend(sc, (x), (s))
// 1. Generate vertex and fragment shaders from the fragment shader text added
// with gl_sc_add(). The generated shader program is cached (based on the
// text), so actual compilation happens only the first time.
// 2. Update the uniforms set with gl_sc_uniform_*.
// 3. Make the new shader program current (glUseProgram()).
// 4. Reset the sc state and prepare for a new shader program. (All uniforms
// and fragment operations needed for the next program have to be re-added.)
void gl_sc_gen_shader_and_reset(struct gl_shader_cache *sc)
{
GL *gl = sc->gl;
assert(sc->vao);
for (int n = 0; n < MP_ARRAY_SIZE(sc->tmp); n++)
sc->tmp[n].len = 0;
// set up shader text (header + uniforms + body)
bstr *header = &sc->tmp[0];
ADD(header, "#version %d%s\n", gl->glsl_version, gl->es >= 300 ? " es" : "");
if (gl->es)
ADD(header, "precision mediump float;\n");
ADD_BSTR(header, sc->prelude_text);
char *vert_in = gl->glsl_version >= 130 ? "in" : "attribute";
char *vert_out = gl->glsl_version >= 130 ? "out" : "varying";
char *frag_in = gl->glsl_version >= 130 ? "in" : "varying";
// vertex shader: we don't use the vertex shader, so just setup a dummy,
// which passes through the vertex array attributes.
bstr *vert_head = &sc->tmp[1];
ADD_BSTR(vert_head, *header);
bstr *vert_body = &sc->tmp[2];
ADD(vert_body, "void main() {\n");
bstr *frag_vaos = &sc->tmp[3];
for (int n = 0; sc->vao->entries[n].name; n++) {
const struct gl_vao_entry *e = &sc->vao->entries[n];
const char *glsl_type = vao_glsl_type(e);
if (strcmp(e->name, "position") == 0) {
// setting raster pos. requires setting gl_Position magic variable
assert(e->num_elems == 2 && e->type == GL_FLOAT);
ADD(vert_head, "%s vec2 vertex_position;\n", vert_in);
ADD(vert_body, "gl_Position = vec4(vertex_position, 1.0, 1.0);\n");
} else {
ADD(vert_head, "%s %s vertex_%s;\n", vert_in, glsl_type, e->name);
ADD(vert_head, "%s %s %s;\n", vert_out, glsl_type, e->name);
ADD(vert_body, "%s = vertex_%s;\n", e->name, e->name);
ADD(frag_vaos, "%s %s %s;\n", frag_in, glsl_type, e->name);
}
}
ADD(vert_body, "}\n");
bstr *vert = vert_head;
ADD_BSTR(vert, *vert_body);
// fragment shader; still requires adding used uniforms and VAO elements
bstr *frag = &sc->tmp[4];
ADD_BSTR(frag, *header);
ADD(frag, "#define RG %s\n", gl->mpgl_caps & MPGL_CAP_TEX_RG ? "rg" : "ra");
if (gl->glsl_version >= 130) {
ADD(frag, "#define texture1D texture\n");
ADD(frag, "#define texture3D texture\n");
ADD(frag, "out vec4 out_color;\n");
} else {
ADD(frag, "#define texture texture2D\n");
}
ADD_BSTR(frag, *frag_vaos);
for (int n = 0; n < sc->num_uniforms; n++) {
struct sc_uniform *u = &sc->uniforms[n];
if (u->type == UT_buffer) {
ADD(frag, "uniform %s { %s };\n", u->name, u->v.buffer.text);
} else {
ADD(frag, "uniform %s %s;\n", u->glsl_type, u->name);
}
}
// Additional helpers.
ADD(frag, "#define LUT_POS(x, lut_size)"
" mix(0.5 / (lut_size), 1.0 - 0.5 / (lut_size), (x))\n");
// custom shader header
if (sc->header_text.len) {
ADD(frag, "// header\n");
ADD_BSTR(frag, sc->header_text);
ADD(frag, "// body\n");
}
ADD(frag, "void main() {\n");
// we require _all_ frag shaders to write to a "vec4 color"
ADD(frag, "vec4 color = vec4(0.0, 0.0, 0.0, 1.0);\n");
ADD_BSTR(frag, sc->text);
if (gl->glsl_version >= 130) {
ADD(frag, "out_color = color;\n");
} else {
ADD(frag, "gl_FragColor = color;\n");
}
ADD(frag, "}\n");
struct sc_entry *entry = NULL;
for (int n = 0; n < sc->num_entries; n++) {
struct sc_entry *cur = &sc->entries[n];
if (bstr_equals(cur->frag, *frag) && bstr_equals(cur->vert, *vert)) {
entry = cur;
break;
}
}
if (!entry) {
if (sc->num_entries == SC_ENTRIES)
sc_flush_cache(sc);
entry = &sc->entries[sc->num_entries++];
*entry = (struct sc_entry){
.vert = bstrdup(NULL, *vert),
.frag = bstrdup(NULL, *frag),
};
}
// build vertex shader from vao and cache the locations of the uniform variables
if (!entry->gl_shader) {
entry->gl_shader = create_program(sc, vert->start, frag->start);
for (int n = 0; n < sc->num_uniforms; n++) {
entry->uniform_locs[n] = gl->GetUniformLocation(entry->gl_shader,
sc->uniforms[n].name);
}
}
gl->UseProgram(entry->gl_shader);
for (int n = 0; n < sc->num_uniforms; n++)
update_uniform(gl, entry, &sc->uniforms[n], n);
gl_sc_reset(sc);
}