mpv/postproc/swscale.c

1579 lines
42 KiB
C

/*
Copyright (C) 2001-2002 Michael Niedermayer <michaelni@gmx.at>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
supported Input formats: YV12 (grayscale soon too)
supported output formats: YV12, BGR15, BGR16, BGR24, BGR32 (grayscale soon too)
*/
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include "../config.h"
#include "../mangle.h"
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#include "swscale.h"
#include "../cpudetect.h"
#include "../libvo/img_format.h"
#undef MOVNTQ
#undef PAVGB
//#undef HAVE_MMX2
//#define HAVE_3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
#define DITHER1XBPP
#define RET 0xC3 //near return opcode
#ifdef MP_DEBUG
#define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; }
#else
#define ASSERT(x) ;
#endif
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif
extern int verbose; // defined in mplayer.c
/*
NOTES
known BUGS with known cause (no bugreports please!, but patches are welcome :) )
horizontal fast_bilinear MMX2 scaler reads 1-7 samples too much (might cause a sig11)
Supported output formats BGR15 BGR16 BGR24 BGR32 YV12
BGR15 & BGR16 MMX verions support dithering
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
TODO
more intelligent missalignment avoidance for the horizontal scaler
dither in C
change the distance of the u & v buffer
write special vertical cubic upscale version
Optimize C code (yv12 / minmax)
*/
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
#define MIN(a,b) ((a) > (b) ? (b) : (a))
#define MAX(a,b) ((a) < (b) ? (b) : (a))
#ifdef ARCH_X86
#define CAN_COMPILE_X86_ASM
#endif
#ifdef CAN_COMPILE_X86_ASM
static uint64_t __attribute__((aligned(8))) yCoeff= 0x2568256825682568LL;
static uint64_t __attribute__((aligned(8))) vrCoeff= 0x3343334333433343LL;
static uint64_t __attribute__((aligned(8))) ubCoeff= 0x40cf40cf40cf40cfLL;
static uint64_t __attribute__((aligned(8))) vgCoeff= 0xE5E2E5E2E5E2E5E2LL;
static uint64_t __attribute__((aligned(8))) ugCoeff= 0xF36EF36EF36EF36ELL;
static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
static uint64_t __attribute__((aligned(8))) w400= 0x0400040004000400LL;
static uint64_t __attribute__((aligned(8))) w80= 0x0080008000800080LL;
static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL;
static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
static volatile uint64_t __attribute__((aligned(8))) b5Dither;
static volatile uint64_t __attribute__((aligned(8))) g5Dither;
static volatile uint64_t __attribute__((aligned(8))) g6Dither;
static volatile uint64_t __attribute__((aligned(8))) r5Dither;
static uint64_t __attribute__((aligned(8))) dither4[2]={
0x0103010301030103LL,
0x0200020002000200LL,};
static uint64_t __attribute__((aligned(8))) dither8[2]={
0x0602060206020602LL,
0x0004000400040004LL,};
static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
// FIXME remove
static uint64_t __attribute__((aligned(8))) asm_yalpha1;
static uint64_t __attribute__((aligned(8))) asm_uvalpha1;
#endif
// clipping helper table for C implementations:
static unsigned char clip_table[768];
static unsigned short clip_table16b[768];
static unsigned short clip_table16g[768];
static unsigned short clip_table16r[768];
static unsigned short clip_table15b[768];
static unsigned short clip_table15g[768];
static unsigned short clip_table15r[768];
// yuv->rgb conversion tables:
static int yuvtab_2568[256];
static int yuvtab_3343[256];
static int yuvtab_0c92[256];
static int yuvtab_1a1e[256];
static int yuvtab_40cf[256];
// Needed for cubic scaler to catch overflows
static int clip_yuvtab_2568[768];
static int clip_yuvtab_3343[768];
static int clip_yuvtab_0c92[768];
static int clip_yuvtab_1a1e[768];
static int clip_yuvtab_40cf[768];
//global sws_flags from the command line
int sws_flags=0;
//global srcFilter
SwsFilter src_filter= {NULL, NULL, NULL, NULL};
float sws_lum_gblur= 0.0;
float sws_chr_gblur= 0.0;
int sws_chr_vshift= 0;
int sws_chr_hshift= 0;
float sws_chr_sharpen= 0.0;
float sws_lum_sharpen= 0.0;
/* cpuCaps combined from cpudetect and whats actually compiled in
(if there is no support for something compiled in it wont appear here) */
static CpuCaps cpuCaps;
void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
int srcSliceH, uint8_t* dst[], int dstStride[])=NULL;
static SwsVector *getConvVec(SwsVector *a, SwsVector *b);
#ifdef CAN_COMPILE_X86_ASM
void in_asm_used_var_warning_killer()
{
volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+
bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+
M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0];
if(i) i=0;
}
#endif
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW)
{
//FIXME Optimize (just quickly writen not opti..)
int i;
for(i=0; i<dstW; i++)
{
int val=0;
int j;
for(j=0; j<lumFilterSize; j++)
val += lumSrc[j][i] * lumFilter[j];
dest[i]= MIN(MAX(val>>19, 0), 255);
}
if(uDest != NULL)
for(i=0; i<(dstW>>1); i++)
{
int u=0;
int v=0;
int j;
for(j=0; j<chrFilterSize; j++)
{
u += chrSrc[j][i] * chrFilter[j];
v += chrSrc[j][i + 2048] * chrFilter[j];
}
uDest[i]= MIN(MAX(u>>19, 0), 255);
vDest[i]= MIN(MAX(v>>19, 0), 255);
}
}
static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
uint8_t *dest, int dstW, int dstFormat)
{
if(dstFormat==IMGFMT_BGR32)
{
int i;
for(i=0; i<(dstW>>1); i++){
int j;
int Y1=0;
int Y2=0;
int U=0;
int V=0;
int Cb, Cr, Cg;
for(j=0; j<lumFilterSize; j++)
{
Y1 += lumSrc[j][2*i] * lumFilter[j];
Y2 += lumSrc[j][2*i+1] * lumFilter[j];
}
for(j=0; j<chrFilterSize; j++)
{
U += chrSrc[j][i] * chrFilter[j];
V += chrSrc[j][i+2048] * chrFilter[j];
}
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
U >>= 19;
V >>= 19;
Cb= clip_yuvtab_40cf[U+ 256];
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
Cr= clip_yuvtab_3343[V+ 256];
dest[8*i+0]=clip_table[((Y1 + Cb) >>13)];
dest[8*i+1]=clip_table[((Y1 + Cg) >>13)];
dest[8*i+2]=clip_table[((Y1 + Cr) >>13)];
dest[8*i+4]=clip_table[((Y2 + Cb) >>13)];
dest[8*i+5]=clip_table[((Y2 + Cg) >>13)];
dest[8*i+6]=clip_table[((Y2 + Cr) >>13)];
}
}
else if(dstFormat==IMGFMT_BGR24)
{
int i;
for(i=0; i<(dstW>>1); i++){
int j;
int Y1=0;
int Y2=0;
int U=0;
int V=0;
int Cb, Cr, Cg;
for(j=0; j<lumFilterSize; j++)
{
Y1 += lumSrc[j][2*i] * lumFilter[j];
Y2 += lumSrc[j][2*i+1] * lumFilter[j];
}
for(j=0; j<chrFilterSize; j++)
{
U += chrSrc[j][i] * chrFilter[j];
V += chrSrc[j][i+2048] * chrFilter[j];
}
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
U >>= 19;
V >>= 19;
Cb= clip_yuvtab_40cf[U+ 256];
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
Cr= clip_yuvtab_3343[V+ 256];
dest[0]=clip_table[((Y1 + Cb) >>13)];
dest[1]=clip_table[((Y1 + Cg) >>13)];
dest[2]=clip_table[((Y1 + Cr) >>13)];
dest[3]=clip_table[((Y2 + Cb) >>13)];
dest[4]=clip_table[((Y2 + Cg) >>13)];
dest[5]=clip_table[((Y2 + Cr) >>13)];
dest+=6;
}
}
else if(dstFormat==IMGFMT_BGR16)
{
int i;
#ifdef DITHER1XBPP
static int ditherb1=1<<14;
static int ditherg1=1<<13;
static int ditherr1=2<<14;
static int ditherb2=3<<14;
static int ditherg2=3<<13;
static int ditherr2=0<<14;
ditherb1 ^= (1^2)<<14;
ditherg1 ^= (1^2)<<13;
ditherr1 ^= (1^2)<<14;
ditherb2 ^= (3^0)<<14;
ditherg2 ^= (3^0)<<13;
ditherr2 ^= (3^0)<<14;
#else
const int ditherb1=0;
const int ditherg1=0;
const int ditherr1=0;
const int ditherb2=0;
const int ditherg2=0;
const int ditherr2=0;
#endif
for(i=0; i<(dstW>>1); i++){
int j;
int Y1=0;
int Y2=0;
int U=0;
int V=0;
int Cb, Cr, Cg;
for(j=0; j<lumFilterSize; j++)
{
Y1 += lumSrc[j][2*i] * lumFilter[j];
Y2 += lumSrc[j][2*i+1] * lumFilter[j];
}
for(j=0; j<chrFilterSize; j++)
{
U += chrSrc[j][i] * chrFilter[j];
V += chrSrc[j][i+2048] * chrFilter[j];
}
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
U >>= 19;
V >>= 19;
Cb= clip_yuvtab_40cf[U+ 256];
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
Cr= clip_yuvtab_3343[V+ 256];
((uint16_t*)dest)[2*i] =
clip_table16b[(Y1 + Cb + ditherb1) >>13] |
clip_table16g[(Y1 + Cg + ditherg1) >>13] |
clip_table16r[(Y1 + Cr + ditherr1) >>13];
((uint16_t*)dest)[2*i+1] =
clip_table16b[(Y2 + Cb + ditherb2) >>13] |
clip_table16g[(Y2 + Cg + ditherg2) >>13] |
clip_table16r[(Y2 + Cr + ditherr2) >>13];
}
}
else if(dstFormat==IMGFMT_BGR15)
{
int i;
#ifdef DITHER1XBPP
static int ditherb1=1<<14;
static int ditherg1=1<<14;
static int ditherr1=2<<14;
static int ditherb2=3<<14;
static int ditherg2=3<<14;
static int ditherr2=0<<14;
ditherb1 ^= (1^2)<<14;
ditherg1 ^= (1^2)<<14;
ditherr1 ^= (1^2)<<14;
ditherb2 ^= (3^0)<<14;
ditherg2 ^= (3^0)<<14;
ditherr2 ^= (3^0)<<14;
#else
const int ditherb1=0;
const int ditherg1=0;
const int ditherr1=0;
const int ditherb2=0;
const int ditherg2=0;
const int ditherr2=0;
#endif
for(i=0; i<(dstW>>1); i++){
int j;
int Y1=0;
int Y2=0;
int U=0;
int V=0;
int Cb, Cr, Cg;
for(j=0; j<lumFilterSize; j++)
{
Y1 += lumSrc[j][2*i] * lumFilter[j];
Y2 += lumSrc[j][2*i+1] * lumFilter[j];
}
for(j=0; j<chrFilterSize; j++)
{
U += chrSrc[j][i] * chrFilter[j];
V += chrSrc[j][i+2048] * chrFilter[j];
}
Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
U >>= 19;
V >>= 19;
Cb= clip_yuvtab_40cf[U+ 256];
Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
Cr= clip_yuvtab_3343[V+ 256];
((uint16_t*)dest)[2*i] =
clip_table15b[(Y1 + Cb + ditherb1) >>13] |
clip_table15g[(Y1 + Cg + ditherg1) >>13] |
clip_table15r[(Y1 + Cr + ditherr1) >>13];
((uint16_t*)dest)[2*i+1] =
clip_table15b[(Y2 + Cb + ditherb2) >>13] |
clip_table15g[(Y2 + Cg + ditherg2) >>13] |
clip_table15r[(Y2 + Cr + ditherr2) >>13];
}
}
}
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
//Plain C versions
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
#define COMPILE_C
#endif
#ifdef CAN_COMPILE_X86_ASM
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
#define COMPILE_MMX
#endif
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
#define COMPILE_MMX2
#endif
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
#define COMPILE_3DNOW
#endif
#endif //CAN_COMPILE_X86_ASM
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#ifdef COMPILE_C
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif
#ifdef CAN_COMPILE_X86_ASM
//X86 versions
/*
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _X86
#include "swscale_template.c"
*/
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif
//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#define HAVE_MMX
#define HAVE_MMX2
#undef HAVE_3DNOW
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif
//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#define HAVE_3DNOW
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif
#endif //CAN_COMPILE_X86_ASM
// minor note: the HAVE_xyz is messed up after that line so dont use it
// old global scaler, dont use for new code, unless it uses only the stuff from the command line
// will use sws_flags from the command line
void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY ,
int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
int srcW, int srcH, int dstW, int dstH){
static SwsContext *context=NULL;
int dstFormat;
int flags=0;
static int firstTime=1;
int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1};
if(firstTime)
{
#ifdef ARCH_X86
if(gCpuCaps.hasMMX)
asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
#endif
flags= SWS_PRINT_INFO;
firstTime=0;
if(src_filter.lumH) freeVec(src_filter.lumH);
if(src_filter.lumV) freeVec(src_filter.lumV);
if(src_filter.chrH) freeVec(src_filter.chrH);
if(src_filter.chrV) freeVec(src_filter.chrV);
if(sws_lum_gblur!=0.0){
src_filter.lumH= getGaussianVec(sws_lum_gblur, 3.0);
src_filter.lumV= getGaussianVec(sws_lum_gblur, 3.0);
}else{
src_filter.lumH= getIdentityVec();
src_filter.lumV= getIdentityVec();
}
if(sws_chr_gblur!=0.0){
src_filter.chrH= getGaussianVec(sws_chr_gblur, 3.0);
src_filter.chrV= getGaussianVec(sws_chr_gblur, 3.0);
}else{
src_filter.chrH= getIdentityVec();
src_filter.chrV= getIdentityVec();
}
if(sws_chr_sharpen!=0.0){
SwsVector *g= getConstVec(-1.0, 3);
SwsVector *id= getConstVec(10.0/sws_chr_sharpen, 1);
g->coeff[1]=2.0;
addVec(id, g);
convVec(src_filter.chrH, id);
convVec(src_filter.chrV, id);
freeVec(g);
freeVec(id);
}
if(sws_lum_sharpen!=0.0){
SwsVector *g= getConstVec(-1.0, 3);
SwsVector *id= getConstVec(10.0/sws_lum_sharpen, 1);
g->coeff[1]=2.0;
addVec(id, g);
convVec(src_filter.lumH, id);
convVec(src_filter.lumV, id);
freeVec(g);
freeVec(id);
}
if(sws_chr_hshift)
shiftVec(src_filter.chrH, sws_chr_hshift);
if(sws_chr_vshift)
shiftVec(src_filter.chrV, sws_chr_vshift);
normalizeVec(src_filter.chrH, 1.0);
normalizeVec(src_filter.chrV, 1.0);
normalizeVec(src_filter.lumH, 1.0);
normalizeVec(src_filter.lumV, 1.0);
if(verbose > 1) printVec(src_filter.chrH);
if(verbose > 1) printVec(src_filter.lumH);
}
switch(dstbpp)
{
case 8 : dstFormat= IMGFMT_Y8; break;
case 12: dstFormat= IMGFMT_YV12; break;
case 15: dstFormat= IMGFMT_BGR15; break;
case 16: dstFormat= IMGFMT_BGR16; break;
case 24: dstFormat= IMGFMT_BGR24; break;
case 32: dstFormat= IMGFMT_BGR32; break;
default: return;
}
switch(sws_flags)
{
case 0: flags|= SWS_FAST_BILINEAR; break;
case 1: flags|= SWS_BILINEAR; break;
case 2: flags|= SWS_BICUBIC; break;
case 3: flags|= SWS_X; break;
default:flags|= SWS_BILINEAR; break;
}
if(!context) context=getSwsContext(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat, flags, &src_filter, NULL);
swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3);
}
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
int srcW, int dstW, int filterAlign, int one, int flags,
SwsVector *srcFilter, SwsVector *dstFilter)
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
double *filter=NULL;
double *filter2=NULL;
#ifdef ARCH_X86
if(gCpuCaps.hasMMX)
asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
#endif
*filterPos = (int16_t*)memalign(8, dstW*sizeof(int16_t));
if(ABS(xInc - 0x10000) <10) // unscaled
{
int i;
filterSize= 1;
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
for(i=0; i<dstW*filterSize; i++) filter[i]=0;
for(i=0; i<dstW; i++)
{
filter[i*filterSize]=1;
(*filterPos)[i]=i;
}
}
else if(xInc <= (1<<16) || (flags&SWS_FAST_BILINEAR)) // upscale
{
int i;
int xDstInSrc;
if (flags&SWS_BICUBIC) filterSize= 4;
else if(flags&SWS_X ) filterSize= 4;
else filterSize= 2;
// printf("%d %d %d\n", filterSize, srcW, dstW);
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for(i=0; i<dstW; i++)
{
int xx= (xDstInSrc>>16) - (filterSize>>1) + 1;
int j;
(*filterPos)[i]= xx;
if((flags & SWS_BICUBIC) || (flags & SWS_X))
{
double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16);
double y1,y2,y3,y4;
double A= -0.6;
if(flags & SWS_BICUBIC){
// Equation is from VirtualDub
y1 = ( + A*d - 2.0*A*d*d + A*d*d*d);
y2 = (+ 1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
y3 = ( - A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d);
y4 = ( + A*d*d - A*d*d*d);
}else{
// cubic interpolation (derived it myself)
y1 = ( -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0;
y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0;
y3 = ( +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0;
y4 = ( -1.0*d + 1.0*d*d*d)/6.0;
}
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*filterSize + 0]= y1;
filter[i*filterSize + 1]= y2;
filter[i*filterSize + 2]= y3;
filter[i*filterSize + 3]= y4;
// printf("%1.3f %1.3f %1.3f %1.3f %1.3f\n",d , y1, y2, y3, y4);
}
else
{
for(j=0; j<filterSize; j++)
{
double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
double coeff= 1.0 - d;
if(coeff<0) coeff=0;
// printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*filterSize + j]= coeff;
xx++;
}
}
xDstInSrc+= xInc;
}
}
else // downscale
{
int xDstInSrc;
if(flags&SWS_BICUBIC) filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
else if(flags&SWS_X) filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
else filterSize= (int)ceil(1 + 2.0*srcW / (double)dstW);
// printf("%d %d %d\n", *filterSize, srcW, dstW);
filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
xDstInSrc= xInc/2 - 0x8000;
for(i=0; i<dstW; i++)
{
int xx= (int)((double)xDstInSrc/(double)(1<<16) - (filterSize-1)*0.5 + 0.5);
int j;
(*filterPos)[i]= xx;
for(j=0; j<filterSize; j++)
{
double d= ABS((xx<<16) - xDstInSrc)/(double)xInc;
double coeff;
if((flags & SWS_BICUBIC) || (flags & SWS_X))
{
double A= -0.75;
// d*=2;
// Equation is from VirtualDub
if(d<1.0)
coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
else if(d<2.0)
coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
else
coeff=0.0;
}
/* else if(flags & SWS_X)
{
}*/
else
{
coeff= 1.0 - d;
if(coeff<0) coeff=0;
}
// printf("%1.3f %d %d \n", coeff, (int)d, xDstInSrc);
filter[i*filterSize + j]= coeff;
xx++;
}
xDstInSrc+= xInc;
}
}
/* apply src & dst Filter to filter -> filter2
free(filter);
*/
filter2Size= filterSize;
if(srcFilter) filter2Size+= srcFilter->length - 1;
if(dstFilter) filter2Size+= dstFilter->length - 1;
filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
for(i=0; i<dstW; i++)
{
int j;
SwsVector scaleFilter;
SwsVector *outVec;
scaleFilter.coeff= filter + i*filterSize;
scaleFilter.length= filterSize;
if(srcFilter) outVec= getConvVec(srcFilter, &scaleFilter);
else outVec= &scaleFilter;
ASSERT(outVec->length == filter2Size)
//FIXME dstFilter
for(j=0; j<outVec->length; j++)
{
filter2[i*filter2Size + j]= outVec->coeff[j];
}
(*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
if(outVec != &scaleFilter) freeVec(outVec);
}
free(filter); filter=NULL;
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
minFilterSize= 0;
for(i=dstW-1; i>=0; i--)
{
int min= filter2Size;
int j;
double cutOff=0.0;
/* get rid off near zero elements on the left by shifting left */
for(j=0; j<filter2Size; j++)
{
int k;
cutOff += ABS(filter2[i*filter2Size]);
if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
/* preserve Monotonicity because the core cant handle the filter otherwise */
if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
// Move filter coeffs left
for(k=1; k<filter2Size; k++)
filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
filter2[i*filter2Size + k - 1]= 0.0;
(*filterPos)[i]++;
}
cutOff=0.0;
/* count near zeros on the right */
for(j=filter2Size-1; j>0; j--)
{
cutOff += ABS(filter2[i*filter2Size + j]);
if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
min--;
}
if(min>minFilterSize) minFilterSize= min;
}
/* try to reduce the filter-size (step2 reduce it) */
for(i=0; i<dstW; i++)
{
int j;
for(j=0; j<minFilterSize; j++)
filter2[i*minFilterSize + j]= filter2[i*filter2Size + j];
}
if((flags&SWS_PRINT_INFO) && verbose)
printf("SwScaler: reducing filtersize %d -> %d\n", filter2Size, minFilterSize);
filter2Size= minFilterSize;
ASSERT(filter2Size > 0)
//FIXME try to align filterpos if possible
//fix borders
for(i=0; i<dstW; i++)
{
int j;
if((*filterPos)[i] < 0)
{
// Move filter coeffs left to compensate for filterPos
for(j=1; j<filter2Size; j++)
{
int left= MAX(j + (*filterPos)[i], 0);
filter2[i*filter2Size + left] += filter2[i*filter2Size + j];
filter2[i*filter2Size + j]=0;
}
(*filterPos)[i]= 0;
}
if((*filterPos)[i] + filter2Size > srcW)
{
int shift= (*filterPos)[i] + filter2Size - srcW;
// Move filter coeffs right to compensate for filterPos
for(j=filter2Size-2; j>=0; j--)
{
int right= MIN(j + shift, filter2Size-1);
filter2[i*filter2Size +right] += filter2[i*filter2Size +j];
filter2[i*filter2Size +j]=0;
}
(*filterPos)[i]= srcW - filter2Size;
}
}
*outFilterSize= (filter2Size +(filterAlign-1)) & (~(filterAlign-1));
*outFilter= (int16_t*)memalign(8, *outFilterSize*dstW*sizeof(int16_t));
memset(*outFilter, 0, *outFilterSize*dstW*sizeof(int16_t));
/* Normalize & Store in outFilter */
for(i=0; i<dstW; i++)
{
int j;
double sum=0;
double scale= one;
for(j=0; j<filter2Size; j++)
{
sum+= filter2[i*filter2Size + j];
}
scale/= sum;
for(j=0; j<filter2Size; j++)
{
(*outFilter)[i*(*outFilterSize) + j]= (int)(filter2[i*filter2Size + j]*scale);
}
}
free(filter2);
}
#ifdef ARCH_X86
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode)
{
uint8_t *fragment;
int imm8OfPShufW1;
int imm8OfPShufW2;
int fragmentLength;
int xpos, i;
// create an optimized horizontal scaling routine
//code fragment
asm volatile(
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%esi), %%mm0 \n\t" //FIXME Alignment
"movq %%mm0, %%mm1 \n\t"
"psrlq $8, %%mm0 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"movq %%mm2, %%mm3 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"addw %%bx, %%cx \n\t" //2*xalpha += (4*lumXInc)&0xFFFF
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"adcl %%edx, %%esi \n\t" //xx+= (4*lumXInc)>>16 + carry
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psrlw $9, %%mm3 \n\t"
"psubw %%mm1, %%mm0 \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"paddw %%mm6, %%mm2 \n\t" // 2*alpha += xpos&0xFFFF
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%edi, %%eax) \n\t"
"addl $8, %%eax \n\t"
// End
"9: \n\t"
// "int $3\n\t"
"leal 0b, %0 \n\t"
"leal 1b, %1 \n\t"
"leal 2b, %2 \n\t"
"decl %1 \n\t"
"decl %2 \n\t"
"subl %0, %1 \n\t"
"subl %0, %2 \n\t"
"leal 9b, %3 \n\t"
"subl %0, %3 \n\t"
:"=r" (fragment), "=r" (imm8OfPShufW1), "=r" (imm8OfPShufW2),
"=r" (fragmentLength)
);
xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
for(i=0; i<dstW/8; i++)
{
int xx=xpos>>16;
if((i&3) == 0)
{
int a=0;
int b=((xpos+xInc)>>16) - xx;
int c=((xpos+xInc*2)>>16) - xx;
int d=((xpos+xInc*3)>>16) - xx;
memcpy(funnyCode + fragmentLength*i/4, fragment, fragmentLength);
funnyCode[fragmentLength*i/4 + imm8OfPShufW1]=
funnyCode[fragmentLength*i/4 + imm8OfPShufW2]=
a | (b<<2) | (c<<4) | (d<<6);
// if we dont need to read 8 bytes than dont :), reduces the chance of
// crossing a cache line
if(d<3) funnyCode[fragmentLength*i/4 + 1]= 0x6E;
funnyCode[fragmentLength*(i+4)/4]= RET;
}
xpos+=xInc;
}
}
#endif // ARCH_X86
//FIXME remove
void SwScale_Init(){
}
static void globalInit(){
// generating tables:
int i;
for(i=0; i<768; i++){
int c= MIN(MAX(i-256, 0), 255);
clip_table[i]=c;
yuvtab_2568[c]= clip_yuvtab_2568[i]=(0x2568*(c-16))+(256<<13);
yuvtab_3343[c]= clip_yuvtab_3343[i]=0x3343*(c-128);
yuvtab_0c92[c]= clip_yuvtab_0c92[i]=-0x0c92*(c-128);
yuvtab_1a1e[c]= clip_yuvtab_1a1e[i]=-0x1a1e*(c-128);
yuvtab_40cf[c]= clip_yuvtab_40cf[i]=0x40cf*(c-128);
}
for(i=0; i<768; i++)
{
int v= clip_table[i];
clip_table16b[i]= v>>3;
clip_table16g[i]= (v<<3)&0x07E0;
clip_table16r[i]= (v<<8)&0xF800;
clip_table15b[i]= v>>3;
clip_table15g[i]= (v<<2)&0x03E0;
clip_table15r[i]= (v<<7)&0x7C00;
}
cpuCaps= gCpuCaps;
#ifdef RUNTIME_CPUDETECT
#ifdef CAN_COMPILE_X86_ASM
// ordered per speed fasterst first
if(gCpuCaps.hasMMX2)
swScale= swScale_MMX2;
else if(gCpuCaps.has3DNow)
swScale= swScale_3DNow;
else if(gCpuCaps.hasMMX)
swScale= swScale_MMX;
else
swScale= swScale_C;
#else
swScale= swScale_C;
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
swScale= swScale_MMX2;
cpuCaps.has3DNow = 0;
#elif defined (HAVE_3DNOW)
swScale= swScale_3DNow;
cpuCaps.hasMMX2 = 0;
#elif defined (HAVE_MMX)
swScale= swScale_MMX;
cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0;
#else
swScale= swScale_C;
cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#endif //!RUNTIME_CPUDETECT
}
SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
SwsFilter *srcFilter, SwsFilter *dstFilter){
const int widthAlign= dstFormat==IMGFMT_YV12 ? 16 : 8;
SwsContext *c;
int i;
SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
#ifdef ARCH_X86
if(gCpuCaps.hasMMX)
asm volatile("emms\n\t"::: "memory");
#endif
if(swScale==NULL) globalInit();
/* sanity check */
if(srcW<1 || srcH<1 || dstW<1 || dstH<1) return NULL;
/* FIXME
if(dstStride[0]%widthAlign !=0 )
{
if(flags & SWS_PRINT_INFO)
fprintf(stderr, "SwScaler: Warning: dstStride is not a multiple of %d!\n"
"SwScaler: ->cannot do aligned memory acesses anymore\n",
widthAlign);
}
*/
if(!dstFilter) dstFilter= &dummyFilter;
if(!srcFilter) srcFilter= &dummyFilter;
c= memalign(64, sizeof(SwsContext));
memset(c, 0, sizeof(SwsContext));
c->srcW= srcW;
c->srcH= srcH;
c->dstW= dstW;
c->dstH= dstH;
c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
c->flags= flags;
c->dstFormat= dstFormat;
c->srcFormat= srcFormat;
if(cpuCaps.hasMMX2)
{
c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
{
if(flags&SWS_PRINT_INFO)
fprintf(stderr, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
}
}
else
c->canMMX2BeUsed=0;
// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
// but only for the FAST_BILINEAR mode otherwise do correct scaling
// n-2 is the last chrominance sample available
// this is not perfect, but noone shuld notice the difference, the more correct variant
// would be like the vertical one, but that would require some special code for the
// first and last pixel
if(flags&SWS_FAST_BILINEAR)
{
if(c->canMMX2BeUsed) c->lumXInc+= 20;
//we dont use the x86asm scaler if mmx is available
else if(cpuCaps.hasMMX) c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
}
/* set chrXInc & chrDstW */
if((flags&SWS_FULL_UV_IPOL) && dstFormat!=IMGFMT_YV12)
c->chrXInc= c->lumXInc>>1, c->chrDstW= dstW;
else
c->chrXInc= c->lumXInc, c->chrDstW= (dstW+1)>>1;
/* set chrYInc & chrDstH */
if(dstFormat==IMGFMT_YV12) c->chrYInc= c->lumYInc, c->chrDstH= (dstH+1)>>1;
else c->chrYInc= c->lumYInc>>1, c->chrDstH= dstH;
/* precalculate horizontal scaler filter coefficients */
{
const int filterAlign= cpuCaps.hasMMX ? 4 : 1;
initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
srcW , dstW, filterAlign, 1<<14, flags,
srcFilter->lumH, dstFilter->lumH);
initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
(srcW+1)>>1, c->chrDstW, filterAlign, 1<<14, flags,
srcFilter->chrH, dstFilter->chrH);
#ifdef ARCH_X86
// cant downscale !!!
if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
{
initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode);
initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode);
}
#endif
} // Init Horizontal stuff
/* precalculate vertical scaler filter coefficients */
initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
srcH , dstH, 1, (1<<12)-4, flags,
srcFilter->lumV, dstFilter->lumV);
initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
(srcH+1)>>1, c->chrDstH, 1, (1<<12)-4, flags,
srcFilter->chrV, dstFilter->chrV);
// Calculate Buffer Sizes so that they wont run out while handling these damn slices
c->vLumBufSize= c->vLumFilterSize;
c->vChrBufSize= c->vChrFilterSize;
for(i=0; i<dstH; i++)
{
int chrI= i*c->chrDstH / dstH;
int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<1));
nextSlice&= ~1; // Slices start at even boundaries
if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>1))
c->vChrBufSize= (nextSlice>>1) - c->vChrFilterPos[chrI];
}
// allocate pixbufs (we use dynamic allocation because otherwise we would need to
// allocate several megabytes to handle all possible cases)
c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
for(i=0; i<c->vLumBufSize; i++)
c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
for(i=0; i<c->vChrBufSize; i++)
c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
//try to avoid drawing green stuff between the right end and the stride end
for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
ASSERT(c->chrDstH <= dstH)
// pack filter data for mmx code
if(cpuCaps.hasMMX)
{
c->lumMmxFilter= (int16_t*)memalign(8, c->vLumFilterSize* dstH*4*sizeof(int16_t));
c->chrMmxFilter= (int16_t*)memalign(8, c->vChrFilterSize*c->chrDstH*4*sizeof(int16_t));
for(i=0; i<c->vLumFilterSize*dstH; i++)
c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]=
c->vLumFilter[i];
for(i=0; i<c->vChrFilterSize*c->chrDstH; i++)
c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]=
c->vChrFilter[i];
}
if(flags&SWS_PRINT_INFO)
{
#ifdef DITHER1XBPP
char *dither= " dithered";
#else
char *dither= "";
#endif
if(flags&SWS_FAST_BILINEAR)
fprintf(stderr, "\nSwScaler: FAST_BILINEAR scaler ");
else if(flags&SWS_BILINEAR)
fprintf(stderr, "\nSwScaler: BILINEAR scaler ");
else if(flags&SWS_BICUBIC)
fprintf(stderr, "\nSwScaler: BICUBIC scaler ");
else
fprintf(stderr, "\nSwScaler: ehh flags invalid?! ");
if(dstFormat==IMGFMT_BGR15)
fprintf(stderr, "with%s BGR15 output ", dither);
else if(dstFormat==IMGFMT_BGR16)
fprintf(stderr, "with%s BGR16 output ", dither);
else if(dstFormat==IMGFMT_BGR24)
fprintf(stderr, "with BGR24 output ");
else if(dstFormat==IMGFMT_BGR32)
fprintf(stderr, "with BGR32 output ");
else if(dstFormat==IMGFMT_YV12)
fprintf(stderr, "with YV12 output ");
else
fprintf(stderr, "without output ");
if(cpuCaps.hasMMX2)
fprintf(stderr, "using MMX2\n");
else if(cpuCaps.has3DNow)
fprintf(stderr, "using 3DNOW\n");
else if(cpuCaps.hasMMX)
fprintf(stderr, "using MMX\n");
else
fprintf(stderr, "using C\n");
}
if((flags & SWS_PRINT_INFO) && verbose)
{
if(cpuCaps.hasMMX)
{
if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
printf("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
else
{
if(c->hLumFilterSize==4)
printf("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
else if(c->hLumFilterSize==8)
printf("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
else
printf("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
if(c->hChrFilterSize==4)
printf("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
else if(c->hChrFilterSize==8)
printf("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
else
printf("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
}
}
else
{
#ifdef ARCH_X86
printf("SwScaler: using X86-Asm scaler for horizontal scaling\n");
#else
if(flags & SWS_FAST_BILINEAR)
printf("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
else
printf("SwScaler: using C scaler for horizontal scaling\n");
#endif
}
if(dstFormat==IMGFMT_YV12)
{
if(c->vLumFilterSize==1)
printf("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
else
printf("SwScaler: using n-tap %s scaler for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
}
else
{
if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
printf("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
"SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C");
else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
printf("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
else
printf("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
}
if(dstFormat==IMGFMT_BGR24)
printf("SwScaler: using %s YV12->BGR24 Converter\n",
cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C"));
else if(dstFormat==IMGFMT_BGR32)
printf("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
else if(dstFormat==IMGFMT_BGR16)
printf("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
else if(dstFormat==IMGFMT_BGR15)
printf("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
printf("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
}
return c;
}
/**
* returns a normalized gaussian curve used to filter stuff
* quality=3 is high quality, lowwer is lowwer quality
*/
SwsVector *getGaussianVec(double variance, double quality){
const int length= (int)(variance*quality + 0.5) | 1;
int i;
double *coeff= memalign(sizeof(double), length*sizeof(double));
double middle= (length-1)*0.5;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++)
{
double dist= i-middle;
coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
}
normalizeVec(vec, 1.0);
return vec;
}
SwsVector *getConstVec(double c, int length){
int i;
double *coeff= memalign(sizeof(double), length*sizeof(double));
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++)
coeff[i]= c;
return vec;
}
SwsVector *getIdentityVec(void){
double *coeff= memalign(sizeof(double), sizeof(double));
SwsVector *vec= malloc(sizeof(SwsVector));
coeff[0]= 1.0;
vec->coeff= coeff;
vec->length= 1;
return vec;
}
void normalizeVec(SwsVector *a, double height){
int i;
double sum=0;
double inv;
for(i=0; i<a->length; i++)
sum+= a->coeff[i];
inv= height/sum;
for(i=0; i<a->length; i++)
a->coeff[i]*= height;
}
void scaleVec(SwsVector *a, double scalar){
int i;
for(i=0; i<a->length; i++)
a->coeff[i]*= scalar;
}
static SwsVector *getConvVec(SwsVector *a, SwsVector *b){
int length= a->length + b->length - 1;
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i, j;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<a->length; i++)
{
for(j=0; j<b->length; j++)
{
coeff[i+j]+= a->coeff[i]*b->coeff[j];
}
}
return vec;
}
static SwsVector *sumVec(SwsVector *a, SwsVector *b){
int length= MAX(a->length, b->length);
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
return vec;
}
static SwsVector *diffVec(SwsVector *a, SwsVector *b){
int length= MAX(a->length, b->length);
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *getShiftedVec(SwsVector *a, int shift){
int length= a->length + ABS(shift)*2;
double *coeff= memalign(sizeof(double), length*sizeof(double));
int i, j;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= length;
for(i=0; i<length; i++) coeff[i]= 0.0;
for(i=0; i<a->length; i++)
{
coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
}
return vec;
}
void shiftVec(SwsVector *a, int shift){
SwsVector *shifted= getShiftedVec(a, shift);
free(a->coeff);
a->coeff= shifted->coeff;
a->length= shifted->length;
free(shifted);
}
void addVec(SwsVector *a, SwsVector *b){
SwsVector *sum= sumVec(a, b);
free(a->coeff);
a->coeff= sum->coeff;
a->length= sum->length;
free(sum);
}
void subVec(SwsVector *a, SwsVector *b){
SwsVector *diff= diffVec(a, b);
free(a->coeff);
a->coeff= diff->coeff;
a->length= diff->length;
free(diff);
}
void convVec(SwsVector *a, SwsVector *b){
SwsVector *conv= getConvVec(a, b);
free(a->coeff);
a->coeff= conv->coeff;
a->length= conv->length;
free(conv);
}
SwsVector *cloneVec(SwsVector *a){
double *coeff= memalign(sizeof(double), a->length*sizeof(double));
int i;
SwsVector *vec= malloc(sizeof(SwsVector));
vec->coeff= coeff;
vec->length= a->length;
for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
return vec;
}
void printVec(SwsVector *a){
int i;
double max=0;
double min=0;
double range;
for(i=0; i<a->length; i++)
if(a->coeff[i]>max) max= a->coeff[i];
for(i=0; i<a->length; i++)
if(a->coeff[i]<min) min= a->coeff[i];
range= max - min;
for(i=0; i<a->length; i++)
{
int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
printf("%1.3f ", a->coeff[i]);
for(;x>0; x--) printf(" ");
printf("|\n");
}
}
void freeVec(SwsVector *a){
if(!a) return;
if(a->coeff) free(a->coeff);
a->coeff=NULL;
a->length=0;
free(a);
}
void freeSwsContext(SwsContext *c){
int i;
if(!c) return;
if(c->lumPixBuf)
{
for(i=0; i<c->vLumBufSize*2; i++)
{
if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
c->lumPixBuf[i]=NULL;
}
free(c->lumPixBuf);
c->lumPixBuf=NULL;
}
if(c->chrPixBuf)
{
for(i=0; i<c->vChrBufSize*2; i++)
{
if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
c->chrPixBuf[i]=NULL;
}
free(c->chrPixBuf);
c->chrPixBuf=NULL;
}
if(c->vLumFilter) free(c->vLumFilter);
c->vLumFilter = NULL;
if(c->vChrFilter) free(c->vChrFilter);
c->vChrFilter = NULL;
if(c->hLumFilter) free(c->hLumFilter);
c->hLumFilter = NULL;
if(c->hChrFilter) free(c->hChrFilter);
c->hChrFilter = NULL;
if(c->vLumFilterPos) free(c->vLumFilterPos);
c->vLumFilterPos = NULL;
if(c->vChrFilterPos) free(c->vChrFilterPos);
c->vChrFilterPos = NULL;
if(c->hLumFilterPos) free(c->hLumFilterPos);
c->hLumFilterPos = NULL;
if(c->hChrFilterPos) free(c->hChrFilterPos);
c->hChrFilterPos = NULL;
if(c->lumMmxFilter) free(c->lumMmxFilter);
c->lumMmxFilter = NULL;
if(c->chrMmxFilter) free(c->chrMmxFilter);
c->chrMmxFilter = NULL;
free(c);
}