mpv/video/out/vulkan/utils.c

727 lines
23 KiB
C

#include <libavutil/macros.h>
#include "utils.h"
#include "malloc.h"
const char* vk_err(VkResult res)
{
switch (res) {
// These are technically success codes, but include them nonetheless
case VK_SUCCESS: return "VK_SUCCESS";
case VK_NOT_READY: return "VK_NOT_READY";
case VK_TIMEOUT: return "VK_TIMEOUT";
case VK_EVENT_SET: return "VK_EVENT_SET";
case VK_EVENT_RESET: return "VK_EVENT_RESET";
case VK_INCOMPLETE: return "VK_INCOMPLETE";
case VK_SUBOPTIMAL_KHR: return "VK_SUBOPTIMAL_KHR";
// Actual error codes
case VK_ERROR_OUT_OF_HOST_MEMORY: return "VK_ERROR_OUT_OF_HOST_MEMORY";
case VK_ERROR_OUT_OF_DEVICE_MEMORY: return "VK_ERROR_OUT_OF_DEVICE_MEMORY";
case VK_ERROR_INITIALIZATION_FAILED: return "VK_ERROR_INITIALIZATION_FAILED";
case VK_ERROR_DEVICE_LOST: return "VK_ERROR_DEVICE_LOST";
case VK_ERROR_MEMORY_MAP_FAILED: return "VK_ERROR_MEMORY_MAP_FAILED";
case VK_ERROR_LAYER_NOT_PRESENT: return "VK_ERROR_LAYER_NOT_PRESENT";
case VK_ERROR_EXTENSION_NOT_PRESENT: return "VK_ERROR_EXTENSION_NOT_PRESENT";
case VK_ERROR_FEATURE_NOT_PRESENT: return "VK_ERROR_FEATURE_NOT_PRESENT";
case VK_ERROR_INCOMPATIBLE_DRIVER: return "VK_ERROR_INCOMPATIBLE_DRIVER";
case VK_ERROR_TOO_MANY_OBJECTS: return "VK_ERROR_TOO_MANY_OBJECTS";
case VK_ERROR_FORMAT_NOT_SUPPORTED: return "VK_ERROR_FORMAT_NOT_SUPPORTED";
case VK_ERROR_FRAGMENTED_POOL: return "VK_ERROR_FRAGMENTED_POOL";
case VK_ERROR_INVALID_SHADER_NV: return "VK_ERROR_INVALID_SHADER_NV";
case VK_ERROR_OUT_OF_DATE_KHR: return "VK_ERROR_OUT_OF_DATE_KHR";
case VK_ERROR_SURFACE_LOST_KHR: return "VK_ERROR_SURFACE_LOST_KHR";
}
return "Unknown error!";
}
static const char* vk_dbg_type(VkDebugReportObjectTypeEXT type)
{
switch (type) {
case VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT:
return "VkInstance";
case VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT:
return "VkPhysicalDevice";
case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT:
return "VkDevice";
case VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT:
return "VkQueue";
case VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT:
return "VkSemaphore";
case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT:
return "VkCommandBuffer";
case VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT:
return "VkFence";
case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT:
return "VkDeviceMemory";
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT:
return "VkBuffer";
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT:
return "VkImage";
case VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT:
return "VkEvent";
case VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT:
return "VkQueryPool";
case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT:
return "VkBufferView";
case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT:
return "VkImageView";
case VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT:
return "VkShaderModule";
case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT:
return "VkPipelineCache";
case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT:
return "VkPipelineLayout";
case VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT:
return "VkRenderPass";
case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT:
return "VkPipeline";
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT:
return "VkDescriptorSetLayout";
case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT:
return "VkSampler";
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT:
return "VkDescriptorPool";
case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT:
return "VkDescriptorSet";
case VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT:
return "VkFramebuffer";
case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT:
return "VkCommandPool";
case VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT:
return "VkSurfaceKHR";
case VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT:
return "VkSwapchainKHR";
case VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_EXT:
return "VkDebugReportCallbackEXT";
case VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT:
default:
return "unknown object";
}
}
static VkBool32 vk_dbg_callback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objType,
uint64_t obj, size_t loc, int32_t msgCode,
const char *layer, const char *msg, void *priv)
{
struct mpvk_ctx *vk = priv;
int lev = MSGL_V;
switch (flags) {
case VK_DEBUG_REPORT_ERROR_BIT_EXT: lev = MSGL_ERR; break;
case VK_DEBUG_REPORT_WARNING_BIT_EXT: lev = MSGL_WARN; break;
case VK_DEBUG_REPORT_INFORMATION_BIT_EXT: lev = MSGL_TRACE; break;
case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT: lev = MSGL_WARN; break;
case VK_DEBUG_REPORT_DEBUG_BIT_EXT: lev = MSGL_DEBUG; break;
};
MP_MSG(vk, lev, "vk [%s] %d: %s (obj 0x%llx (%s), loc 0x%zx)\n",
layer, (int)msgCode, msg, (unsigned long long)obj,
vk_dbg_type(objType), loc);
// The return value of this function determines whether the call will
// be explicitly aborted (to prevent GPU errors) or not. In this case,
// we generally want this to be on for the errors.
return (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT);
}
static void vk_cmdpool_uninit(struct mpvk_ctx *vk, struct vk_cmdpool *pool)
{
if (!pool)
return;
// also frees associated command buffers
vkDestroyCommandPool(vk->dev, pool->pool, MPVK_ALLOCATOR);
for (int n = 0; n < MPVK_MAX_CMDS; n++) {
vkDestroyFence(vk->dev, pool->cmds[n].fence, MPVK_ALLOCATOR);
vkDestroySemaphore(vk->dev, pool->cmds[n].done, MPVK_ALLOCATOR);
talloc_free(pool->cmds[n].callbacks);
}
talloc_free(pool);
}
void mpvk_uninit(struct mpvk_ctx *vk)
{
if (!vk->inst)
return;
if (vk->dev) {
vk_cmdpool_uninit(vk, vk->pool);
vk_malloc_uninit(vk);
vkDestroyDevice(vk->dev, MPVK_ALLOCATOR);
}
if (vk->dbg) {
// Same deal as creating the debug callback, we need to load this
// first.
VK_LOAD_PFN(vkDestroyDebugReportCallbackEXT)
pfn_vkDestroyDebugReportCallbackEXT(vk->inst, vk->dbg, MPVK_ALLOCATOR);
}
vkDestroySurfaceKHR(vk->inst, vk->surf, MPVK_ALLOCATOR);
vkDestroyInstance(vk->inst, MPVK_ALLOCATOR);
*vk = (struct mpvk_ctx){0};
}
bool mpvk_instance_init(struct mpvk_ctx *vk, struct mp_log *log, bool debug)
{
*vk = (struct mpvk_ctx) {
.log = log,
};
VkInstanceCreateInfo info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
};
if (debug) {
// Enables the LunarG standard validation layer, which
// is a meta-layer that loads lots of other validators
static const char* layers[] = {
"VK_LAYER_LUNARG_standard_validation",
};
info.ppEnabledLayerNames = layers;
info.enabledLayerCount = MP_ARRAY_SIZE(layers);
}
// Enable whatever extensions were compiled in.
static const char *extensions[] = {
VK_KHR_SURFACE_EXTENSION_NAME,
#if HAVE_X11
VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
#endif
// Extra extensions only used for debugging. These are toggled by
// decreasing the enabledExtensionCount, so the number needs to be
// synchronized with the code below.
VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
};
const int debugExtensionCount = 1;
info.ppEnabledExtensionNames = extensions;
info.enabledExtensionCount = MP_ARRAY_SIZE(extensions);
if (!debug)
info.enabledExtensionCount -= debugExtensionCount;
MP_VERBOSE(vk, "Creating instance with extensions:\n");
for (int i = 0; i < info.enabledExtensionCount; i++)
MP_VERBOSE(vk, " %s\n", info.ppEnabledExtensionNames[i]);
VkResult res = vkCreateInstance(&info, MPVK_ALLOCATOR, &vk->inst);
if (res != VK_SUCCESS) {
MP_VERBOSE(vk, "Failed creating instance: %s\n", vk_err(res));
return false;
}
if (debug) {
// Set up a debug callback to catch validation messages
VkDebugReportCallbackCreateInfoEXT dinfo = {
.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
.flags = VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT |
VK_DEBUG_REPORT_ERROR_BIT_EXT |
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
.pfnCallback = vk_dbg_callback,
.pUserData = vk,
};
// Since this is not part of the core spec, we need to load it. This
// can't fail because we've already successfully created an instance
// with this extension enabled.
VK_LOAD_PFN(vkCreateDebugReportCallbackEXT)
pfn_vkCreateDebugReportCallbackEXT(vk->inst, &dinfo, MPVK_ALLOCATOR,
&vk->dbg);
}
return true;
}
#define MPVK_MAX_DEVICES 16
static bool physd_supports_surface(struct mpvk_ctx *vk, VkPhysicalDevice physd)
{
uint32_t qfnum;
vkGetPhysicalDeviceQueueFamilyProperties(physd, &qfnum, NULL);
for (int i = 0; i < qfnum; i++) {
VkBool32 sup;
VK(vkGetPhysicalDeviceSurfaceSupportKHR(physd, i, vk->surf, &sup));
if (sup)
return true;
}
error:
return false;
}
bool mpvk_find_phys_device(struct mpvk_ctx *vk, const char *name, bool sw)
{
assert(vk->surf);
MP_VERBOSE(vk, "Probing for vulkan devices:\n");
VkPhysicalDevice *devices = NULL;
uint32_t num = 0;
VK(vkEnumeratePhysicalDevices(vk->inst, &num, NULL));
devices = talloc_array(NULL, VkPhysicalDevice, num);
VK(vkEnumeratePhysicalDevices(vk->inst, &num, devices));
// Sorted by "priority". Reuses some m_opt code for convenience
static const struct m_opt_choice_alternatives types[] = {
{"discrete", VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU},
{"integrated", VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU},
{"virtual", VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU},
{"software", VK_PHYSICAL_DEVICE_TYPE_CPU},
{"unknown", VK_PHYSICAL_DEVICE_TYPE_OTHER},
{0}
};
VkPhysicalDeviceProperties props[MPVK_MAX_DEVICES];
for (int i = 0; i < num; i++) {
vkGetPhysicalDeviceProperties(devices[i], &props[i]);
MP_VERBOSE(vk, " GPU %d: %s (%s)\n", i, props[i].deviceName,
m_opt_choice_str(types, props[i].deviceType));
}
// Iterate through each type in order of decreasing preference
for (int t = 0; types[t].name; t++) {
// Disallow SW rendering unless explicitly enabled
if (types[t].value == VK_PHYSICAL_DEVICE_TYPE_CPU && !sw)
continue;
for (int i = 0; i < num; i++) {
VkPhysicalDeviceProperties prop = props[i];
if (prop.deviceType != types[t].value)
continue;
if (name && strcmp(name, prop.deviceName) != 0)
continue;
if (!physd_supports_surface(vk, devices[i]))
continue;
MP_VERBOSE(vk, "Chose device:\n");
MP_VERBOSE(vk, " Device Name: %s\n", prop.deviceName);
MP_VERBOSE(vk, " Device ID: %x:%x\n",
(unsigned)prop.vendorID, (unsigned)prop.deviceID);
MP_VERBOSE(vk, " Driver version: %d\n", (int)prop.driverVersion);
MP_VERBOSE(vk, " API version: %d.%d.%d\n",
(int)VK_VERSION_MAJOR(prop.apiVersion),
(int)VK_VERSION_MINOR(prop.apiVersion),
(int)VK_VERSION_PATCH(prop.apiVersion));
vk->physd = devices[i];
vk->limits = prop.limits;
talloc_free(devices);
return true;
}
}
error:
MP_VERBOSE(vk, "Found no suitable device, giving up.\n");
talloc_free(devices);
return false;
}
bool mpvk_pick_surface_format(struct mpvk_ctx *vk)
{
assert(vk->physd);
VkSurfaceFormatKHR *formats = NULL;
int num;
// Enumerate through the surface formats and find one that we can map to
// a ra_format
VK(vkGetPhysicalDeviceSurfaceFormatsKHR(vk->physd, vk->surf, &num, NULL));
formats = talloc_array(NULL, VkSurfaceFormatKHR, num);
VK(vkGetPhysicalDeviceSurfaceFormatsKHR(vk->physd, vk->surf, &num, formats));
for (int i = 0; i < num; i++) {
// A value of VK_FORMAT_UNDEFINED means we can pick anything we want
if (formats[i].format == VK_FORMAT_UNDEFINED) {
vk->surf_format = (VkSurfaceFormatKHR) {
.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR,
.format = VK_FORMAT_R16G16B16A16_UNORM,
};
break;
}
if (formats[i].colorSpace != VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)
continue;
// Format whitelist, since we want only >= 8 bit _UNORM formats
switch (formats[i].format) {
case VK_FORMAT_R8G8B8_UNORM:
case VK_FORMAT_B8G8R8_UNORM:
case VK_FORMAT_R8G8B8A8_UNORM:
case VK_FORMAT_B8G8R8A8_UNORM:
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
case VK_FORMAT_R16G16B16_UNORM:
case VK_FORMAT_R16G16B16A16_UNORM:
break; // accept
default: continue;
}
vk->surf_format = formats[i];
break;
}
talloc_free(formats);
if (!vk->surf_format.format)
goto error;
return true;
error:
MP_ERR(vk, "Failed picking surface format!\n");
talloc_free(formats);
return false;
}
static bool vk_cmdpool_init(struct mpvk_ctx *vk, VkDeviceQueueCreateInfo qinfo,
VkQueueFamilyProperties props,
struct vk_cmdpool **out)
{
struct vk_cmdpool *pool = *out = talloc_ptrtype(NULL, pool);
*pool = (struct vk_cmdpool) {
.qf = qinfo.queueFamilyIndex,
.props = props,
.qcount = qinfo.queueCount,
};
for (int n = 0; n < pool->qcount; n++)
vkGetDeviceQueue(vk->dev, pool->qf, n, &pool->queues[n]);
VkCommandPoolCreateInfo cinfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT |
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = pool->qf,
};
VK(vkCreateCommandPool(vk->dev, &cinfo, MPVK_ALLOCATOR, &pool->pool));
VkCommandBufferAllocateInfo ainfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = pool->pool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = MPVK_MAX_CMDS,
};
VkCommandBuffer cmdbufs[MPVK_MAX_CMDS];
VK(vkAllocateCommandBuffers(vk->dev, &ainfo, cmdbufs));
for (int n = 0; n < MPVK_MAX_CMDS; n++) {
struct vk_cmd *cmd = &pool->cmds[n];
cmd->pool = pool;
cmd->buf = cmdbufs[n];
VkFenceCreateInfo finfo = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.flags = VK_FENCE_CREATE_SIGNALED_BIT,
};
VK(vkCreateFence(vk->dev, &finfo, MPVK_ALLOCATOR, &cmd->fence));
VkSemaphoreCreateInfo sinfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
};
VK(vkCreateSemaphore(vk->dev, &sinfo, MPVK_ALLOCATOR, &cmd->done));
}
return true;
error:
return false;
}
bool mpvk_device_init(struct mpvk_ctx *vk, struct mpvk_device_opts opts)
{
assert(vk->physd);
VkQueueFamilyProperties *qfs = NULL;
int qfnum;
// Enumerate the queue families and find suitable families for each task
vkGetPhysicalDeviceQueueFamilyProperties(vk->physd, &qfnum, NULL);
qfs = talloc_array(NULL, VkQueueFamilyProperties, qfnum);
vkGetPhysicalDeviceQueueFamilyProperties(vk->physd, &qfnum, qfs);
MP_VERBOSE(vk, "Queue families supported by device:\n");
for (int i = 0; i < qfnum; i++) {
MP_VERBOSE(vk, "QF %d: flags 0x%x num %d\n", i,
(unsigned)qfs[i].queueFlags, (int)qfs[i].queueCount);
}
// For most of our rendering operations, we want to use one "primary" pool,
// so just pick the queue family with the most features.
int idx = -1;
for (int i = 0; i < qfnum; i++) {
if (!(qfs[i].queueFlags & VK_QUEUE_GRAPHICS_BIT))
continue;
// QF supports more features
if (idx < 0 || qfs[i].queueFlags > qfs[idx].queueFlags)
idx = i;
// QF supports more queues (at the same specialization level)
if (qfs[i].queueFlags == qfs[idx].queueFlags &&
qfs[i].queueCount > qfs[idx].queueCount)
{
idx = i;
}
}
// Vulkan requires at least one GRAPHICS queue, so if this fails something
// is horribly wrong.
assert(idx >= 0);
// Ensure we can actually present to the surface using this queue
VkBool32 sup;
VK(vkGetPhysicalDeviceSurfaceSupportKHR(vk->physd, idx, vk->surf, &sup));
if (!sup) {
MP_ERR(vk, "Queue family does not support surface presentation!\n");
goto error;
}
// Now that we know which queue families we want, we can create the logical
// device
assert(opts.queue_count <= MPVK_MAX_QUEUES);
static const float priorities[MPVK_MAX_QUEUES] = {0};
VkDeviceQueueCreateInfo qinfo = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.queueFamilyIndex = idx,
.queueCount = MPMIN(qfs[idx].queueCount, opts.queue_count),
.pQueuePriorities = priorities,
};
static const char *exts[] = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
VK_NV_GLSL_SHADER_EXTENSION_NAME,
};
VkDeviceCreateInfo dinfo = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = &qinfo,
.ppEnabledExtensionNames = exts,
.enabledExtensionCount = MP_ARRAY_SIZE(exts),
};
MP_VERBOSE(vk, "Creating vulkan device...\n");
VK(vkCreateDevice(vk->physd, &dinfo, MPVK_ALLOCATOR, &vk->dev));
vk_malloc_init(vk);
// Create the vk_cmdpools and all required queues / synchronization objects
if (!vk_cmdpool_init(vk, qinfo, qfs[idx], &vk->pool))
goto error;
talloc_free(qfs);
return true;
error:
MP_ERR(vk, "Failed creating logical device!\n");
talloc_free(qfs);
return false;
}
static void run_callbacks(struct mpvk_ctx *vk, struct vk_cmd *cmd)
{
for (int i = 0; i < cmd->num_callbacks; i++) {
struct vk_callback *cb = &cmd->callbacks[i];
cb->run(cb->priv, cb->arg);
*cb = (struct vk_callback){0};
}
cmd->num_callbacks = 0;
// Also reset vk->last_cmd in case this was the last command to run
if (vk->last_cmd == cmd)
vk->last_cmd = NULL;
}
static void wait_for_cmds(struct mpvk_ctx *vk, struct vk_cmd cmds[], int num)
{
if (!num)
return;
VkFence fences[MPVK_MAX_CMDS];
for (int i = 0; i < num; i++)
fences[i] = cmds[i].fence;
vkWaitForFences(vk->dev, num, fences, true, UINT64_MAX);
for (int i = 0; i < num; i++)
run_callbacks(vk, &cmds[i]);
}
void mpvk_pool_wait_idle(struct mpvk_ctx *vk, struct vk_cmdpool *pool)
{
if (!pool)
return;
int idx = pool->cindex, pidx = pool->cindex_pending;
if (pidx < idx) { // range doesn't wrap
wait_for_cmds(vk, &pool->cmds[pidx], idx - pidx);
} else if (pidx > idx) { // range wraps
wait_for_cmds(vk, &pool->cmds[pidx], MPVK_MAX_CMDS - pidx);
wait_for_cmds(vk, &pool->cmds[0], idx);
}
pool->cindex_pending = pool->cindex;
}
void mpvk_dev_wait_idle(struct mpvk_ctx *vk)
{
mpvk_pool_wait_idle(vk, vk->pool);
}
void mpvk_pool_poll_cmds(struct mpvk_ctx *vk, struct vk_cmdpool *pool,
uint64_t timeout)
{
if (!pool)
return;
// If requested, hard block until at least one command completes
if (timeout > 0 && pool->cindex_pending != pool->cindex) {
vkWaitForFences(vk->dev, 1, &pool->cmds[pool->cindex_pending].fence,
true, timeout);
}
// Lazily garbage collect the commands based on their status
while (pool->cindex_pending != pool->cindex) {
struct vk_cmd *cmd = &pool->cmds[pool->cindex_pending];
VkResult res = vkGetFenceStatus(vk->dev, cmd->fence);
if (res != VK_SUCCESS)
break;
run_callbacks(vk, cmd);
pool->cindex_pending++;
pool->cindex_pending %= MPVK_MAX_CMDS;
}
}
void mpvk_dev_poll_cmds(struct mpvk_ctx *vk, uint32_t timeout)
{
mpvk_pool_poll_cmds(vk, vk->pool, timeout);
}
void vk_dev_callback(struct mpvk_ctx *vk, vk_cb callback, void *p, void *arg)
{
if (vk->last_cmd) {
vk_cmd_callback(vk->last_cmd, callback, p, arg);
} else {
// The device was already idle, so we can just immediately call it
callback(p, arg);
}
}
void vk_cmd_callback(struct vk_cmd *cmd, vk_cb callback, void *p, void *arg)
{
MP_TARRAY_GROW(NULL, cmd->callbacks, cmd->num_callbacks);
cmd->callbacks[cmd->num_callbacks++] = (struct vk_callback) {
.run = callback,
.priv = p,
.arg = arg,
};
}
void vk_cmd_dep(struct vk_cmd *cmd, VkSemaphore dep,
VkPipelineStageFlagBits depstage)
{
assert(cmd->num_deps < MPVK_MAX_CMD_DEPS);
cmd->deps[cmd->num_deps] = dep;
cmd->depstages[cmd->num_deps++] = depstage;
}
struct vk_cmd *vk_cmd_begin(struct mpvk_ctx *vk, struct vk_cmdpool *pool)
{
// Garbage collect the cmdpool first
mpvk_pool_poll_cmds(vk, pool, 0);
int next = (pool->cindex + 1) % MPVK_MAX_CMDS;
if (next == pool->cindex_pending) {
MP_ERR(vk, "No free command buffers!\n");
goto error;
}
struct vk_cmd *cmd = &pool->cmds[pool->cindex];
pool->cindex = next;
VK(vkResetCommandBuffer(cmd->buf, 0));
VkCommandBufferBeginInfo binfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
VK(vkBeginCommandBuffer(cmd->buf, &binfo));
return cmd;
error:
return NULL;
}
bool vk_cmd_submit(struct mpvk_ctx *vk, struct vk_cmd *cmd, VkSemaphore *done)
{
VK(vkEndCommandBuffer(cmd->buf));
struct vk_cmdpool *pool = cmd->pool;
VkQueue queue = pool->queues[pool->qindex];
VkSubmitInfo sinfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd->buf,
.waitSemaphoreCount = cmd->num_deps,
.pWaitSemaphores = cmd->deps,
.pWaitDstStageMask = cmd->depstages,
};
if (done) {
sinfo.signalSemaphoreCount = 1;
sinfo.pSignalSemaphores = &cmd->done;
*done = cmd->done;
}
VK(vkResetFences(vk->dev, 1, &cmd->fence));
VK(vkQueueSubmit(queue, 1, &sinfo, cmd->fence));
MP_TRACE(vk, "Submitted command on queue %p (QF %d)\n", (void *)queue,
pool->qf);
for (int i = 0; i < cmd->num_deps; i++)
cmd->deps[i] = NULL;
cmd->num_deps = 0;
vk->last_cmd = cmd;
return true;
error:
return false;
}
void vk_cmd_cycle_queues(struct mpvk_ctx *vk)
{
struct vk_cmdpool *pool = vk->pool;
pool->qindex = (pool->qindex + 1) % pool->qcount;
}
const VkImageSubresourceRange vk_range = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.levelCount = 1,
.layerCount = 1,
};
const VkImageSubresourceLayers vk_layers = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.layerCount = 1,
};