mpv/video/out/vulkan/ra_vk.c

1902 lines
64 KiB
C

#include "video/out/gpu/utils.h"
#include "video/out/gpu/spirv.h"
#include "ra_vk.h"
#include "malloc.h"
static struct ra_fns ra_fns_vk;
enum queue_type {
GRAPHICS,
COMPUTE,
TRANSFER,
};
// For ra.priv
struct ra_vk {
struct mpvk_ctx *vk;
struct ra_tex *clear_tex; // stupid hack for clear()
struct vk_cmd *cmd; // currently recording cmd
};
struct mpvk_ctx *ra_vk_get(struct ra *ra)
{
if (ra->fns != &ra_fns_vk)
return NULL;
struct ra_vk *p = ra->priv;
return p->vk;
}
static void vk_submit(struct ra *ra)
{
struct ra_vk *p = ra->priv;
struct mpvk_ctx *vk = ra_vk_get(ra);
if (p->cmd) {
vk_cmd_queue(vk, p->cmd);
p->cmd = NULL;
}
}
// Returns a command buffer, or NULL on error
static struct vk_cmd *vk_require_cmd(struct ra *ra, enum queue_type type)
{
struct ra_vk *p = ra->priv;
struct mpvk_ctx *vk = ra_vk_get(ra);
struct vk_cmdpool *pool;
switch (type) {
case GRAPHICS: pool = vk->pool_graphics; break;
case COMPUTE: pool = vk->pool_compute; break;
// GRAPHICS and COMPUTE also imply TRANSFER capability (vulkan spec)
case TRANSFER:
pool = vk->pool_transfer;
if (!pool)
pool = vk->pool_compute;
if (!pool)
pool = vk->pool_graphics;
break;
default: abort();
}
assert(pool);
if (p->cmd && p->cmd->pool == pool)
return p->cmd;
vk_submit(ra);
p->cmd = vk_cmd_begin(vk, pool);
return p->cmd;
}
#define MAKE_LAZY_DESTRUCTOR(fun, argtype) \
static void fun##_lazy(struct ra *ra, argtype *arg) { \
struct ra_vk *p = ra->priv; \
struct mpvk_ctx *vk = ra_vk_get(ra); \
if (p->cmd) { \
vk_cmd_callback(p->cmd, (vk_cb) fun, ra, arg); \
} else { \
vk_dev_callback(vk, (vk_cb) fun, ra, arg); \
} \
}
static void vk_destroy_ra(struct ra *ra)
{
struct ra_vk *p = ra->priv;
struct mpvk_ctx *vk = ra_vk_get(ra);
vk_submit(ra);
mpvk_flush_commands(vk);
mpvk_poll_commands(vk, UINT64_MAX);
ra_tex_free(ra, &p->clear_tex);
talloc_free(ra);
}
static bool vk_setup_formats(struct ra *ra)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
for (const struct vk_format *vk_fmt = vk_formats; vk_fmt->name; vk_fmt++) {
VkFormatProperties prop;
vkGetPhysicalDeviceFormatProperties(vk->physd, vk_fmt->iformat, &prop);
// As a bare minimum, we need to sample from an allocated image
VkFormatFeatureFlags flags = prop.optimalTilingFeatures;
if (!(flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT))
continue;
VkFormatFeatureFlags linear_bits, render_bits;
linear_bits = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
render_bits = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT;
struct ra_format *fmt = talloc_zero(ra, struct ra_format);
*fmt = (struct ra_format) {
.name = vk_fmt->name,
.priv = (void *)vk_fmt,
.ctype = vk_fmt->ctype,
.ordered = !vk_fmt->fucked_order,
.num_components = vk_fmt->components,
.pixel_size = vk_fmt->bytes,
.linear_filter = !!(flags & linear_bits),
.renderable = !!(flags & render_bits),
};
for (int i = 0; i < 4; i++)
fmt->component_size[i] = fmt->component_depth[i] = vk_fmt->bits[i];
fmt->glsl_format = ra_fmt_glsl_format(fmt);
MP_TARRAY_APPEND(ra, ra->formats, ra->num_formats, fmt);
}
// Populate some other capabilities related to formats while we're at it
VkImageType imgType[3] = {
VK_IMAGE_TYPE_1D,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TYPE_3D
};
// R8_UNORM is supported on literally every single vulkan implementation
const VkFormat testfmt = VK_FORMAT_R8_UNORM;
for (int d = 0; d < 3; d++) {
VkImageFormatProperties iprop;
VkResult res = vkGetPhysicalDeviceImageFormatProperties(vk->physd,
testfmt, imgType[d], VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_SAMPLED_BIT, 0, &iprop);
switch (imgType[d]) {
case VK_IMAGE_TYPE_1D:
if (res == VK_SUCCESS)
ra->caps |= RA_CAP_TEX_1D;
break;
case VK_IMAGE_TYPE_2D:
// 2D formats must be supported by RA, so ensure this is the case
VK_ASSERT(res, "Querying 2D format limits");
ra->max_texture_wh = MPMIN(iprop.maxExtent.width, iprop.maxExtent.height);
break;
case VK_IMAGE_TYPE_3D:
if (res == VK_SUCCESS)
ra->caps |= RA_CAP_TEX_3D;
break;
}
}
// RA_CAP_BLIT implies both blitting between images as well as blitting
// directly to the swapchain image, so check for all three operations
bool blittable = true;
VkFormatProperties prop;
vkGetPhysicalDeviceFormatProperties(vk->physd, testfmt, &prop);
if (!(prop.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT))
blittable = false;
if (!(prop.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT))
blittable = false;
vkGetPhysicalDeviceFormatProperties(vk->physd, vk->surf_format.format, &prop);
if (!(prop.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT))
blittable = false;
if (blittable)
ra->caps |= RA_CAP_BLIT;
return true;
error:
return false;
}
static struct ra_fns ra_fns_vk;
struct ra *ra_create_vk(struct mpvk_ctx *vk, struct mp_log *log)
{
assert(vk->dev);
assert(vk->alloc);
struct ra *ra = talloc_zero(NULL, struct ra);
ra->log = log;
ra->fns = &ra_fns_vk;
struct ra_vk *p = ra->priv = talloc_zero(ra, struct ra_vk);
p->vk = vk;
ra->caps |= vk->spirv->ra_caps;
ra->glsl_version = vk->spirv->glsl_version;
ra->glsl_vulkan = true;
ra->max_shmem = vk->limits.maxComputeSharedMemorySize;
ra->max_pushc_size = vk->limits.maxPushConstantsSize;
if (vk->pool_compute) {
ra->caps |= RA_CAP_COMPUTE | RA_CAP_NUM_GROUPS;
// If we have more compute queues than graphics queues, we probably
// want to be using them. (This seems mostly relevant for AMD)
if (vk->pool_compute->num_queues > vk->pool_graphics->num_queues)
ra->caps |= RA_CAP_PARALLEL_COMPUTE;
}
if (!vk_setup_formats(ra))
goto error;
// UBO support is required
ra->caps |= RA_CAP_BUF_RO | RA_CAP_FRAGCOORD;
// textureGather requires the ImageGatherExtended capability
if (vk->features.shaderImageGatherExtended)
ra->caps |= RA_CAP_GATHER;
// Try creating a shader storage buffer
struct ra_buf_params ssbo_params = {
.type = RA_BUF_TYPE_SHADER_STORAGE,
.size = 16,
};
struct ra_buf *ssbo = ra_buf_create(ra, &ssbo_params);
if (ssbo) {
ra->caps |= RA_CAP_BUF_RW;
ra_buf_free(ra, &ssbo);
}
// To support clear() by region, we need to allocate a dummy 1x1 image that
// will be used as the source of blit operations
struct ra_tex_params clear_params = {
.dimensions = 1, // no point in using a 2D image if height = 1
.w = 1,
.h = 1,
.d = 1,
.format = ra_find_float16_format(ra, 4),
.blit_src = 1,
.host_mutable = 1,
};
p->clear_tex = ra_tex_create(ra, &clear_params);
if (!p->clear_tex) {
MP_ERR(ra, "Failed creating 1x1 dummy texture for clear()!\n");
goto error;
}
return ra;
error:
vk_destroy_ra(ra);
return NULL;
}
// Boilerplate wrapper around vkCreateRenderPass to ensure passes remain
// compatible. The renderpass will automatically transition the image out of
// initialLayout and into finalLayout.
static VkResult vk_create_render_pass(VkDevice dev, const struct ra_format *fmt,
VkAttachmentLoadOp loadOp,
VkImageLayout initialLayout,
VkImageLayout finalLayout,
VkRenderPass *out)
{
struct vk_format *vk_fmt = fmt->priv;
assert(fmt->renderable);
VkRenderPassCreateInfo rinfo = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = vk_fmt->iformat,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = loadOp,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = initialLayout,
.finalLayout = finalLayout,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
},
},
};
return vkCreateRenderPass(dev, &rinfo, MPVK_ALLOCATOR, out);
}
// For ra_tex.priv
struct ra_tex_vk {
bool external_img;
enum queue_type upload_queue;
VkImageType type;
VkImage img;
struct vk_memslice mem;
// for sampling
VkImageView view;
VkSampler sampler;
// for rendering
VkFramebuffer framebuffer;
VkRenderPass dummyPass;
// for uploading
struct ra_buf_pool pbo;
// "current" metadata, can change during the course of execution
VkImageLayout current_layout;
VkAccessFlags current_access;
// the signal guards reuse, and can be NULL
struct vk_signal *sig;
VkPipelineStageFlags sig_stage;
VkSemaphore ext_dep; // external semaphore, not owned by the ra_tex
};
void ra_tex_vk_external_dep(struct ra *ra, struct ra_tex *tex, VkSemaphore dep)
{
struct ra_tex_vk *tex_vk = tex->priv;
assert(!tex_vk->ext_dep);
tex_vk->ext_dep = dep;
}
// Small helper to ease image barrier creation. if `discard` is set, the contents
// of the image will be undefined after the barrier
static void tex_barrier(struct ra *ra, struct vk_cmd *cmd, struct ra_tex *tex,
VkPipelineStageFlags stage, VkAccessFlags newAccess,
VkImageLayout newLayout, bool discard)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_tex_vk *tex_vk = tex->priv;
if (tex_vk->ext_dep) {
vk_cmd_dep(cmd, tex_vk->ext_dep, stage);
tex_vk->ext_dep = NULL;
}
VkImageMemoryBarrier imgBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.oldLayout = tex_vk->current_layout,
.newLayout = newLayout,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.srcAccessMask = tex_vk->current_access,
.dstAccessMask = newAccess,
.image = tex_vk->img,
.subresourceRange = vk_range,
};
if (discard) {
imgBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imgBarrier.srcAccessMask = 0;
}
VkEvent event = NULL;
vk_cmd_wait(vk, cmd, &tex_vk->sig, stage, &event);
bool need_trans = tex_vk->current_layout != newLayout ||
tex_vk->current_access != newAccess;
// Transitioning to VK_IMAGE_LAYOUT_UNDEFINED is a pseudo-operation
// that for us means we don't need to perform the actual transition
if (need_trans && newLayout != VK_IMAGE_LAYOUT_UNDEFINED) {
if (event) {
vkCmdWaitEvents(cmd->buf, 1, &event, tex_vk->sig_stage,
stage, 0, NULL, 0, NULL, 1, &imgBarrier);
} else {
// If we're not using an event, then the source stage is irrelevant
// because we're coming from a different queue anyway, so we can
// safely set it to TOP_OF_PIPE.
imgBarrier.srcAccessMask = 0;
vkCmdPipelineBarrier(cmd->buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
stage, 0, 0, NULL, 0, NULL, 1, &imgBarrier);
}
}
tex_vk->current_layout = newLayout;
tex_vk->current_access = newAccess;
}
static void tex_signal(struct ra *ra, struct vk_cmd *cmd, struct ra_tex *tex,
VkPipelineStageFlags stage)
{
struct ra_tex_vk *tex_vk = tex->priv;
struct mpvk_ctx *vk = ra_vk_get(ra);
assert(!tex_vk->sig);
tex_vk->sig = vk_cmd_signal(vk, cmd, stage);
tex_vk->sig_stage = stage;
}
static void vk_tex_destroy(struct ra *ra, struct ra_tex *tex)
{
if (!tex)
return;
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_tex_vk *tex_vk = tex->priv;
ra_buf_pool_uninit(ra, &tex_vk->pbo);
vk_signal_destroy(vk, &tex_vk->sig);
vkDestroyFramebuffer(vk->dev, tex_vk->framebuffer, MPVK_ALLOCATOR);
vkDestroyRenderPass(vk->dev, tex_vk->dummyPass, MPVK_ALLOCATOR);
vkDestroySampler(vk->dev, tex_vk->sampler, MPVK_ALLOCATOR);
vkDestroyImageView(vk->dev, tex_vk->view, MPVK_ALLOCATOR);
if (!tex_vk->external_img) {
vkDestroyImage(vk->dev, tex_vk->img, MPVK_ALLOCATOR);
vk_free_memslice(vk, tex_vk->mem);
}
talloc_free(tex);
}
MAKE_LAZY_DESTRUCTOR(vk_tex_destroy, struct ra_tex);
// Initializes non-VkImage values like the image view, samplers, etc.
static bool vk_init_image(struct ra *ra, struct ra_tex *tex)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_tex_params *params = &tex->params;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex_vk->img);
tex_vk->current_layout = VK_IMAGE_LAYOUT_UNDEFINED;
tex_vk->current_access = 0;
if (params->render_src || params->render_dst) {
static const VkImageViewType viewType[] = {
[VK_IMAGE_TYPE_1D] = VK_IMAGE_VIEW_TYPE_1D,
[VK_IMAGE_TYPE_2D] = VK_IMAGE_VIEW_TYPE_2D,
[VK_IMAGE_TYPE_3D] = VK_IMAGE_VIEW_TYPE_3D,
};
const struct vk_format *fmt = params->format->priv;
VkImageViewCreateInfo vinfo = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = tex_vk->img,
.viewType = viewType[tex_vk->type],
.format = fmt->iformat,
.subresourceRange = vk_range,
};
VK(vkCreateImageView(vk->dev, &vinfo, MPVK_ALLOCATOR, &tex_vk->view));
}
if (params->render_src) {
assert(params->format->linear_filter || !params->src_linear);
VkFilter filter = params->src_linear
? VK_FILTER_LINEAR
: VK_FILTER_NEAREST;
VkSamplerAddressMode wrap = params->src_repeat
? VK_SAMPLER_ADDRESS_MODE_REPEAT
: VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
VkSamplerCreateInfo sinfo = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = filter,
.minFilter = filter,
.addressModeU = wrap,
.addressModeV = wrap,
.addressModeW = wrap,
.maxAnisotropy = 1.0,
};
VK(vkCreateSampler(vk->dev, &sinfo, MPVK_ALLOCATOR, &tex_vk->sampler));
}
if (params->render_dst) {
// Framebuffers need to be created against a specific render pass
// layout, so we need to temporarily create a skeleton/dummy render
// pass for vulkan to figure out the compatibility
VK(vk_create_render_pass(vk->dev, params->format,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
&tex_vk->dummyPass));
VkFramebufferCreateInfo finfo = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = tex_vk->dummyPass,
.attachmentCount = 1,
.pAttachments = &tex_vk->view,
.width = tex->params.w,
.height = tex->params.h,
.layers = 1,
};
VK(vkCreateFramebuffer(vk->dev, &finfo, MPVK_ALLOCATOR,
&tex_vk->framebuffer));
// NOTE: Normally we would free the dummyPass again here, but a bug
// in the nvidia vulkan driver causes a segfault if you do.
}
return true;
error:
return false;
}
static struct ra_tex *vk_tex_create(struct ra *ra,
const struct ra_tex_params *params)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
assert(!params->format->dummy_format);
struct ra_tex *tex = talloc_zero(NULL, struct ra_tex);
tex->params = *params;
tex->params.initial_data = NULL;
struct ra_tex_vk *tex_vk = tex->priv = talloc_zero(tex, struct ra_tex_vk);
tex_vk->upload_queue = GRAPHICS;
const struct vk_format *fmt = params->format->priv;
switch (params->dimensions) {
case 1: tex_vk->type = VK_IMAGE_TYPE_1D; break;
case 2: tex_vk->type = VK_IMAGE_TYPE_2D; break;
case 3: tex_vk->type = VK_IMAGE_TYPE_3D; break;
default: abort();
}
VkImageUsageFlags usage = 0;
if (params->render_src)
usage |= VK_IMAGE_USAGE_SAMPLED_BIT;
if (params->render_dst)
usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
if (params->storage_dst)
usage |= VK_IMAGE_USAGE_STORAGE_BIT;
if (params->blit_src)
usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
if (params->host_mutable || params->blit_dst || params->initial_data)
usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
// Always use the transfer pool if available, for efficiency
if (params->host_mutable && vk->pool_transfer)
tex_vk->upload_queue = TRANSFER;
// Double-check image usage support and fail immediately if invalid
VkImageFormatProperties iprop;
VkResult res = vkGetPhysicalDeviceImageFormatProperties(vk->physd,
fmt->iformat, tex_vk->type, VK_IMAGE_TILING_OPTIMAL, usage, 0,
&iprop);
if (res == VK_ERROR_FORMAT_NOT_SUPPORTED) {
return NULL;
} else {
VK_ASSERT(res, "Querying image format properties");
}
VkFormatProperties prop;
vkGetPhysicalDeviceFormatProperties(vk->physd, fmt->iformat, &prop);
VkFormatFeatureFlags flags = prop.optimalTilingFeatures;
bool has_blit_src = flags & VK_FORMAT_FEATURE_BLIT_SRC_BIT,
has_src_linear = flags & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
if (params->w > iprop.maxExtent.width ||
params->h > iprop.maxExtent.height ||
params->d > iprop.maxExtent.depth ||
(params->blit_src && !has_blit_src) ||
(params->src_linear && !has_src_linear))
{
return NULL;
}
// FIXME: Since we can't keep track of queue family ownership properly,
// and we don't know in advance what types of queue families this image
// will belong to, we're forced to share all of our images between all
// command pools.
uint32_t qfs[3] = {0};
for (int i = 0; i < vk->num_pools; i++)
qfs[i] = vk->pools[i]->qf;
VkImageCreateInfo iinfo = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = tex_vk->type,
.format = fmt->iformat,
.extent = (VkExtent3D) { params->w, params->h, params->d },
.mipLevels = 1,
.arrayLayers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = usage,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.sharingMode = vk->num_pools > 1 ? VK_SHARING_MODE_CONCURRENT
: VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = vk->num_pools,
.pQueueFamilyIndices = qfs,
};
VK(vkCreateImage(vk->dev, &iinfo, MPVK_ALLOCATOR, &tex_vk->img));
VkMemoryPropertyFlags memFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkMemoryRequirements reqs;
vkGetImageMemoryRequirements(vk->dev, tex_vk->img, &reqs);
struct vk_memslice *mem = &tex_vk->mem;
if (!vk_malloc_generic(vk, reqs, memFlags, mem))
goto error;
VK(vkBindImageMemory(vk->dev, tex_vk->img, mem->vkmem, mem->offset));
if (!vk_init_image(ra, tex))
goto error;
if (params->initial_data) {
struct ra_tex_upload_params ul_params = {
.tex = tex,
.invalidate = true,
.src = params->initial_data,
.stride = params->w * fmt->bytes,
};
if (!ra->fns->tex_upload(ra, &ul_params))
goto error;
}
return tex;
error:
vk_tex_destroy(ra, tex);
return NULL;
}
struct ra_tex *ra_vk_wrap_swapchain_img(struct ra *ra, VkImage vkimg,
VkSwapchainCreateInfoKHR info)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_tex *tex = NULL;
const struct ra_format *format = NULL;
for (int i = 0; i < ra->num_formats; i++) {
const struct vk_format *fmt = ra->formats[i]->priv;
if (fmt->iformat == vk->surf_format.format) {
format = ra->formats[i];
break;
}
}
if (!format) {
MP_ERR(ra, "Could not find ra_format suitable for wrapped swchain image "
"with surface format 0x%x\n", vk->surf_format.format);
goto error;
}
tex = talloc_zero(NULL, struct ra_tex);
tex->params = (struct ra_tex_params) {
.format = format,
.dimensions = 2,
.w = info.imageExtent.width,
.h = info.imageExtent.height,
.d = 1,
.blit_src = !!(info.imageUsage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT),
.blit_dst = !!(info.imageUsage & VK_IMAGE_USAGE_TRANSFER_DST_BIT),
.render_src = !!(info.imageUsage & VK_IMAGE_USAGE_SAMPLED_BIT),
.render_dst = !!(info.imageUsage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT),
.storage_dst = !!(info.imageUsage & VK_IMAGE_USAGE_STORAGE_BIT),
};
struct ra_tex_vk *tex_vk = tex->priv = talloc_zero(tex, struct ra_tex_vk);
tex_vk->type = VK_IMAGE_TYPE_2D;
tex_vk->external_img = true;
tex_vk->img = vkimg;
if (!vk_init_image(ra, tex))
goto error;
return tex;
error:
vk_tex_destroy(ra, tex);
return NULL;
}
// For ra_buf.priv
struct ra_buf_vk {
struct vk_bufslice slice;
int refcount; // 1 = object allocated but not in use, > 1 = in use
bool needsflush;
enum queue_type update_queue;
// "current" metadata, can change during course of execution
VkPipelineStageFlags current_stage;
VkAccessFlags current_access;
};
static void vk_buf_deref(struct ra *ra, struct ra_buf *buf)
{
if (!buf)
return;
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_buf_vk *buf_vk = buf->priv;
if (--buf_vk->refcount == 0) {
vk_free_memslice(vk, buf_vk->slice.mem);
talloc_free(buf);
}
}
static void buf_barrier(struct ra *ra, struct vk_cmd *cmd, struct ra_buf *buf,
VkPipelineStageFlags newStage,
VkAccessFlags newAccess, int offset, size_t size)
{
struct ra_buf_vk *buf_vk = buf->priv;
VkBufferMemoryBarrier buffBarrier = {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.srcAccessMask = buf_vk->current_access,
.dstAccessMask = newAccess,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.buffer = buf_vk->slice.buf,
.offset = offset,
.size = size,
};
if (buf_vk->needsflush || buf->params.host_mapped) {
buffBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
buf_vk->current_stage = VK_PIPELINE_STAGE_HOST_BIT;
buf_vk->needsflush = false;
}
if (buffBarrier.srcAccessMask != buffBarrier.dstAccessMask) {
vkCmdPipelineBarrier(cmd->buf, buf_vk->current_stage, newStage, 0,
0, NULL, 1, &buffBarrier, 0, NULL);
}
buf_vk->current_stage = newStage;
buf_vk->current_access = newAccess;
buf_vk->refcount++;
vk_cmd_callback(cmd, (vk_cb) vk_buf_deref, ra, buf);
}
#define vk_buf_destroy vk_buf_deref
MAKE_LAZY_DESTRUCTOR(vk_buf_destroy, struct ra_buf);
static void vk_buf_update(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset,
const void *data, size_t size)
{
assert(buf->params.host_mutable || buf->params.initial_data);
struct ra_buf_vk *buf_vk = buf->priv;
// For host-mapped buffers, we can just directly memcpy the buffer contents.
// Otherwise, we can update the buffer from the GPU using a command buffer.
if (buf_vk->slice.data) {
assert(offset + size <= buf->params.size);
uintptr_t addr = (uintptr_t)buf_vk->slice.data + offset;
memcpy((void *)addr, data, size);
buf_vk->needsflush = true;
} else {
struct vk_cmd *cmd = vk_require_cmd(ra, buf_vk->update_queue);
if (!cmd) {
MP_ERR(ra, "Failed updating buffer!\n");
return;
}
buf_barrier(ra, cmd, buf, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT, offset, size);
VkDeviceSize bufOffset = buf_vk->slice.mem.offset + offset;
assert(bufOffset == MP_ALIGN_UP(bufOffset, 4));
vkCmdUpdateBuffer(cmd->buf, buf_vk->slice.buf, bufOffset, size, data);
}
}
static struct ra_buf *vk_buf_create(struct ra *ra,
const struct ra_buf_params *params)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_buf *buf = talloc_zero(NULL, struct ra_buf);
buf->params = *params;
struct ra_buf_vk *buf_vk = buf->priv = talloc_zero(buf, struct ra_buf_vk);
buf_vk->current_stage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
buf_vk->current_access = 0;
buf_vk->refcount = 1;
VkBufferUsageFlags bufFlags = 0;
VkMemoryPropertyFlags memFlags = 0;
VkDeviceSize align = 4; // alignment 4 is needed for buf_update
switch (params->type) {
case RA_BUF_TYPE_TEX_UPLOAD:
bufFlags |= VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
memFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
// Use TRANSFER-style updates for large enough buffers for efficiency
if (params->size > 1024*1024) // 1 MB
buf_vk->update_queue = TRANSFER;
break;
case RA_BUF_TYPE_UNIFORM:
bufFlags |= VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
memFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
align = MP_ALIGN_UP(align, vk->limits.minUniformBufferOffsetAlignment);
break;
case RA_BUF_TYPE_SHADER_STORAGE:
bufFlags |= VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
memFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
align = MP_ALIGN_UP(align, vk->limits.minStorageBufferOffsetAlignment);
buf_vk->update_queue = COMPUTE;
break;
case RA_BUF_TYPE_VERTEX:
bufFlags |= VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
memFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
break;
default: abort();
}
if (params->host_mutable || params->initial_data) {
bufFlags |= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
align = MP_ALIGN_UP(align, vk->limits.optimalBufferCopyOffsetAlignment);
}
if (params->host_mapped) {
memFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
if (!vk_malloc_buffer(vk, bufFlags, memFlags, params->size, align,
&buf_vk->slice))
{
goto error;
}
if (params->host_mapped)
buf->data = buf_vk->slice.data;
if (params->initial_data)
vk_buf_update(ra, buf, 0, params->initial_data, params->size);
buf->params.initial_data = NULL; // do this after vk_buf_update
return buf;
error:
vk_buf_destroy(ra, buf);
return NULL;
}
static bool vk_buf_poll(struct ra *ra, struct ra_buf *buf)
{
struct ra_buf_vk *buf_vk = buf->priv;
return buf_vk->refcount == 1;
}
static bool vk_tex_upload(struct ra *ra,
const struct ra_tex_upload_params *params)
{
struct ra_tex *tex = params->tex;
struct ra_tex_vk *tex_vk = tex->priv;
if (!params->buf)
return ra_tex_upload_pbo(ra, &tex_vk->pbo, params);
assert(!params->src);
assert(params->buf);
struct ra_buf *buf = params->buf;
struct ra_buf_vk *buf_vk = buf->priv;
VkBufferImageCopy region = {
.bufferOffset = buf_vk->slice.mem.offset + params->buf_offset,
.bufferRowLength = tex->params.w,
.bufferImageHeight = tex->params.h,
.imageSubresource = vk_layers,
.imageExtent = (VkExtent3D){tex->params.w, tex->params.h, tex->params.d},
};
if (tex->params.dimensions == 2) {
int pix_size = tex->params.format->pixel_size;
region.bufferRowLength = params->stride / pix_size;
if (region.bufferRowLength * pix_size != params->stride) {
MP_ERR(ra, "Texture upload strides must be a multiple of the texel "
"size!\n");
goto error;
}
if (params->rc) {
struct mp_rect *rc = params->rc;
region.imageOffset = (VkOffset3D){rc->x0, rc->y0, 0};
region.imageExtent = (VkExtent3D){mp_rect_w(*rc), mp_rect_h(*rc), 1};
}
}
uint64_t size = region.bufferRowLength * region.bufferImageHeight *
region.imageExtent.depth;
struct vk_cmd *cmd = vk_require_cmd(ra, tex_vk->upload_queue);
if (!cmd)
goto error;
buf_barrier(ra, cmd, buf, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT, region.bufferOffset, size);
tex_barrier(ra, cmd, tex, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
params->invalidate);
vkCmdCopyBufferToImage(cmd->buf, buf_vk->slice.buf, tex_vk->img,
tex_vk->current_layout, 1, &region);
tex_signal(ra, cmd, tex, VK_PIPELINE_STAGE_TRANSFER_BIT);
return true;
error:
return false;
}
#define MPVK_NUM_DS MPVK_MAX_STREAMING_DEPTH
// For ra_renderpass.priv
struct ra_renderpass_vk {
// Pipeline / render pass
VkPipeline pipe;
VkPipelineLayout pipeLayout;
VkRenderPass renderPass;
VkImageLayout initialLayout;
VkImageLayout finalLayout;
// Descriptor set (bindings)
VkDescriptorSetLayout dsLayout;
VkDescriptorPool dsPool;
VkDescriptorSet dss[MPVK_NUM_DS];
int dindex;
// Vertex buffers (vertices)
struct ra_buf_pool vbo;
// For updating
VkWriteDescriptorSet *dswrite;
VkDescriptorImageInfo *dsiinfo;
VkDescriptorBufferInfo *dsbinfo;
};
static void vk_renderpass_destroy(struct ra *ra, struct ra_renderpass *pass)
{
if (!pass)
return;
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_renderpass_vk *pass_vk = pass->priv;
ra_buf_pool_uninit(ra, &pass_vk->vbo);
vkDestroyPipeline(vk->dev, pass_vk->pipe, MPVK_ALLOCATOR);
vkDestroyRenderPass(vk->dev, pass_vk->renderPass, MPVK_ALLOCATOR);
vkDestroyPipelineLayout(vk->dev, pass_vk->pipeLayout, MPVK_ALLOCATOR);
vkDestroyDescriptorPool(vk->dev, pass_vk->dsPool, MPVK_ALLOCATOR);
vkDestroyDescriptorSetLayout(vk->dev, pass_vk->dsLayout, MPVK_ALLOCATOR);
talloc_free(pass);
}
MAKE_LAZY_DESTRUCTOR(vk_renderpass_destroy, struct ra_renderpass);
static const VkDescriptorType dsType[] = {
[RA_VARTYPE_TEX] = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
[RA_VARTYPE_IMG_W] = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
[RA_VARTYPE_BUF_RO] = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
[RA_VARTYPE_BUF_RW] = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
};
static bool vk_get_input_format(struct ra *ra, struct ra_renderpass_input *inp,
VkFormat *out_fmt)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
enum ra_ctype ctype;
switch (inp->type) {
case RA_VARTYPE_FLOAT: ctype = RA_CTYPE_FLOAT; break;
case RA_VARTYPE_BYTE_UNORM: ctype = RA_CTYPE_UNORM; break;
default: abort();
}
assert(inp->dim_m == 1);
for (const struct vk_format *fmt = vk_formats; fmt->name; fmt++) {
if (fmt->ctype != ctype)
continue;
if (fmt->components != inp->dim_v)
continue;
if (fmt->bytes != ra_renderpass_input_layout(inp).size)
continue;
// Ensure this format is valid for vertex attributes
VkFormatProperties prop;
vkGetPhysicalDeviceFormatProperties(vk->physd, fmt->iformat, &prop);
if (!(prop.bufferFeatures & VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT))
continue;
*out_fmt = fmt->iformat;
return true;
}
return false;
}
static const char vk_cache_magic[4] = {'R','A','V','K'};
static const int vk_cache_version = 2;
struct vk_cache_header {
char magic[sizeof(vk_cache_magic)];
int cache_version;
char compiler[SPIRV_NAME_MAX_LEN];
int compiler_version;
size_t vert_spirv_len;
size_t frag_spirv_len;
size_t comp_spirv_len;
size_t pipecache_len;
};
static bool vk_use_cached_program(const struct ra_renderpass_params *params,
const struct spirv_compiler *spirv,
struct bstr *vert_spirv,
struct bstr *frag_spirv,
struct bstr *comp_spirv,
struct bstr *pipecache)
{
struct bstr cache = params->cached_program;
if (cache.len < sizeof(struct vk_cache_header))
return false;
struct vk_cache_header *header = (struct vk_cache_header *)cache.start;
cache = bstr_cut(cache, sizeof(*header));
if (strncmp(header->magic, vk_cache_magic, sizeof(vk_cache_magic)) != 0)
return false;
if (header->cache_version != vk_cache_version)
return false;
if (strncmp(header->compiler, spirv->name, sizeof(header->compiler)) != 0)
return false;
if (header->compiler_version != spirv->compiler_version)
return false;
#define GET(ptr) \
if (cache.len < header->ptr##_len) \
return false; \
*ptr = bstr_splice(cache, 0, header->ptr##_len); \
cache = bstr_cut(cache, ptr->len);
GET(vert_spirv);
GET(frag_spirv);
GET(comp_spirv);
GET(pipecache);
return true;
}
static VkResult vk_compile_glsl(struct ra *ra, void *tactx,
enum glsl_shader type, const char *glsl,
struct bstr *spirv)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
VkResult ret = VK_SUCCESS;
int msgl = MSGL_DEBUG;
if (!vk->spirv->fns->compile_glsl(vk->spirv, tactx, type, glsl, spirv)) {
ret = VK_ERROR_INVALID_SHADER_NV;
msgl = MSGL_ERR;
}
static const char *shader_names[] = {
[GLSL_SHADER_VERTEX] = "vertex",
[GLSL_SHADER_FRAGMENT] = "fragment",
[GLSL_SHADER_COMPUTE] = "compute",
};
if (mp_msg_test(ra->log, msgl)) {
MP_MSG(ra, msgl, "%s shader source:\n", shader_names[type]);
mp_log_source(ra->log, msgl, glsl);
}
return ret;
}
static const VkShaderStageFlags stageFlags[] = {
[RA_RENDERPASS_TYPE_RASTER] = VK_SHADER_STAGE_FRAGMENT_BIT,
[RA_RENDERPASS_TYPE_COMPUTE] = VK_SHADER_STAGE_COMPUTE_BIT,
};
static struct ra_renderpass *vk_renderpass_create(struct ra *ra,
const struct ra_renderpass_params *params)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
bool success = false;
assert(vk->spirv);
struct ra_renderpass *pass = talloc_zero(NULL, struct ra_renderpass);
pass->params = *ra_renderpass_params_copy(pass, params);
pass->params.cached_program = (bstr){0};
struct ra_renderpass_vk *pass_vk = pass->priv =
talloc_zero(pass, struct ra_renderpass_vk);
// temporary allocations/objects
void *tmp = talloc_new(NULL);
VkPipelineCache pipeCache = NULL;
VkShaderModule vert_shader = NULL;
VkShaderModule frag_shader = NULL;
VkShaderModule comp_shader = NULL;
static int dsCount[RA_VARTYPE_COUNT] = {0};
VkDescriptorSetLayoutBinding *bindings = NULL;
int num_bindings = 0;
for (int i = 0; i < params->num_inputs; i++) {
struct ra_renderpass_input *inp = &params->inputs[i];
switch (inp->type) {
case RA_VARTYPE_TEX:
case RA_VARTYPE_IMG_W:
case RA_VARTYPE_BUF_RO:
case RA_VARTYPE_BUF_RW: {
VkDescriptorSetLayoutBinding desc = {
.binding = inp->binding,
.descriptorType = dsType[inp->type],
.descriptorCount = 1,
.stageFlags = stageFlags[params->type],
};
MP_TARRAY_APPEND(tmp, bindings, num_bindings, desc);
dsCount[inp->type]++;
break;
}
default: abort();
}
}
VkDescriptorPoolSize *dsPoolSizes = NULL;
int poolSizeCount = 0;
for (enum ra_vartype t = 0; t < RA_VARTYPE_COUNT; t++) {
if (dsCount[t] > 0) {
VkDescriptorPoolSize dssize = {
.type = dsType[t],
.descriptorCount = dsCount[t] * MPVK_NUM_DS,
};
MP_TARRAY_APPEND(tmp, dsPoolSizes, poolSizeCount, dssize);
}
}
VkDescriptorPoolCreateInfo pinfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.maxSets = MPVK_NUM_DS,
.pPoolSizes = dsPoolSizes,
.poolSizeCount = poolSizeCount,
};
VK(vkCreateDescriptorPool(vk->dev, &pinfo, MPVK_ALLOCATOR, &pass_vk->dsPool));
pass_vk->dswrite = talloc_array(pass, VkWriteDescriptorSet, num_bindings);
pass_vk->dsiinfo = talloc_array(pass, VkDescriptorImageInfo, num_bindings);
pass_vk->dsbinfo = talloc_array(pass, VkDescriptorBufferInfo, num_bindings);
VkDescriptorSetLayoutCreateInfo dinfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pBindings = bindings,
.bindingCount = num_bindings,
};
VK(vkCreateDescriptorSetLayout(vk->dev, &dinfo, MPVK_ALLOCATOR,
&pass_vk->dsLayout));
VkDescriptorSetLayout layouts[MPVK_NUM_DS];
for (int i = 0; i < MPVK_NUM_DS; i++)
layouts[i] = pass_vk->dsLayout;
VkDescriptorSetAllocateInfo ainfo = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = pass_vk->dsPool,
.descriptorSetCount = MPVK_NUM_DS,
.pSetLayouts = layouts,
};
VK(vkAllocateDescriptorSets(vk->dev, &ainfo, pass_vk->dss));
VkPipelineLayoutCreateInfo linfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &pass_vk->dsLayout,
.pushConstantRangeCount = params->push_constants_size ? 1 : 0,
.pPushConstantRanges = &(VkPushConstantRange){
.stageFlags = stageFlags[params->type],
.offset = 0,
.size = params->push_constants_size,
},
};
VK(vkCreatePipelineLayout(vk->dev, &linfo, MPVK_ALLOCATOR,
&pass_vk->pipeLayout));
struct bstr vert = {0}, frag = {0}, comp = {0}, pipecache = {0};
if (vk_use_cached_program(params, vk->spirv, &vert, &frag, &comp, &pipecache)) {
MP_VERBOSE(ra, "Using cached SPIR-V and VkPipeline.\n");
} else {
pipecache.len = 0;
switch (params->type) {
case RA_RENDERPASS_TYPE_RASTER:
VK(vk_compile_glsl(ra, tmp, GLSL_SHADER_VERTEX,
params->vertex_shader, &vert));
VK(vk_compile_glsl(ra, tmp, GLSL_SHADER_FRAGMENT,
params->frag_shader, &frag));
comp.len = 0;
break;
case RA_RENDERPASS_TYPE_COMPUTE:
VK(vk_compile_glsl(ra, tmp, GLSL_SHADER_COMPUTE,
params->compute_shader, &comp));
frag.len = 0;
vert.len = 0;
break;
}
}
VkPipelineCacheCreateInfo pcinfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO,
.pInitialData = pipecache.start,
.initialDataSize = pipecache.len,
};
VK(vkCreatePipelineCache(vk->dev, &pcinfo, MPVK_ALLOCATOR, &pipeCache));
VkShaderModuleCreateInfo sinfo = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
};
switch (params->type) {
case RA_RENDERPASS_TYPE_RASTER: {
sinfo.pCode = (uint32_t *)vert.start;
sinfo.codeSize = vert.len;
VK(vkCreateShaderModule(vk->dev, &sinfo, MPVK_ALLOCATOR, &vert_shader));
sinfo.pCode = (uint32_t *)frag.start;
sinfo.codeSize = frag.len;
VK(vkCreateShaderModule(vk->dev, &sinfo, MPVK_ALLOCATOR, &frag_shader));
VkVertexInputAttributeDescription *attrs = talloc_array(tmp,
VkVertexInputAttributeDescription, params->num_vertex_attribs);
for (int i = 0; i < params->num_vertex_attribs; i++) {
struct ra_renderpass_input *inp = &params->vertex_attribs[i];
attrs[i] = (VkVertexInputAttributeDescription) {
.location = i,
.binding = 0,
.offset = inp->offset,
};
if (!vk_get_input_format(ra, inp, &attrs[i].format)) {
MP_ERR(ra, "No suitable VkFormat for vertex attrib '%s'!\n",
inp->name);
goto error;
}
}
// This is the most common case, so optimize towards it. In this case,
// the renderpass will take care of almost all layout transitions
pass_vk->initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
pass_vk->finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentLoadOp loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
// If we're blending, then we need to explicitly load the previous
// contents of the color attachment
if (pass->params.enable_blend)
loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
// If we're invalidating the target, we don't need to load or transition
if (pass->params.invalidate_target) {
pass_vk->initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
}
VK(vk_create_render_pass(vk->dev, params->target_format, loadOp,
pass_vk->initialLayout, pass_vk->finalLayout,
&pass_vk->renderPass));
static const VkBlendFactor blendFactors[] = {
[RA_BLEND_ZERO] = VK_BLEND_FACTOR_ZERO,
[RA_BLEND_ONE] = VK_BLEND_FACTOR_ONE,
[RA_BLEND_SRC_ALPHA] = VK_BLEND_FACTOR_SRC_ALPHA,
[RA_BLEND_ONE_MINUS_SRC_ALPHA] = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
};
VkGraphicsPipelineCreateInfo cinfo = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = (VkPipelineShaderStageCreateInfo[]) {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vert_shader,
.pName = "main",
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = frag_shader,
.pName = "main",
}
},
.pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = &(VkVertexInputBindingDescription) {
.binding = 0,
.stride = params->vertex_stride,
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX,
},
.vertexAttributeDescriptionCount = params->num_vertex_attribs,
.pVertexAttributeDescriptions = attrs,
},
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.lineWidth = 1.0f,
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT,
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkPipelineColorBlendAttachmentState) {
.blendEnable = params->enable_blend,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcColorBlendFactor = blendFactors[params->blend_src_rgb],
.dstColorBlendFactor = blendFactors[params->blend_dst_rgb],
.alphaBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = blendFactors[params->blend_src_alpha],
.dstAlphaBlendFactor = blendFactors[params->blend_dst_alpha],
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT,
},
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[]){
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
},
},
.layout = pass_vk->pipeLayout,
.renderPass = pass_vk->renderPass,
};
VK(vkCreateGraphicsPipelines(vk->dev, pipeCache, 1, &cinfo,
MPVK_ALLOCATOR, &pass_vk->pipe));
break;
}
case RA_RENDERPASS_TYPE_COMPUTE: {
sinfo.pCode = (uint32_t *)comp.start;
sinfo.codeSize = comp.len;
VK(vkCreateShaderModule(vk->dev, &sinfo, MPVK_ALLOCATOR, &comp_shader));
VkComputePipelineCreateInfo cinfo = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.stage = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_COMPUTE_BIT,
.module = comp_shader,
.pName = "main",
},
.layout = pass_vk->pipeLayout,
};
VK(vkCreateComputePipelines(vk->dev, pipeCache, 1, &cinfo,
MPVK_ALLOCATOR, &pass_vk->pipe));
break;
}
}
// Update params->cached_program
struct bstr cache = {0};
VK(vkGetPipelineCacheData(vk->dev, pipeCache, &cache.len, NULL));
cache.start = talloc_size(tmp, cache.len);
VK(vkGetPipelineCacheData(vk->dev, pipeCache, &cache.len, cache.start));
struct vk_cache_header header = {
.cache_version = vk_cache_version,
.compiler_version = vk->spirv->compiler_version,
.vert_spirv_len = vert.len,
.frag_spirv_len = frag.len,
.comp_spirv_len = comp.len,
.pipecache_len = cache.len,
};
for (int i = 0; i < MP_ARRAY_SIZE(header.magic); i++)
header.magic[i] = vk_cache_magic[i];
for (int i = 0; i < sizeof(vk->spirv->name); i++)
header.compiler[i] = vk->spirv->name[i];
struct bstr *prog = &pass->params.cached_program;
bstr_xappend(pass, prog, (struct bstr){ (char *) &header, sizeof(header) });
bstr_xappend(pass, prog, vert);
bstr_xappend(pass, prog, frag);
bstr_xappend(pass, prog, comp);
bstr_xappend(pass, prog, cache);
success = true;
error:
if (!success) {
vk_renderpass_destroy(ra, pass);
pass = NULL;
}
vkDestroyShaderModule(vk->dev, vert_shader, MPVK_ALLOCATOR);
vkDestroyShaderModule(vk->dev, frag_shader, MPVK_ALLOCATOR);
vkDestroyShaderModule(vk->dev, comp_shader, MPVK_ALLOCATOR);
vkDestroyPipelineCache(vk->dev, pipeCache, MPVK_ALLOCATOR);
talloc_free(tmp);
return pass;
}
static const VkPipelineStageFlags passStages[] = {
[RA_RENDERPASS_TYPE_RASTER] = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
[RA_RENDERPASS_TYPE_COMPUTE] = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
};
static void vk_update_descriptor(struct ra *ra, struct vk_cmd *cmd,
struct ra_renderpass *pass,
struct ra_renderpass_input_val val,
VkDescriptorSet ds, int idx)
{
struct ra_renderpass_vk *pass_vk = pass->priv;
struct ra_renderpass_input *inp = &pass->params.inputs[val.index];
VkWriteDescriptorSet *wds = &pass_vk->dswrite[idx];
*wds = (VkWriteDescriptorSet) {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = ds,
.dstBinding = inp->binding,
.descriptorCount = 1,
.descriptorType = dsType[inp->type],
};
switch (inp->type) {
case RA_VARTYPE_TEX: {
struct ra_tex *tex = *(struct ra_tex **)val.data;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex->params.render_src);
tex_barrier(ra, cmd, tex, passStages[pass->params.type],
VK_ACCESS_SHADER_READ_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, false);
VkDescriptorImageInfo *iinfo = &pass_vk->dsiinfo[idx];
*iinfo = (VkDescriptorImageInfo) {
.sampler = tex_vk->sampler,
.imageView = tex_vk->view,
.imageLayout = tex_vk->current_layout,
};
wds->pImageInfo = iinfo;
break;
}
case RA_VARTYPE_IMG_W: {
struct ra_tex *tex = *(struct ra_tex **)val.data;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex->params.storage_dst);
tex_barrier(ra, cmd, tex, passStages[pass->params.type],
VK_ACCESS_SHADER_WRITE_BIT,
VK_IMAGE_LAYOUT_GENERAL, false);
VkDescriptorImageInfo *iinfo = &pass_vk->dsiinfo[idx];
*iinfo = (VkDescriptorImageInfo) {
.imageView = tex_vk->view,
.imageLayout = tex_vk->current_layout,
};
wds->pImageInfo = iinfo;
break;
}
case RA_VARTYPE_BUF_RO:
case RA_VARTYPE_BUF_RW: {
struct ra_buf *buf = *(struct ra_buf **)val.data;
struct ra_buf_vk *buf_vk = buf->priv;
VkBufferUsageFlags access = VK_ACCESS_SHADER_READ_BIT;
if (inp->type == RA_VARTYPE_BUF_RW)
access |= VK_ACCESS_SHADER_WRITE_BIT;
buf_barrier(ra, cmd, buf, passStages[pass->params.type],
access, buf_vk->slice.mem.offset, buf->params.size);
VkDescriptorBufferInfo *binfo = &pass_vk->dsbinfo[idx];
*binfo = (VkDescriptorBufferInfo) {
.buffer = buf_vk->slice.buf,
.offset = buf_vk->slice.mem.offset,
.range = buf->params.size,
};
wds->pBufferInfo = binfo;
break;
}
}
}
static void vk_release_descriptor(struct ra *ra, struct vk_cmd *cmd,
struct ra_renderpass *pass,
struct ra_renderpass_input_val val)
{
struct ra_renderpass_input *inp = &pass->params.inputs[val.index];
switch (inp->type) {
case RA_VARTYPE_IMG_W:
case RA_VARTYPE_TEX: {
struct ra_tex *tex = *(struct ra_tex **)val.data;
tex_signal(ra, cmd, tex, passStages[pass->params.type]);
break;
}
}
}
static void vk_renderpass_run(struct ra *ra,
const struct ra_renderpass_run_params *params)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct ra_renderpass *pass = params->pass;
struct ra_renderpass_vk *pass_vk = pass->priv;
static const enum queue_type types[] = {
[RA_RENDERPASS_TYPE_RASTER] = GRAPHICS,
[RA_RENDERPASS_TYPE_COMPUTE] = COMPUTE,
};
struct vk_cmd *cmd = vk_require_cmd(ra, types[pass->params.type]);
if (!cmd)
goto error;
static const VkPipelineBindPoint bindPoint[] = {
[RA_RENDERPASS_TYPE_RASTER] = VK_PIPELINE_BIND_POINT_GRAPHICS,
[RA_RENDERPASS_TYPE_COMPUTE] = VK_PIPELINE_BIND_POINT_COMPUTE,
};
vkCmdBindPipeline(cmd->buf, bindPoint[pass->params.type], pass_vk->pipe);
VkDescriptorSet ds = pass_vk->dss[pass_vk->dindex++];
pass_vk->dindex %= MPVK_NUM_DS;
for (int i = 0; i < params->num_values; i++)
vk_update_descriptor(ra, cmd, pass, params->values[i], ds, i);
if (params->num_values > 0) {
vkUpdateDescriptorSets(vk->dev, params->num_values, pass_vk->dswrite,
0, NULL);
}
vkCmdBindDescriptorSets(cmd->buf, bindPoint[pass->params.type],
pass_vk->pipeLayout, 0, 1, &ds, 0, NULL);
if (pass->params.push_constants_size) {
vkCmdPushConstants(cmd->buf, pass_vk->pipeLayout,
stageFlags[pass->params.type], 0,
pass->params.push_constants_size,
params->push_constants);
}
switch (pass->params.type) {
case RA_RENDERPASS_TYPE_COMPUTE:
vkCmdDispatch(cmd->buf, params->compute_groups[0],
params->compute_groups[1],
params->compute_groups[2]);
break;
case RA_RENDERPASS_TYPE_RASTER: {
struct ra_tex *tex = params->target;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex->params.render_dst);
struct ra_buf_params buf_params = {
.type = RA_BUF_TYPE_VERTEX,
.size = params->vertex_count * pass->params.vertex_stride,
.host_mutable = true,
};
struct ra_buf *buf = ra_buf_pool_get(ra, &pass_vk->vbo, &buf_params);
if (!buf) {
MP_ERR(ra, "Failed allocating vertex buffer!\n");
goto error;
}
struct ra_buf_vk *buf_vk = buf->priv;
vk_buf_update(ra, buf, 0, params->vertex_data, buf_params.size);
buf_barrier(ra, cmd, buf, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
buf_vk->slice.mem.offset, buf_params.size);
vkCmdBindVertexBuffers(cmd->buf, 0, 1, &buf_vk->slice.buf,
&buf_vk->slice.mem.offset);
tex_barrier(ra, cmd, tex, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, pass_vk->initialLayout,
pass->params.invalidate_target);
VkViewport viewport = {
.x = params->viewport.x0,
.y = params->viewport.y0,
.width = mp_rect_w(params->viewport),
.height = mp_rect_h(params->viewport),
};
VkRect2D scissor = {
.offset = {params->scissors.x0, params->scissors.y0},
.extent = {mp_rect_w(params->scissors), mp_rect_h(params->scissors)},
};
vkCmdSetViewport(cmd->buf, 0, 1, &viewport);
vkCmdSetScissor(cmd->buf, 0, 1, &scissor);
VkRenderPassBeginInfo binfo = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = pass_vk->renderPass,
.framebuffer = tex_vk->framebuffer,
.renderArea = (VkRect2D){{0, 0}, {tex->params.w, tex->params.h}},
};
vkCmdBeginRenderPass(cmd->buf, &binfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdDraw(cmd->buf, params->vertex_count, 1, 0, 0);
vkCmdEndRenderPass(cmd->buf);
// The renderPass implicitly transitions the texture to this layout
tex_vk->current_layout = pass_vk->finalLayout;
tex_vk->current_access = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
tex_signal(ra, cmd, tex, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
break;
}
default: abort();
};
for (int i = 0; i < params->num_values; i++)
vk_release_descriptor(ra, cmd, pass, params->values[i]);
// flush the work so far into its own command buffer, for better cross-frame
// granularity
vk_submit(ra);
error:
return;
}
static void vk_blit(struct ra *ra, struct ra_tex *dst, struct ra_tex *src,
struct mp_rect *dst_rc, struct mp_rect *src_rc)
{
assert(src->params.blit_src);
assert(dst->params.blit_dst);
struct ra_tex_vk *src_vk = src->priv;
struct ra_tex_vk *dst_vk = dst->priv;
struct vk_cmd *cmd = vk_require_cmd(ra, GRAPHICS);
if (!cmd)
return;
tex_barrier(ra, cmd, src, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_READ_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
false);
bool discard = dst_rc->x0 == 0 &&
dst_rc->y0 == 0 &&
dst_rc->x1 == dst->params.w &&
dst_rc->y1 == dst->params.h;
tex_barrier(ra, cmd, dst, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
discard);
// Under certain conditions we can use vkCmdCopyImage instead of
// vkCmdBlitImage, namely when the blit operation does not require
// scaling. and the formats are compatible.
if (src->params.format->pixel_size == dst->params.format->pixel_size &&
mp_rect_w(*src_rc) == mp_rect_w(*dst_rc) &&
mp_rect_h(*src_rc) == mp_rect_h(*dst_rc) &&
mp_rect_w(*src_rc) >= 0 && mp_rect_h(*src_rc) >= 0)
{
VkImageCopy region = {
.srcSubresource = vk_layers,
.dstSubresource = vk_layers,
.srcOffset = {src_rc->x0, src_rc->y0, 0},
.dstOffset = {dst_rc->x0, dst_rc->y0, 0},
.extent = {mp_rect_w(*src_rc), mp_rect_h(*src_rc), 1},
};
vkCmdCopyImage(cmd->buf, src_vk->img, src_vk->current_layout,
dst_vk->img, dst_vk->current_layout, 1, &region);
} else {
VkImageBlit region = {
.srcSubresource = vk_layers,
.dstSubresource = vk_layers,
.srcOffsets = {{src_rc->x0, src_rc->y0, 0},
{src_rc->x1, src_rc->y1, 1}},
.dstOffsets = {{dst_rc->x0, dst_rc->y0, 0},
{dst_rc->x1, dst_rc->y1, 1}},
};
vkCmdBlitImage(cmd->buf, src_vk->img, src_vk->current_layout,
dst_vk->img, dst_vk->current_layout, 1, &region,
VK_FILTER_NEAREST);
}
tex_signal(ra, cmd, src, VK_PIPELINE_STAGE_TRANSFER_BIT);
tex_signal(ra, cmd, dst, VK_PIPELINE_STAGE_TRANSFER_BIT);
}
static void vk_clear(struct ra *ra, struct ra_tex *tex, float color[4],
struct mp_rect *rc)
{
struct ra_vk *p = ra->priv;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex->params.blit_dst);
struct vk_cmd *cmd = vk_require_cmd(ra, GRAPHICS);
if (!cmd)
return;
struct mp_rect full = {0, 0, tex->params.w, tex->params.h};
if (!rc || mp_rect_equals(rc, &full)) {
// To clear the entire image, we can use the efficient clear command
tex_barrier(ra, cmd, tex, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, true);
VkClearColorValue clearColor = {0};
for (int c = 0; c < 4; c++)
clearColor.float32[c] = color[c];
vkCmdClearColorImage(cmd->buf, tex_vk->img, tex_vk->current_layout,
&clearColor, 1, &vk_range);
tex_signal(ra, cmd, tex, VK_PIPELINE_STAGE_TRANSFER_BIT);
} else {
// To simulate per-region clearing, we blit from a 1x1 texture instead
struct ra_tex_upload_params ul_params = {
.tex = p->clear_tex,
.invalidate = true,
.src = &color[0],
};
vk_tex_upload(ra, &ul_params);
vk_blit(ra, tex, p->clear_tex, rc, &(struct mp_rect){0, 0, 1, 1});
}
}
static int vk_desc_namespace(enum ra_vartype type)
{
return 0;
}
#define VK_QUERY_POOL_SIZE (MPVK_MAX_STREAMING_DEPTH * 4)
struct vk_timer {
VkQueryPool pool;
int index_seen; // keeps track of which indices have been used at least once
int index;
uint64_t result;
};
static void vk_timer_destroy(struct ra *ra, ra_timer *ratimer)
{
if (!ratimer)
return;
struct mpvk_ctx *vk = ra_vk_get(ra);
struct vk_timer *timer = ratimer;
vkDestroyQueryPool(vk->dev, timer->pool, MPVK_ALLOCATOR);
talloc_free(timer);
}
MAKE_LAZY_DESTRUCTOR(vk_timer_destroy, ra_timer);
static ra_timer *vk_timer_create(struct ra *ra)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct vk_timer *timer = talloc_zero(NULL, struct vk_timer);
timer->index_seen = -1;
struct VkQueryPoolCreateInfo qinfo = {
.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
.queryType = VK_QUERY_TYPE_TIMESTAMP,
.queryCount = VK_QUERY_POOL_SIZE,
};
VK(vkCreateQueryPool(vk->dev, &qinfo, MPVK_ALLOCATOR, &timer->pool));
return (ra_timer *)timer;
error:
vk_timer_destroy(ra, timer);
return NULL;
}
static void vk_timer_record(struct ra *ra, VkQueryPool pool, int index,
VkPipelineStageFlags stage)
{
struct vk_cmd *cmd = vk_require_cmd(ra, GRAPHICS);
if (!cmd)
return;
vkCmdWriteTimestamp(cmd->buf, stage, pool, index);
}
static void vk_timer_start(struct ra *ra, ra_timer *ratimer)
{
struct mpvk_ctx *vk = ra_vk_get(ra);
struct vk_timer *timer = ratimer;
VkResult res = VK_NOT_READY;
uint64_t out[2];
if (timer->index <= timer->index_seen) {
res = vkGetQueryPoolResults(vk->dev, timer->pool, timer->index, 2,
sizeof(out), &out[0], sizeof(uint64_t),
VK_QUERY_RESULT_64_BIT);
}
switch (res) {
case VK_SUCCESS:
timer->result = (out[1] - out[0]) * vk->limits.timestampPeriod;
break;
case VK_NOT_READY:
timer->result = 0;
break;
default:
MP_WARN(vk, "Failed reading timer query result: %s\n", vk_err(res));
return;
};
vk_timer_record(ra, timer->pool, timer->index,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
}
static uint64_t vk_timer_stop(struct ra *ra, ra_timer *ratimer)
{
struct vk_timer *timer = ratimer;
vk_timer_record(ra, timer->pool, timer->index + 1,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT);
timer->index_seen = MPMAX(timer->index_seen, timer->index);
timer->index = (timer->index + 2) % VK_QUERY_POOL_SIZE;
return timer->result;
}
static struct ra_fns ra_fns_vk = {
.destroy = vk_destroy_ra,
.tex_create = vk_tex_create,
.tex_destroy = vk_tex_destroy_lazy,
.tex_upload = vk_tex_upload,
.buf_create = vk_buf_create,
.buf_destroy = vk_buf_destroy_lazy,
.buf_update = vk_buf_update,
.buf_poll = vk_buf_poll,
.clear = vk_clear,
.blit = vk_blit,
.uniform_layout = std140_layout,
.push_constant_layout = std430_layout,
.desc_namespace = vk_desc_namespace,
.renderpass_create = vk_renderpass_create,
.renderpass_destroy = vk_renderpass_destroy_lazy,
.renderpass_run = vk_renderpass_run,
.timer_create = vk_timer_create,
.timer_destroy = vk_timer_destroy_lazy,
.timer_start = vk_timer_start,
.timer_stop = vk_timer_stop,
};
struct vk_cmd *ra_vk_submit(struct ra *ra, struct ra_tex *tex)
{
struct ra_vk *p = ra->priv;
struct vk_cmd *cmd = vk_require_cmd(ra, GRAPHICS);
if (!cmd)
return NULL;
struct ra_tex_vk *tex_vk = tex->priv;
assert(tex_vk->external_img);
tex_barrier(ra, cmd, tex, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_ACCESS_MEMORY_READ_BIT, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
false);
// Return this directly instead of going through vk_submit
p->cmd = NULL;
return cmd;
}