mpv/video/out/gl_video.c

2598 lines
86 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*
* You can alternatively redistribute this file and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <libavutil/common.h>
#include "gl_video.h"
#include "misc/bstr.h"
#include "gl_common.h"
#include "gl_utils.h"
#include "gl_hwdec.h"
#include "gl_osd.h"
#include "filter_kernels.h"
#include "aspect.h"
#include "video/memcpy_pic.h"
#include "bitmap_packer.h"
#include "dither.h"
static const char vo_opengl_shaders[] =
// Generated from gl_video_shaders.glsl
#include "video/out/gl_video_shaders.h"
;
// Pixel width of 1D lookup textures.
#define LOOKUP_TEXTURE_SIZE 256
// Texture units 0-3 are used by the video, with unit 0 for free use.
// Units 4-5 are used for scaler LUTs.
#define TEXUNIT_SCALERS 4
#define TEXUNIT_3DLUT 6
#define TEXUNIT_DITHER 7
// scale/cscale arguments that map directly to shader filter routines.
// Note that the convolution filters are not included in this list.
static const char *const fixed_scale_filters[] = {
"bilinear",
"bicubic_fast",
"sharpen3",
"sharpen5",
NULL
};
// must be sorted, and terminated with 0
// 2 & 6 are special-cased, the rest can be generated with WEIGHTS_N().
int filter_sizes[] =
{2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0};
struct vertex {
float position[2];
float texcoord[2];
};
static const struct gl_vao_entry vertex_vao[] = {
{"vertex_position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
{"vertex_texcoord", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)},
{0}
};
struct texplane {
int w, h;
int tex_w, tex_h;
GLint gl_internal_format;
GLenum gl_format;
GLenum gl_type;
GLuint gl_texture;
int gl_buffer;
int buffer_size;
void *buffer_ptr;
};
struct video_image {
struct texplane planes[4];
bool image_flipped;
struct mp_image *mpi; // original input image
};
struct scaler {
int index;
const char *name;
float params[2];
float antiring;
struct filter_kernel *kernel;
GLuint gl_lut;
const char *lut_name;
bool insufficient;
// kernel points here
struct filter_kernel kernel_storage;
};
struct fbosurface {
struct fbotex fbotex;
int64_t pts;
bool valid;
};
#define FBOSURFACES_MAX 2
struct gl_video {
GL *gl;
struct mp_log *log;
struct gl_video_opts opts;
bool gl_debug;
int depth_g;
int texture_16bit_depth; // actual bits available in 16 bit textures
GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs
struct gl_vao vao;
GLuint osd_programs[SUBBITMAP_COUNT];
GLuint indirect_program, scale_sep_program, final_program, inter_program;
struct osd_state *osd_state;
struct mpgl_osd *osd;
double osd_pts;
GLuint lut_3d_texture;
bool use_lut_3d;
GLuint dither_texture;
float dither_quantization;
float dither_center;
int dither_size;
struct mp_image_params real_image_params; // configured format
struct mp_image_params image_params; // texture format (mind hwdec case)
struct mp_imgfmt_desc image_desc;
int plane_count;
int image_w, image_h;
bool is_yuv, is_rgb, is_packed_yuv;
bool has_alpha;
char color_swizzle[5];
float chroma_fix[2];
float input_gamma, conv_gamma;
float user_gamma;
bool user_gamma_enabled; // shader handles user_gamma
bool sigmoid_enabled;
struct video_image image;
struct fbotex indirect_fbo; // RGB target
struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling
struct fbosurface surfaces[FBOSURFACES_MAX];
size_t surface_idx;
// state for luma (0) and chroma (1) scalers
struct scaler scalers[2];
// true if scaler is currently upscaling
bool upscaling;
// reinit_rendering must be called
bool need_reinit_rendering;
bool is_interpolated;
struct mp_csp_equalizer video_eq;
// Source and destination color spaces for the CMS matrix
struct mp_csp_primaries csp_src, csp_dest;
struct mp_rect src_rect; // displayed part of the source video
struct mp_rect dst_rect; // video rectangle on output window
struct mp_osd_res osd_rect; // OSD size/margins
int vp_x, vp_y, vp_w, vp_h; // GL viewport
bool vp_vflipped;
int frames_rendered;
// Cached because computing it can take relatively long
int last_dither_matrix_size;
float *last_dither_matrix;
struct gl_hwdec *hwdec;
bool hwdec_active;
void *scratch;
};
struct fmt_entry {
int mp_format;
GLint internal_format;
GLenum format;
GLenum type;
};
// Very special formats, for which OpenGL happens to have direct support
static const struct fmt_entry mp_to_gl_formats[] = {
{IMGFMT_BGR555, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
{IMGFMT_BGR565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV},
{IMGFMT_RGB555, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV},
{IMGFMT_RGB565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5},
{0},
};
static const struct fmt_entry gl_byte_formats[] = {
{0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8
{0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
{0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16
{0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16
{0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16
{0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16
};
static const struct fmt_entry gl_byte_formats_gles3[] = {
{0, GL_R8, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8
{0, GL_RG8, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8
{0, GL_RGB8, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
{0, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
// There are no filterable texture formats that can be uploaded as
// GL_UNSIGNED_SHORT, so apparently we're out of luck.
{0, 0, 0, 0}, // 1 x 16
{0, 0, 0, 0}, // 2 x 16
{0, 0, 0, 0}, // 3 x 16
{0, 0, 0, 0}, // 4 x 16
};
static const struct fmt_entry gl_byte_formats_gles2[] = {
{0, GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE}, // 1 x 8
{0, GL_LUMINANCE_ALPHA, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE}, // 2 x 8
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
{0, 0, 0, 0}, // 1 x 16
{0, 0, 0, 0}, // 2 x 16
{0, 0, 0, 0}, // 3 x 16
{0, 0, 0, 0}, // 4 x 16
};
static const struct fmt_entry gl_byte_formats_legacy[] = {
{0, GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE}, // 1 x 8
{0, GL_LUMINANCE_ALPHA, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE}, // 2 x 8
{0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8
{0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8
{0, GL_LUMINANCE16, GL_LUMINANCE, GL_UNSIGNED_SHORT},// 1 x 16
{0, GL_LUMINANCE16_ALPHA16, GL_LUMINANCE_ALPHA, GL_UNSIGNED_SHORT},// 2 x 16
{0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT},// 3 x 16
{0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT},// 4 x 16
};
static const struct fmt_entry gl_float16_formats[] = {
{0, GL_R16F, GL_RED, GL_FLOAT}, // 1 x f
{0, GL_RG16F, GL_RG, GL_FLOAT}, // 2 x f
{0, GL_RGB16F, GL_RGB, GL_FLOAT}, // 3 x f
{0, GL_RGBA16F, GL_RGBA, GL_FLOAT}, // 4 x f
};
static const struct fmt_entry gl_apple_formats[] = {
{IMGFMT_UYVY, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_APPLE},
{IMGFMT_YUYV, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE},
{0}
};
struct packed_fmt_entry {
int fmt;
int8_t component_size;
int8_t components[4]; // source component - 0 means unmapped
};
static const struct packed_fmt_entry mp_packed_formats[] = {
// w R G B A
{IMGFMT_Y8, 1, {1, 0, 0, 0}},
{IMGFMT_Y16, 2, {1, 0, 0, 0}},
{IMGFMT_YA8, 1, {1, 0, 0, 2}},
{IMGFMT_YA16, 2, {1, 0, 0, 2}},
{IMGFMT_ARGB, 1, {2, 3, 4, 1}},
{IMGFMT_0RGB, 1, {2, 3, 4, 0}},
{IMGFMT_BGRA, 1, {3, 2, 1, 4}},
{IMGFMT_BGR0, 1, {3, 2, 1, 0}},
{IMGFMT_ABGR, 1, {4, 3, 2, 1}},
{IMGFMT_0BGR, 1, {4, 3, 2, 0}},
{IMGFMT_RGBA, 1, {1, 2, 3, 4}},
{IMGFMT_RGB0, 1, {1, 2, 3, 0}},
{IMGFMT_BGR24, 1, {3, 2, 1, 0}},
{IMGFMT_RGB24, 1, {1, 2, 3, 0}},
{IMGFMT_RGB48, 2, {1, 2, 3, 0}},
{IMGFMT_RGBA64, 2, {1, 2, 3, 4}},
{IMGFMT_BGRA64, 2, {3, 2, 1, 4}},
{0},
};
static const char *const osd_shaders[SUBBITMAP_COUNT] = {
[SUBBITMAP_LIBASS] = "frag_osd_libass",
[SUBBITMAP_RGBA] = "frag_osd_rgba",
};
const struct gl_video_opts gl_video_opts_def = {
.npot = 1,
.dither_depth = -1,
.dither_size = 6,
.fbo_format = GL_RGBA,
.sigmoid_center = 0.75,
.sigmoid_slope = 6.5,
.scalers = { "bilinear", "bilinear" },
.scaler_params = {{NAN, NAN}, {NAN, NAN}},
.scaler_radius = {3, 3},
.alpha_mode = 2,
.background = {0, 0, 0, 255},
.gamma = 1.0f,
};
const struct gl_video_opts gl_video_opts_hq_def = {
.npot = 1,
.dither_depth = 0,
.dither_size = 6,
.fbo_format = GL_RGBA16,
.fancy_downscaling = 1,
.sigmoid_center = 0.75,
.sigmoid_slope = 6.5,
.sigmoid_upscaling = 1,
.scalers = { "spline36", "bilinear" },
.dscaler = "mitchell",
.scaler_params = {{NAN, NAN}, {NAN, NAN}},
.scaler_radius = {3, 3},
.alpha_mode = 2,
.background = {0, 0, 0, 255},
.gamma = 1.0f,
};
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
#define OPT_BASE_STRUCT struct gl_video_opts
const struct m_sub_options gl_video_conf = {
.opts = (const m_option_t[]) {
OPT_FLOATRANGE("gamma", gamma, 0, 0.1, 2.0),
OPT_FLAG("gamma-auto", gamma_auto, 0),
OPT_FLAG("srgb", srgb, 0),
OPT_FLAG("npot", npot, 0),
OPT_FLAG("pbo", pbo, 0),
OPT_STRING_VALIDATE("scale", scalers[0], 0, validate_scaler_opt),
OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt),
OPT_STRING_VALIDATE("scale-down", dscaler, 0, validate_scaler_opt),
OPT_FLOAT("scale-param1", scaler_params[0][0], 0),
OPT_FLOAT("scale-param2", scaler_params[0][1], 0),
OPT_FLOAT("cscale-param1", scaler_params[1][0], 0),
OPT_FLOAT("cscale-param2", scaler_params[1][1], 0),
OPT_FLOATRANGE("scale-radius", scaler_radius[0], 0, 1.0, 16.0),
OPT_FLOATRANGE("cscale-radius", scaler_radius[1], 0, 1.0, 16.0),
OPT_FLOATRANGE("scale-antiring", scaler_antiring[0], 0, 0.0, 1.0),
OPT_FLOATRANGE("cscale-antiring", scaler_antiring[1], 0, 0.0, 1.0),
OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0),
OPT_FLAG("linear-scaling", linear_scaling, 0),
OPT_FLAG("fancy-downscaling", fancy_downscaling, 0),
OPT_FLAG("sigmoid-upscaling", sigmoid_upscaling, 0),
OPT_FLOATRANGE("sigmoid-center", sigmoid_center, 0, 0.0, 1.0),
OPT_FLOATRANGE("sigmoid-slope", sigmoid_slope, 0, 1.0, 20.0),
OPT_CHOICE("fbo-format", fbo_format, 0,
({"rgb", GL_RGB},
{"rgba", GL_RGBA},
{"rgb8", GL_RGB8},
{"rgb10", GL_RGB10},
{"rgb10_a2", GL_RGB10_A2},
{"rgb16", GL_RGB16},
{"rgb16f", GL_RGB16F},
{"rgb32f", GL_RGB32F},
{"rgba12", GL_RGBA12},
{"rgba16", GL_RGBA16},
{"rgba16f", GL_RGBA16F},
{"rgba32f", GL_RGBA32F})),
OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16,
({"no", -1}, {"auto", 0})),
OPT_CHOICE("dither", dither_algo, 0,
({"fruit", 0}, {"ordered", 1}, {"no", -1})),
OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8),
OPT_FLAG("temporal-dither", temporal_dither, 0),
OPT_CHOICE("chroma-location", chroma_location, 0,
({"auto", MP_CHROMA_AUTO},
{"center", MP_CHROMA_CENTER},
{"left", MP_CHROMA_LEFT})),
OPT_CHOICE("alpha", alpha_mode, 0,
({"no", 0},
{"yes", 1},
{"blend", 2})),
OPT_FLAG("rectangle-textures", use_rectangle, 0),
OPT_COLOR("background", background, 0),
OPT_FLAG("smoothmotion", smoothmotion, 0),
OPT_FLOAT("smoothmotion-threshold", smoothmotion_threshold,
CONF_RANGE, .min = 0, .max = 0.5),
OPT_REMOVED("approx-gamma", "this is always enabled now"),
OPT_REMOVED("cscale-down", "chroma is never downscaled"),
OPT_REMOVED("scale-sep", "this is set automatically whenever sane"),
OPT_REMOVED("indirect", "this is set automatically whenever sane"),
OPT_REPLACED("lscale", "scale"),
OPT_REPLACED("lscale-down", "scale-down"),
OPT_REPLACED("lparam1", "scale-param1"),
OPT_REPLACED("lparam2", "scale-param2"),
OPT_REPLACED("lradius", "scale-radius"),
OPT_REPLACED("lantiring", "scale-antiring"),
OPT_REPLACED("cparam1", "cscale-param1"),
OPT_REPLACED("cparam2", "cscale-param2"),
OPT_REPLACED("cradius", "cscale-radius"),
OPT_REPLACED("cantiring", "cscale-antiring"),
{0}
},
.size = sizeof(struct gl_video_opts),
.defaults = &gl_video_opts_def,
};
static void uninit_rendering(struct gl_video *p);
static void delete_shaders(struct gl_video *p);
static void check_gl_features(struct gl_video *p);
static bool init_format(int fmt, struct gl_video *init);
static double get_scale_factor(struct gl_video *p);
static const struct fmt_entry *find_tex_format(GL *gl, int bytes_per_comp,
int n_channels)
{
assert(bytes_per_comp == 1 || bytes_per_comp == 2);
assert(n_channels >= 1 && n_channels <= 4);
const struct fmt_entry *fmts = gl_byte_formats;
if (gl->es >= 300) {
fmts = gl_byte_formats_gles3;
} else if (gl->es) {
fmts = gl_byte_formats_gles2;
} else if (!(gl->mpgl_caps & MPGL_CAP_TEX_RG)) {
fmts = gl_byte_formats_legacy;
}
return &fmts[n_channels - 1 + (bytes_per_comp - 1) * 4];
}
static void debug_check_gl(struct gl_video *p, const char *msg)
{
if (p->gl_debug)
glCheckError(p->gl, p->log, msg);
}
void gl_video_set_debug(struct gl_video *p, bool enable)
{
GL *gl = p->gl;
p->gl_debug = enable;
if (p->gl->debug_context)
gl_set_debug_logger(gl, enable ? p->log : NULL);
}
// Draw a textured quad.
// x0, y0, x1, y1 = destination coordinates of the quad in pixels
// tx0, ty0, tx1, ty1 = source texture coordinates in pixels
// tex_w, tex_h = size of the texture in pixels
// flags = bits 0-1: rotate, bits 2: flip vertically
static void draw_quad(struct gl_video *p,
float x0, float y0, float x1, float y1,
float tx0, float ty0, float tx1, float ty1,
float tex_w, float tex_h, int flags)
{
if (p->gl_target != GL_TEXTURE_2D)
tex_w = tex_h = 1.0f;
if (flags & 4) {
float tmp = ty0;
ty0 = ty1;
ty1 = tmp;
}
struct vertex va[4] = {
{ {x0, y0}, {tx0 / tex_w, ty0 / tex_h} },
{ {x0, y1}, {tx0 / tex_w, ty1 / tex_h} },
{ {x1, y0}, {tx1 / tex_w, ty0 / tex_h} },
{ {x1, y1}, {tx1 / tex_w, ty1 / tex_h} },
};
int rot = flags & 3;
while (rot--) {
static const int perm[4] = {1, 3, 0, 2};
struct vertex vb[4];
memcpy(vb, va, sizeof(vb));
for (int n = 0; n < 4; n++)
memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2]));
}
gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4);
debug_check_gl(p, "after rendering");
}
static void transpose3x3(float r[3][3])
{
MPSWAP(float, r[0][1], r[1][0]);
MPSWAP(float, r[0][2], r[2][0]);
MPSWAP(float, r[1][2], r[2][1]);
}
static void update_uniforms(struct gl_video *p, GLuint program)
{
GL *gl = p->gl;
GLint loc;
if (program == 0)
return;
gl->UseProgram(program);
struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
cparams.gray = p->is_yuv && !p->is_packed_yuv && p->plane_count == 1;
cparams.input_bits = p->image_desc.component_bits;
cparams.texture_bits = (cparams.input_bits + 7) & ~7;
mp_csp_set_image_params(&cparams, &p->image_params);
mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
cparams.colorspace = MP_CSP_XYZ;
cparams.input_bits = 8;
cparams.texture_bits = 8;
}
loc = gl->GetUniformLocation(program, "transform");
if (loc >= 0 && p->vp_w > 0 && p->vp_h > 0) {
float matrix[3][3];
int vvp[2] = {p->vp_h, 0};
if (p->vp_vflipped)
MPSWAP(int, vvp[0], vvp[1]);
gl_matrix_ortho2d(matrix, 0, p->vp_w, vvp[0], vvp[1]);
gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]);
}
loc = gl->GetUniformLocation(program, "colormatrix");
if (loc >= 0) {
struct mp_cmat m = {{{0}}};
if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
// Hard-coded as relative colorimetric for now, since this transforms
// from the source file's D55 material to whatever color space our
// projector/display lives in, which should be D55 for a proper
// home cinema setup either way.
mp_get_xyz2rgb_coeffs(&cparams, p->csp_src,
MP_INTENT_RELATIVE_COLORIMETRIC, &m);
} else {
mp_get_yuv2rgb_coeffs(&cparams, &m);
}
transpose3x3(m.m); // GLES2 can not transpose in glUniformMatrix3fv
gl->UniformMatrix3fv(loc, 1, GL_FALSE, &m.m[0][0]);
loc = gl->GetUniformLocation(program, "colormatrix_c");
gl->Uniform3f(loc, m.c[0], m.c[1], m.c[2]);
}
gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"),
p->input_gamma);
gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"),
p->conv_gamma);
// Coefficients for the sigmoidal transform are taken from the
// formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal
float sig_center = p->opts.sigmoid_center;
float sig_slope = p->opts.sigmoid_slope;
// This function needs to go through (0,0) and (1,1) so we compute the
// values at 1 and 0, and then scale/shift them, respectively.
float sig_offset = 1.0/(1+expf(sig_slope * sig_center));
float sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset;
gl->Uniform1f(gl->GetUniformLocation(program, "sig_center"), sig_center);
gl->Uniform1f(gl->GetUniformLocation(program, "sig_slope"), sig_slope);
gl->Uniform1f(gl->GetUniformLocation(program, "sig_scale"), sig_scale);
gl->Uniform1f(gl->GetUniformLocation(program, "sig_offset"), sig_offset);
gl->Uniform1f(gl->GetUniformLocation(program, "inv_gamma"),
1.0f / p->user_gamma);
for (int n = 0; n < p->plane_count; n++) {
char textures_n[32];
char textures_size_n[32];
snprintf(textures_n, sizeof(textures_n), "texture%d", n);
snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n);
gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n);
if (p->gl_target == GL_TEXTURE_2D) {
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n),
p->image.planes[n].tex_w, p->image.planes[n].tex_h);
} else {
// Makes the pixel size calculation code think they are 1x1
gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1);
}
}
loc = gl->GetUniformLocation(program, "chroma_div");
if (loc >= 0) {
int xs = p->image_desc.chroma_xs;
int ys = p->image_desc.chroma_ys;
gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys));
}
gl->Uniform2f(gl->GetUniformLocation(program, "chroma_fix"),
p->chroma_fix[0], p->chroma_fix[1]);
loc = gl->GetUniformLocation(program, "chroma_center_offset");
if (loc >= 0) {
int chr = p->opts.chroma_location;
if (!chr)
chr = p->image_params.chroma_location;
int cx, cy;
mp_get_chroma_location(chr, &cx, &cy);
// By default texture coordinates are such that chroma is centered with
// any chroma subsampling. If a specific direction is given, make it
// so that the luma and chroma sample line up exactly.
// For 4:4:4, setting chroma location should have no effect at all.
// luma sample size (in chroma coord. space)
float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
// move chroma center to luma center (in chroma coord. space)
float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0;
float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0;
int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0;
gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1),
o_y / FFMAX(p->image.planes[1].h * c, 1));
}
gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"),
p->dither_size, p->dither_size);
gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT);
loc = gl->GetUniformLocation(program, "cms_matrix");
if (loc >= 0) {
float cms_matrix[3][3] = {{0}};
// Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect
// the input to be actual BT.2020 and not something red- or blueshifted,
// and for sRGB monitors we most likely want relative scaling either way.
mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix);
gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]);
}
for (int n = 0; n < 2; n++) {
const char *lut = p->scalers[n].lut_name;
if (lut)
gl->Uniform1i(gl->GetUniformLocation(program, lut),
TEXUNIT_SCALERS + n);
}
gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER);
gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"),
p->dither_quantization);
gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"),
p->dither_center);
float sparam1_l = p->opts.scaler_params[0][0];
float sparam1_c = p->opts.scaler_params[1][0];
gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_l"),
isnan(sparam1_l) ? 0.5f : sparam1_l);
gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_c"),
isnan(sparam1_c) ? 0.5f : sparam1_c);
gl->Uniform3f(gl->GetUniformLocation(program, "translation"), 0, 0, 0);
gl->UseProgram(0);
debug_check_gl(p, "update_uniforms()");
}
static void update_all_uniforms(struct gl_video *p)
{
for (int n = 0; n < SUBBITMAP_COUNT; n++)
update_uniforms(p, p->osd->programs[n]);
update_uniforms(p, p->indirect_program);
update_uniforms(p, p->scale_sep_program);
update_uniforms(p, p->final_program);
update_uniforms(p, p->inter_program);
}
#define SECTION_HEADER "#!section "
static char *get_section(void *talloc_ctx, struct bstr source,
const char *section)
{
char *res = talloc_strdup(talloc_ctx, "");
bool copy = false;
while (source.len) {
struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source));
if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) {
copy = bstrcmp0(line, section) == 0;
} else if (copy) {
res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line));
}
}
return res;
}
static char *t_concat(void *talloc_ctx, const char *s1, const char *s2)
{
return talloc_asprintf(talloc_ctx, "%s%s", s1, s2);
}
static GLuint create_shader(struct gl_video *p, GLenum type, const char *header,
const char *source)
{
GL *gl = p->gl;
void *tmp = talloc_new(NULL);
const char *full_source = t_concat(tmp, header, source);
GLuint shader = gl->CreateShader(type);
gl->ShaderSource(shader, 1, &full_source, NULL);
gl->CompileShader(shader);
GLint status;
gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
GLint log_length;
gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
if (mp_msg_test(p->log, pri)) {
MP_MSG(p, pri, "%s shader source:\n", typestr);
mp_log_source(p->log, pri, full_source);
}
if (log_length > 1) {
GLchar *logstr = talloc_zero_size(tmp, log_length + 1);
gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n",
typestr, status, logstr);
}
talloc_free(tmp);
return shader;
}
static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type,
const char *header, const char *source)
{
GL *gl = p->gl;
GLuint shader = create_shader(p, type, header, source);
gl->AttachShader(program, shader);
gl->DeleteShader(shader);
}
static void link_shader(struct gl_video *p, GLuint program)
{
GL *gl = p->gl;
gl->LinkProgram(program);
GLint status;
gl->GetProgramiv(program, GL_LINK_STATUS, &status);
GLint log_length;
gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
if (mp_msg_test(p->log, pri)) {
GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
gl->GetProgramInfoLog(program, log_length, NULL, logstr);
MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr);
talloc_free(logstr);
}
}
#define PRELUDE_END "// -- prelude end\n"
static GLuint create_program(struct gl_video *p, const char *name,
const char *header, const char *vertex,
const char *frag, struct gl_vao *vao)
{
GL *gl = p->gl;
MP_VERBOSE(p, "compiling shader program '%s', header:\n", name);
const char *real_header = strstr(header, PRELUDE_END);
real_header = real_header ? real_header + strlen(PRELUDE_END) : header;
mp_log_source(p->log, MSGL_V, real_header);
GLuint prog = gl->CreateProgram();
prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex);
prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag);
gl_vao_bind_attribs(vao, prog);
link_shader(p, prog);
return prog;
}
static void shader_def(char **shader, const char *name,
const char *value)
{
*shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value);
}
static void shader_def_opt(char **shader, const char *name, bool b)
{
if (b)
shader_def(shader, name, "1");
}
#define APPENDF(s_ptr, ...) \
*(s_ptr) = talloc_asprintf_append(*(s_ptr), __VA_ARGS__)
static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass)
{
int unit = scaler->index;
const char *target = unit == 0 ? "SAMPLE" : "SAMPLE_C";
if (!scaler->kernel) {
APPENDF(shader, "#define %s(p0, p1, p2) "
"sample_%s(p0, p1, p2, filter_param1_%c)\n",
target, scaler->name, "lc"[unit]);
} else {
int size = scaler->kernel->size;
const char *lut_tex = scaler->lut_name;
char name[40];
snprintf(name, sizeof(name), "sample_scaler%d", unit);
APPENDF(shader, "#define DEF_SCALER%d \\\n ", unit);
char lut_fn[40];
if (scaler->kernel->polar) {
double radius = scaler->kernel->radius;
int bound = (int)ceil(radius);
// SAMPLE_CONVOLUTION_POLAR_R(NAME, R, LUT, WEIGHTS_FN, ANTIRING)
APPENDF(shader, "SAMPLE_CONVOLUTION_POLAR_R(%s, %f, %s, WEIGHTS%d, %f)\n",
name, radius, lut_tex, unit, scaler->antiring);
// Pre-compute unrolled weights matrix
APPENDF(shader, "#define WEIGHTS%d(LUT) \\\n ", unit);
for (int y = 1-bound; y <= bound; y++) {
for (int x = 1-bound; x <= bound; x++) {
// Since we can't know the subpixel position in advance,
// assume a worst case scenario.
int yy = y > 0 ? y-1 : y;
int xx = x > 0 ? x-1 : x;
double d = sqrt(xx*xx + yy*yy);
if (d < radius - 1) {
// Samples definitely inside the main ring
APPENDF(shader, "SAMPLE_POLAR_%s(LUT, %f, %d, %d) \\\n ",
// The center 4 coefficients are the primary
// contributors, used to clamp the result for
// anti-ringing
(x >= 0 && y >= 0 && x <= 1 && y <= 1)
? "PRIMARY" : "HELPER",
radius, x, y);
} else if (d < radius) {
// Samples on the edge, these are potential values
APPENDF(shader, "SAMPLE_POLAR_POTENTIAL(LUT, %f, %d, %d) \\\n ",
radius, x, y);
}
}
}
APPENDF(shader, "\n");
} else {
if (size == 2 || size == 6) {
snprintf(lut_fn, sizeof(lut_fn), "weights%d", size);
} else {
snprintf(lut_fn, sizeof(lut_fn), "weights_scaler%d", unit);
APPENDF(shader, "WEIGHTS_N(%s, %d) \\\n ", lut_fn, size);
}
if (pass != -1) {
// The direction/pass assignment is rather arbitrary, but fixed in
// other parts of the code (like FBO setup).
const char *direction = pass == 0 ? "0, 1" : "1, 0";
// SAMPLE_CONVOLUTION_SEP_N(NAME, DIR, N, LUT, WEIGHTS_FUNC, ANTIRING)
APPENDF(shader, "SAMPLE_CONVOLUTION_SEP_N(%s, vec2(%s), %d, %s, %s, %f)\n",
name, direction, size, lut_tex, lut_fn, scaler->antiring);
} else {
// SAMPLE_CONVOLUTION_N(NAME, N, LUT, WEIGHTS_FUNC)
APPENDF(shader, "SAMPLE_CONVOLUTION_N(%s, %d, %s, %s)\n",
name, size, lut_tex, lut_fn);
}
}
APPENDF(shader, "#define %s %s\n", target, name);
}
}
// return false if RGB or 4:4:4 YUV
static bool input_is_subsampled(struct gl_video *p)
{
for (int i = 0; i < p->plane_count; i++)
if (p->image_desc.xs[i] || p->image_desc.ys[i])
return true;
return false;
}
static void compile_shaders(struct gl_video *p)
{
GL *gl = p->gl;
debug_check_gl(p, "before shaders");
delete_shaders(p);
void *tmp = talloc_new(NULL);
struct bstr src = bstr0(vo_opengl_shaders);
char *vertex_shader = get_section(tmp, src, "vertex_all");
char *shader_prelude = get_section(tmp, src, "prelude");
char *s_video = get_section(tmp, src, "frag_video");
bool rg = gl->mpgl_caps & MPGL_CAP_TEX_RG;
bool tex1d = gl->mpgl_caps & MPGL_CAP_1D_TEX;
bool tex3d = gl->mpgl_caps & MPGL_CAP_3D_TEX;
bool arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS;
char *header =
talloc_asprintf(tmp, "#version %d%s\n"
"#define HAVE_RG %d\n"
"#define HAVE_1DTEX %d\n"
"#define HAVE_3DTEX %d\n"
"#define HAVE_ARRAYS %d\n"
"%s%s",
gl->glsl_version, gl->es >= 300 ? " es" : "",
rg, tex1d, tex3d, arrays, shader_prelude, PRELUDE_END);
bool use_cms = p->opts.srgb || p->use_lut_3d;
// 3DLUT overrides sRGB
bool use_srgb = p->opts.srgb && !p->use_lut_3d;
float input_gamma = 1.0;
float conv_gamma = 1.0;
bool is_xyz = p->image_desc.flags & MP_IMGFLAG_XYZ;
if (is_xyz) {
input_gamma *= 2.6;
// Note that this results in linear light, so we make sure to enable
// use_linear_light for XYZ inputs as well.
}
p->input_gamma = input_gamma;
p->conv_gamma = conv_gamma;
bool use_input_gamma = p->input_gamma != 1.0;
bool use_conv_gamma = p->conv_gamma != 1.0;
bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C;
enum mp_csp_trc gamma_fun = p->image_params.gamma;
// If either color correction option (3dlut or srgb) is enabled, or if
// sigmoidal upscaling is requested, or if the source is linear XYZ, we
// always scale in linear light
bool use_linear_light = p->opts.linear_scaling || p->opts.sigmoid_upscaling
|| use_cms || is_xyz;
// The inverse of the above transformation is normally handled by
// the CMS cases, but if CMS is disabled we need to go back manually
bool use_inv_bt1886 = false;
if (use_linear_light && !use_cms) {
if (gamma_fun == MP_CSP_TRC_SRGB) {
use_srgb = true;
} else {
use_inv_bt1886 = true;
}
}
// Optionally transform to sigmoidal color space if requested.
p->sigmoid_enabled = p->opts.sigmoid_upscaling;
bool use_sigmoid = p->sigmoid_enabled && p->upscaling;
// Figure out the right color spaces we need to convert, if any
enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest;
if (use_cms) {
// sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is
// always built against BT.2020.
prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020;
} else {
// If no CMS is being done we just want to output stuff as-is,
// in the native colorspace of the source.
prim_dest = prim_src;
}
// XYZ input has no defined input color space, so we can directly convert
// it to whatever output space we actually need.
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
prim_src = prim_dest;
// Set the colorspace primaries and figure out whether we need to perform
// an extra conversion.
p->csp_src = mp_get_csp_primaries(prim_src);
p->csp_dest = mp_get_csp_primaries(prim_dest);
bool use_cms_matrix = prim_src != prim_dest;
if (p->gl_target == GL_TEXTURE_RECTANGLE) {
shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect");
shader_def_opt(&header, "USE_RECTANGLE", true);
} else {
shader_def(&header, "VIDEO_SAMPLER", "sampler2D");
}
// Need to pass alpha through the whole chain. (Not needed for OSD shaders.)
if (p->opts.alpha_mode == 1)
shader_def_opt(&header, "USE_ALPHA", p->has_alpha);
char *header_osd = talloc_strdup(tmp, header);
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT1886",
use_cms && gamma_fun == MP_CSP_TRC_BT_1886);
shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_SRGB",
use_cms && gamma_fun == MP_CSP_TRC_SRGB);
shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix);
shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d);
shader_def_opt(&header_osd, "USE_OSD_SRGB", use_cms && use_srgb);
for (int n = 0; n < SUBBITMAP_COUNT; n++) {
const char *name = osd_shaders[n];
if (name) {
char *s_osd = get_section(tmp, src, name);
p->osd_programs[n] = create_program(p, name, header_osd,
vertex_shader, s_osd,
&p->osd->vao);
}
}
struct gl_vao *v = &p->vao; // VAO to use to draw primitives
char *header_conv = talloc_strdup(tmp, "");
char *header_final = talloc_strdup(tmp, "");
char *header_inter = talloc_strdup(tmp, "");
char *header_sep = NULL;
if (p->image_desc.id == IMGFMT_NV12 || p->image_desc.id == IMGFMT_NV21) {
shader_def(&header_conv, "USE_CONV", "CONV_NV12");
} else if (p->plane_count > 1) {
shader_def(&header_conv, "USE_CONV", "CONV_PLANAR");
}
if (p->color_swizzle[0])
shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle);
shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma);
shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb);
shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma);
shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma);
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT1886",
use_linear_light && gamma_fun == MP_CSP_TRC_BT_1886);
shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_SRGB",
use_linear_light && gamma_fun == MP_CSP_TRC_SRGB);
shader_def_opt(&header_conv, "USE_SIGMOID", use_sigmoid);
if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3)
shader_def(&header_conv, "USE_ALPHA_PLANE", "3");
if (p->opts.alpha_mode == 2 && p->has_alpha)
shader_def(&header_conv, "USE_ALPHA_BLEND", "1");
shader_def_opt(&header_conv, "USE_CHROMA_FIX",
p->chroma_fix[0] != 1.0f || p->chroma_fix[1] != 1.0f);
shader_def_opt(&header_final, "USE_SIGMOID_INV", use_sigmoid);
shader_def_opt(&header_final, "USE_INV_GAMMA", p->user_gamma_enabled);
shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix);
shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d);
shader_def_opt(&header_final, "USE_SRGB", use_srgb);
shader_def_opt(&header_final, "USE_INV_BT1886", use_inv_bt1886);
shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0);
shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither);
if (p->scalers[0].kernel && !p->scalers[0].kernel->polar) {
header_sep = talloc_strdup(tmp, "");
shader_def_opt(&header_sep, "FIXED_SCALE", true);
shader_setup_scaler(&header_sep, &p->scalers[0], 0);
shader_setup_scaler(&header_inter, &p->scalers[0], 1);
} else {
shader_setup_scaler(&header_inter, &p->scalers[0], -1);
}
bool use_interpolation = p->opts.smoothmotion;
if (use_interpolation) {
shader_def_opt(&header_inter, "FIXED_SCALE", true);
shader_def_opt(&header_final, "USE_LINEAR_INTERPOLATION", 1);
}
// The indirect pass is used to preprocess the image before scaling.
bool use_indirect = false;
// Don't sample from input video textures before converting the input to
// its proper gamma.
if (use_input_gamma || use_conv_gamma || use_linear_light || use_const_luma)
use_indirect = true;
// Trivial scalers are implemented directly and efficiently by the GPU.
// This only includes bilinear and nearest neighbour in OpenGL, but we
// don't support nearest neighbour upsampling.
bool trivial_scaling = strcmp(p->scalers[0].name, "bilinear") == 0 &&
strcmp(p->scalers[1].name, "bilinear") == 0;
// If the video is subsampled, chroma information needs to be pulled up to
// the input size before scaling can be done. Even for 4:4:4 or planar RGB
// this is also faster because it means the scalers can operate on all
// channels simultaneously. This is unnecessary for trivial scaling.
if (p->plane_count > 1 && !trivial_scaling)
use_indirect = true;
if (input_is_subsampled(p)) {
shader_setup_scaler(&header_conv, &p->scalers[1], -1);
} else {
// Force using the normal scaler on chroma. If the "indirect" stage is
// used, the actual scaling will happen in the next stage.
shader_def(&header_conv, "SAMPLE_C",
use_indirect ? "SAMPLE_TRIVIAL" : "SAMPLE");
}
if (use_indirect) {
// We don't use filtering for the Y-plane (luma), because it's never
// scaled in this scenario.
shader_def(&header_conv, "SAMPLE", "SAMPLE_TRIVIAL");
shader_def_opt(&header_conv, "FIXED_SCALE", true);
header_conv = t_concat(tmp, header, header_conv);
p->indirect_program =
create_program(p, "indirect", header_conv, vertex_shader, s_video, v);
} else if (header_sep) {
header_sep = t_concat(tmp, header_sep, header_conv);
} else {
header_inter = t_concat(tmp, header_inter, header_conv);
}
if (header_sep) {
header_sep = t_concat(tmp, header, header_sep);
p->scale_sep_program =
create_program(p, "scale_sep", header_sep, vertex_shader, s_video, v);
}
if (use_interpolation) {
header_inter = t_concat(tmp, header, header_inter);
p->inter_program =
create_program(p, "inter", header_inter, vertex_shader, s_video, v);
} else {
header_final = t_concat(tmp, header_final, header_inter);
}
header_final = t_concat(tmp, header, header_final);
p->final_program =
create_program(p, "final", header_final, vertex_shader, s_video, v);
debug_check_gl(p, "shader compilation");
talloc_free(tmp);
}
static void delete_program(GL *gl, GLuint *prog)
{
gl->DeleteProgram(*prog);
*prog = 0;
}
static void delete_shaders(struct gl_video *p)
{
GL *gl = p->gl;
for (int n = 0; n < SUBBITMAP_COUNT; n++)
delete_program(gl, &p->osd->programs[n]);
delete_program(gl, &p->indirect_program);
delete_program(gl, &p->scale_sep_program);
delete_program(gl, &p->final_program);
delete_program(gl, &p->inter_program);
}
static void get_scale_factors(struct gl_video *p, double xy[2])
{
xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) /
(double)(p->src_rect.x1 - p->src_rect.x0);
xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) /
(double)(p->src_rect.y1 - p->src_rect.y0);
}
static double get_scale_factor(struct gl_video *p)
{
double xy[2];
get_scale_factors(p, xy);
return FFMIN(xy[0], xy[1]);
}
static void update_scale_factor(struct gl_video *p, struct scaler *scaler)
{
double scale = 1.0;
double xy[2];
get_scale_factors(p, xy);
double f = MPMIN(xy[0], xy[1]);
if (p->opts.fancy_downscaling && scaler->index == 0 && f < 1.0 &&
fabs(xy[0] - f) < 0.01 && fabs(xy[1] - f) < 0.01)
{
MP_VERBOSE(p, "Using fancy-downscaling (scaler %d).\n", scaler->index);
scale = FFMAX(1.0, 1.0 / f);
}
scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes, scale);
}
static void init_scaler(struct gl_video *p, struct scaler *scaler)
{
GL *gl = p->gl;
assert(scaler->name);
scaler->kernel = NULL;
scaler->insufficient = false;
const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
if (!t_kernel)
return;
scaler->kernel_storage = *t_kernel;
scaler->kernel = &scaler->kernel_storage;
for (int n = 0; n < 2; n++) {
if (!isnan(p->opts.scaler_params[scaler->index][n]))
scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n];
}
scaler->antiring = p->opts.scaler_antiring[scaler->index];
if (scaler->kernel->radius < 0)
scaler->kernel->radius = p->opts.scaler_radius[scaler->index];
update_scale_factor(p, scaler);
int size = scaler->kernel->size;
int elems_per_pixel = 4;
if (size == 1) {
elems_per_pixel = 1;
} else if (size == 2) {
elems_per_pixel = 2;
} else if (size == 6) {
elems_per_pixel = 3;
}
int width = size / elems_per_pixel;
assert(size == width * elems_per_pixel);
const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1];
int target;
if (scaler->kernel->polar) {
target = GL_TEXTURE_1D;
scaler->lut_name = scaler->index == 0 ? "lut_1d_l" : "lut_1d_c";
} else {
target = GL_TEXTURE_2D;
scaler->lut_name = scaler->index == 0 ? "lut_2d_l" : "lut_2d_c";
}
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
if (!scaler->gl_lut)
gl->GenTextures(1, &scaler->gl_lut);
gl->BindTexture(target, scaler->gl_lut);
float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
if (target == GL_TEXTURE_1D) {
gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE,
0, fmt->format, GL_FLOAT, weights);
} else {
gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE,
0, fmt->format, GL_FLOAT, weights);
}
talloc_free(weights);
gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
if (target != GL_TEXTURE_1D)
gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl->ActiveTexture(GL_TEXTURE0);
debug_check_gl(p, "after initializing scaler");
}
static void init_dither(struct gl_video *p)
{
GL *gl = p->gl;
// Assume 8 bits per component if unknown.
int dst_depth = p->depth_g ? p->depth_g : 8;
if (p->opts.dither_depth > 0)
dst_depth = p->opts.dither_depth;
if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
return;
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
int tex_size;
void *tex_data;
GLint tex_iformat;
GLint tex_format;
GLenum tex_type;
unsigned char temp[256];
if (p->opts.dither_algo == 0) {
int sizeb = p->opts.dither_size;
int size = 1 << sizeb;
if (p->last_dither_matrix_size != size) {
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
float, size * size);
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
p->last_dither_matrix_size = size;
}
tex_size = size;
tex_iformat = gl_float16_formats[0].internal_format;
tex_format = gl_float16_formats[0].format;
tex_type = GL_FLOAT;
tex_data = p->last_dither_matrix;
} else {
assert(sizeof(temp) >= 8 * 8);
mp_make_ordered_dither_matrix(temp, 8);
const struct fmt_entry *fmt = find_tex_format(gl, 1, 1);
tex_size = 8;
tex_iformat = fmt->internal_format;
tex_format = fmt->format;
tex_type = fmt->type;
tex_data = temp;
}
// This defines how many bits are considered significant for output on
// screen. The superfluous bits will be used for rounding according to the
// dither matrix. The precision of the source implicitly decides how many
// dither patterns can be visible.
p->dither_quantization = (1 << dst_depth) - 1;
p->dither_center = 0.5 / (tex_size * tex_size);
p->dither_size = tex_size;
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
gl->GenTextures(1, &p->dither_texture);
gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0,
tex_format, tex_type, tex_data);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
gl->ActiveTexture(GL_TEXTURE0);
debug_check_gl(p, "dither setup");
}
static void recreate_osd(struct gl_video *p)
{
if (p->osd)
mpgl_osd_destroy(p->osd);
p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state, p->osd_programs);
p->osd->use_pbo = p->opts.pbo;
}
static bool does_resize(struct mp_rect src, struct mp_rect dst)
{
return src.x1 - src.x0 != dst.x1 - dst.x0 ||
src.y1 - src.y0 != dst.y1 - dst.y0;
}
static const char *expected_scaler(struct gl_video *p, int unit)
{
if (p->opts.scaler_resizes_only && unit == 0 &&
!does_resize(p->src_rect, p->dst_rect))
{
return "bilinear";
}
if (unit == 0 && p->opts.dscaler && get_scale_factor(p) < 1.0)
return p->opts.dscaler;
return p->opts.scalers[unit];
}
static void update_settings(struct gl_video *p)
{
struct mp_csp_params params;
mp_csp_copy_equalizer_values(&params, &p->video_eq);
p->user_gamma = params.gamma * p->opts.gamma;
// Lazy gamma shader initialization (a microoptimization)
if (p->user_gamma != 1.0f && !p->user_gamma_enabled) {
p->user_gamma_enabled = true;
p->need_reinit_rendering = true;
}
}
static void reinit_rendering(struct gl_video *p)
{
GL *gl = p->gl;
MP_VERBOSE(p, "Reinit rendering.\n");
debug_check_gl(p, "before scaler initialization");
uninit_rendering(p);
if (!p->image_params.imgfmt)
return;
update_settings(p);
for (int n = 0; n < 2; n++)
p->scalers[n].name = expected_scaler(p, n);
init_dither(p);
init_scaler(p, &p->scalers[0]);
init_scaler(p, &p->scalers[1]);
compile_shaders(p);
update_all_uniforms(p);
int w = p->image_w;
int h = p->image_h;
// Convolution filters don't need linear sampling, so using nearest is
// often faster.
GLenum filter = p->scalers[0].kernel ? GL_NEAREST : GL_LINEAR;
if (p->indirect_program) {
fbotex_init(&p->indirect_fbo, gl, p->log, w, h, p->gl_target, filter,
p->opts.fbo_format);
}
recreate_osd(p);
p->need_reinit_rendering = false;
}
static void uninit_rendering(struct gl_video *p)
{
GL *gl = p->gl;
delete_shaders(p);
for (int n = 0; n < 2; n++) {
gl->DeleteTextures(1, &p->scalers[n].gl_lut);
p->scalers[n].gl_lut = 0;
p->scalers[n].lut_name = NULL;
p->scalers[n].kernel = NULL;
}
gl->DeleteTextures(1, &p->dither_texture);
p->dither_texture = 0;
fbotex_uninit(&p->indirect_fbo);
for (int i = 0; i < FBOSURFACES_MAX; i++) {
fbotex_uninit(&p->surfaces[i].fbotex);
p->surfaces[i].valid = false;
}
fbotex_uninit(&p->scale_sep_fbo);
}
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
{
GL *gl = p->gl;
if (!lut3d) {
if (p->use_lut_3d) {
p->use_lut_3d = false;
reinit_rendering(p);
}
return;
}
if (!(gl->mpgl_caps & MPGL_CAP_3D_TEX))
return;
if (!p->lut_3d_texture)
gl->GenTextures(1, &p->lut_3d_texture);
gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT);
gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture);
gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1],
lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gl->ActiveTexture(GL_TEXTURE0);
p->use_lut_3d = true;
check_gl_features(p);
debug_check_gl(p, "after 3d lut creation");
reinit_rendering(p);
}
static void set_image_textures(struct gl_video *p, struct video_image *vimg,
GLuint imgtex[4])
{
GL *gl = p->gl;
GLuint dummy[4] = {0};
if (!imgtex)
imgtex = dummy;
assert(vimg->mpi);
if (p->hwdec_active) {
p->hwdec->driver->map_image(p->hwdec, vimg->mpi, imgtex);
} else {
for (int n = 0; n < p->plane_count; n++)
imgtex[n] = vimg->planes[n].gl_texture;
}
for (int n = 0; n < 4; n++) {
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, imgtex[n]);
}
gl->ActiveTexture(GL_TEXTURE0);
}
static void unset_image_textures(struct gl_video *p)
{
GL *gl = p->gl;
for (int n = 0; n < 4; n++) {
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, 0);
}
gl->ActiveTexture(GL_TEXTURE0);
if (p->hwdec_active)
p->hwdec->driver->unmap_image(p->hwdec);
}
static int align_pow2(int s)
{
int r = 1;
while (r < s)
r *= 2;
return r;
}
static void init_video(struct gl_video *p)
{
GL *gl = p->gl;
check_gl_features(p);
init_format(p->image_params.imgfmt, p);
p->gl_target = p->opts.use_rectangle ? GL_TEXTURE_RECTANGLE : GL_TEXTURE_2D;
if (p->hwdec_active) {
if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0)
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
init_format(p->image_params.imgfmt, p);
p->gl_target = p->hwdec->gl_texture_target;
}
mp_image_params_guess_csp(&p->image_params);
p->image_w = p->image_params.w;
p->image_h = p->image_params.h;
int eq_caps = MP_CSP_EQ_CAPS_GAMMA;
if (p->is_yuv && p->image_params.colorspace != MP_CSP_BT_2020_C)
eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX;
if (p->image_desc.flags & MP_IMGFLAG_XYZ)
eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS;
p->video_eq.capabilities = eq_caps;
debug_check_gl(p, "before video texture creation");
struct video_image *vimg = &p->image;
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
plane->w = mp_chroma_div_up(p->image_w, p->image_desc.xs[n]);
plane->h = mp_chroma_div_up(p->image_h, p->image_desc.ys[n]);
plane->tex_w = plane->w;
plane->tex_h = plane->h;
if (!p->hwdec_active) {
if (!p->opts.npot) {
plane->tex_w = align_pow2(plane->tex_w);
plane->tex_h = align_pow2(plane->tex_h);
}
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->GenTextures(1, &plane->gl_texture);
gl->BindTexture(p->gl_target, plane->gl_texture);
gl->TexImage2D(p->gl_target, 0, plane->gl_internal_format,
plane->tex_w, plane->tex_h, 0,
plane->gl_format, plane->gl_type, NULL);
gl->TexParameteri(p->gl_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(p->gl_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(p->gl_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(p->gl_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n",
n, plane->tex_w, plane->tex_h);
}
gl->ActiveTexture(GL_TEXTURE0);
// If the dimensions of the Y plane are not aligned on the luma.
// Assume 4:2:0 with size (3,3). The last luma pixel is (2,2).
// The last chroma pixel is (1,1), not (0,0). So for luma, the
// coordinate range is [0,3), for chroma it is [0,2). This means the
// texture coordinates for chroma are stretched by adding 1 luma pixel
// to the range. Undo this.
p->chroma_fix[0] = p->image.planes[0].tex_w / (double)p->image.planes[1].tex_w
/ (1 << p->image_desc.chroma_xs);
p->chroma_fix[1] = p->image.planes[0].tex_h / (double)p->image.planes[1].tex_h
/ (1 << p->image_desc.chroma_ys);
debug_check_gl(p, "after video texture creation");
reinit_rendering(p);
}
static void uninit_video(struct gl_video *p)
{
GL *gl = p->gl;
uninit_rendering(p);
struct video_image *vimg = &p->image;
for (int n = 0; n < 3; n++) {
struct texplane *plane = &vimg->planes[n];
gl->DeleteTextures(1, &plane->gl_texture);
plane->gl_texture = 0;
gl->DeleteBuffers(1, &plane->gl_buffer);
plane->gl_buffer = 0;
plane->buffer_ptr = NULL;
plane->buffer_size = 0;
}
mp_image_unrefp(&vimg->mpi);
// Invalidate image_params to ensure that gl_video_config() will call
// init_video() on uninitialized gl_video.
p->real_image_params = (struct mp_image_params){0};
p->image_params = p->real_image_params;
}
static void change_dither_trafo(struct gl_video *p)
{
GL *gl = p->gl;
int program = p->final_program;
int phase = p->frames_rendered % 8u;
float r = phase * (M_PI / 2); // rotate
float m = phase < 4 ? 1 : -1; // mirror
gl->UseProgram(program);
float matrix[2][2] = {{cos(r), -sin(r) },
{sin(r) * m, cos(r) * m}};
gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"),
1, GL_TRUE, &matrix[0][0]);
gl->UseProgram(0);
}
struct pass {
int num;
// Not necessarily a FBO; we just abuse this struct because it's convenient.
// It specifies the source texture/sub-rectangle for the next pass.
struct fbotex f;
// If true, render source (f) to dst, instead of the full dest. fbo viewport
bool use_dst;
struct mp_rect dst;
int flags; // for write_quad
};
// *chain contains the source, and is overwritten with a copy of the result
// fbo is used as destination texture/render target.
static void handle_pass(struct gl_video *p, struct pass *chain,
struct fbotex *fbo, GLuint program)
{
GL *gl = p->gl;
if (!program)
return;
gl->BindTexture(p->gl_target, chain->f.texture);
gl->UseProgram(program);
gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h);
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
int tex_w = chain->f.tex_w;
int tex_h = chain->f.tex_h;
struct mp_rect src = {
.x0 = chain->f.vp_x,
.y0 = chain->f.vp_y,
.x1 = chain->f.vp_x + chain->f.vp_w,
.y1 = chain->f.vp_y + chain->f.vp_h,
};
struct mp_rect dst = {-1, -1, 1, 1};
if (chain->use_dst)
dst = chain->dst;
MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n",
chain->num, src.x0, src.y0, src.x1, src.y1,
dst.x0, dst.y0, dst.x1, dst.y1,
fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h,
fbo->tex_w, fbo->tex_h, chain->flags);
draw_quad(p,
dst.x0, dst.y0, dst.x1, dst.y1,
src.x0, src.y0, src.x1, src.y1,
tex_w, tex_h, chain->flags);
*chain = (struct pass){
.num = chain->num + 1,
.f = *fbo,
};
}
static size_t fbosurface_next(struct gl_video *p)
{
return (p->surface_idx + 1) % FBOSURFACES_MAX;
}
// Handle all of the frame passes upto and including upscaling, assuming
// upscaling is not part of the final pass
static void gl_video_upscale_frame(struct gl_video *p, struct pass *chain, struct fbotex *inter_fbo)
{
// Order of processing: [indirect -> [scale_sep ->]] inter
handle_pass(p, chain, &p->indirect_fbo, p->indirect_program);
// compensated for optional rotation
struct mp_rect src_rect_rot = p->src_rect;
if ((p->image_params.rotate % 180) == 90) {
MPSWAP(int, src_rect_rot.x0, src_rect_rot.y0);
MPSWAP(int, src_rect_rot.x1, src_rect_rot.y1);
}
// Clip to visible height so that separate scaling scales the visible part
// only (and the target FBO texture can have a bounded size).
// Don't clamp width; too hard to get correct final scaling on l/r borders.
chain->f.vp_y = src_rect_rot.y0;
chain->f.vp_h = src_rect_rot.y1 - src_rect_rot.y0;
handle_pass(p, chain, &p->scale_sep_fbo, p->scale_sep_program);
// For Y direction, use the whole source viewport; it has been fit to the
// correct origin/height before.
// For X direction, assume the texture wasn't scaled yet, so we can
// select the correct portion, which will be scaled to screen.
chain->f.vp_x = src_rect_rot.x0;
chain->f.vp_w = src_rect_rot.x1 - src_rect_rot.x0;
if (inter_fbo)
handle_pass(p, chain, inter_fbo, p->inter_program);
}
static double gl_video_interpolate_frame(struct gl_video *p,
struct pass *chain,
struct frame_timing *t)
{
GL *gl = p->gl;
double inter_coeff = 0.0;
int64_t prev_pts = p->surfaces[fbosurface_next(p)].pts;
// Make sure all surfaces are actually valid, and redraw them manually
// if this is not the case
for (int i = 0; i < FBOSURFACES_MAX; i++) {
if (!p->surfaces[i].valid) {
struct pass frame = { .f = chain->f };
gl_video_upscale_frame(p, &frame, &p->surfaces[i].fbotex);
p->surfaces[i].valid = true;
}
}
if (t && prev_pts < t->pts) {
MP_STATS(p, "new-pts");
gl_video_upscale_frame(p, chain, &p->surfaces[p->surface_idx].fbotex);
p->surfaces[p->surface_idx].valid = true;
p->surfaces[p->surface_idx].pts = t->pts;
p->surface_idx = fbosurface_next(p);
} else {
// re-use the previously rendered surface as source
chain->f = p->surfaces[fbosurface_next(p)].fbotex;
}
// fbosurface 0 is bound by handle_pass
gl->ActiveTexture(GL_TEXTURE0 + 1);
gl->BindTexture(p->gl_target, p->surfaces[p->surface_idx].fbotex.texture);
gl->ActiveTexture(GL_TEXTURE0);
if (!t) {
p->is_interpolated = false;
return 0.0;
}
int64_t vsync_interval = t->next_vsync - t->prev_vsync;
if (t->pts > t->next_vsync && t->pts < t->next_vsync + vsync_interval) {
// current frame overlaps PTS boundary, blend
double R = t->pts - t->next_vsync;
float ts = p->opts.smoothmotion_threshold;
inter_coeff = R / vsync_interval;
inter_coeff = inter_coeff <= 0.0 + ts ? 0.0 : inter_coeff;
inter_coeff = inter_coeff >= 1.0 - ts ? 1.0 : inter_coeff;
MP_DBG(p, "inter frame ppts: %lld, pts: %lld, "
"vsync: %lld, mix: %f\n",
(long long)prev_pts, (long long)t->pts,
(long long)t->next_vsync, inter_coeff);
MP_STATS(p, "frame-mix");
// the value is scaled to fit in the graph with the completely
// unrelated "phase" value (which is stupid)
MP_STATS(p, "value-timed %lld %f mix-value",
(long long)t->pts, inter_coeff * 10000);
} else if (t->pts > t->next_vsync) {
// there's a new frame, but we haven't displayed or blended it yet,
// so we still draw the old frame
inter_coeff = 1.0;
}
p->is_interpolated = inter_coeff > 0.0;
return inter_coeff;
}
// (fbo==0 makes BindFramebuffer select the screen backbuffer)
void gl_video_render_frame(struct gl_video *p, int fbo, struct frame_timing *t)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
p->is_interpolated = false;
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo);
gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
if (p->opts.temporal_dither)
change_dither_trafo(p);
if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y
|| p->dst_rect.x1 < p->vp_x + p->vp_w
|| p->dst_rect.y1 < p->vp_y + p->vp_h)
{
gl->Clear(GL_COLOR_BUFFER_BIT);
}
if (!vimg->mpi) {
gl->Clear(GL_COLOR_BUFFER_BIT);
goto draw_osd;
}
GLuint imgtex[4] = {0};
set_image_textures(p, vimg, imgtex);
struct pass chain = {
.f = {
.vp_w = p->image_w,
.vp_h = p->image_h,
.tex_w = vimg->planes[0].tex_w,
.tex_h = vimg->planes[0].tex_h,
.texture = imgtex[0],
},
};
double inter_coeff = 0.0;
if (p->opts.smoothmotion) {
inter_coeff = gl_video_interpolate_frame(p, &chain, t);
} else {
gl_video_upscale_frame(p, &chain, NULL);
}
struct fbotex screen = {
.vp_x = p->vp_x,
.vp_y = p->vp_y,
.vp_w = p->vp_w,
.vp_h = p->vp_h,
.fbo = fbo,
};
chain.use_dst = true;
chain.dst = p->dst_rect;
chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90)
| (vimg->image_flipped ? 4 : 0);
gl->UseProgram(p->final_program);
GLint loc = gl->GetUniformLocation(p->final_program, "inter_coeff");
gl->Uniform1f(loc, inter_coeff);
handle_pass(p, &chain, &screen, p->final_program);
gl->UseProgram(0);
unset_image_textures(p);
p->frames_rendered++;
debug_check_gl(p, "after video rendering");
draw_osd:
mpgl_osd_draw(p->osd, p->osd_rect, p->osd_pts, p->image_params.stereo_out);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
}
static void update_window_sized_objects(struct gl_video *p)
{
int w = p->dst_rect.x1 - p->dst_rect.x0;
int h = p->dst_rect.y1 - p->dst_rect.y0;
if ((p->image_params.rotate % 180) == 90)
MPSWAP(int, w, h);
// Round up to an arbitrary alignment to make window resizing or
// panscan controls smoother (less texture reallocations).
int width = FFALIGN(w, 256);
int height = FFALIGN(h, 256);
if (p->scale_sep_program) {
if (h > p->scale_sep_fbo.tex_h) {
fbotex_uninit(&p->scale_sep_fbo);
fbotex_init(&p->scale_sep_fbo, p->gl, p->log, p->image_w, height,
p->gl_target, GL_NEAREST, p->opts.fbo_format);
}
p->scale_sep_fbo.vp_w = p->image_w;
p->scale_sep_fbo.vp_h = h;
}
if (p->opts.smoothmotion) {
for (int i = 0; i < FBOSURFACES_MAX; i++) {
struct fbotex *fbo = &p->surfaces[i].fbotex;
if (w > fbo->tex_w || h > fbo->tex_h) {
fbotex_uninit(fbo);
fbotex_init(fbo, p->gl, p->log, width, height,
p->gl_target, GL_NEAREST, p->opts.fbo_format);
}
fbo->vp_w = w;
fbo->vp_h = h;
p->surfaces[i].valid = false;
}
}
}
static void check_resize(struct gl_video *p)
{
bool need_scaler_reinit = false; // filter size change needed
bool need_scaler_update = false; // filter LUT change needed
bool too_small = false;
for (int n = 0; n < 2; n++) {
if (p->scalers[n].kernel) {
struct filter_kernel old = *p->scalers[n].kernel;
update_scale_factor(p, &p->scalers[n]);
struct filter_kernel new = *p->scalers[n].kernel;
need_scaler_reinit |= (new.size != old.size);
need_scaler_update |= (new.inv_scale != old.inv_scale);
too_small |= p->scalers[n].insufficient;
}
}
for (int n = 0; n < 2; n++) {
if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0)
need_scaler_reinit = true;
}
if (p->upscaling != (get_scale_factor(p) > 1.0)) {
p->upscaling = !p->upscaling;
// Switching between upscaling and downscaling also requires sigmoid
// to be toggled
need_scaler_reinit |= p->sigmoid_enabled;
}
if (need_scaler_reinit) {
reinit_rendering(p);
} else if (need_scaler_update) {
init_scaler(p, &p->scalers[0]);
init_scaler(p, &p->scalers[1]);
}
if (too_small) {
MP_WARN(p, "Can't downscale that much, window "
"output may look suboptimal.\n");
}
update_window_sized_objects(p);
update_all_uniforms(p);
}
void gl_video_resize(struct gl_video *p, struct mp_rect *window,
struct mp_rect *src, struct mp_rect *dst,
struct mp_osd_res *osd, bool vflip)
{
p->src_rect = *src;
p->dst_rect = *dst;
p->osd_rect = *osd;
p->vp_x = window->x0;
p->vp_y = window->y0;
p->vp_w = window->x1 - window->x0;
p->vp_h = window->y1 - window->y0;
p->vp_vflipped = vflip;
check_resize(p);
}
static bool get_image(struct gl_video *p, struct mp_image *mpi)
{
GL *gl = p->gl;
if (!p->opts.pbo)
return false;
struct video_image *vimg = &p->image;
// See comments in init_video() about odd video sizes.
// The normal upload path does this too, but less explicit.
mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n];
int needed_size = mpi->plane_h[n] * mpi->stride[n];
if (!plane->gl_buffer)
gl->GenBuffers(1, &plane->gl_buffer);
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
if (needed_size > plane->buffer_size) {
plane->buffer_size = needed_size;
gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size,
NULL, GL_DYNAMIC_DRAW);
}
if (!plane->buffer_ptr)
plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER,
GL_WRITE_ONLY);
mpi->planes[n] = plane->buffer_ptr;
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
return true;
}
void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
p->osd_pts = mpi->pts;
talloc_free(vimg->mpi);
vimg->mpi = mpi;
if (p->hwdec_active)
return;
assert(mpi->num_planes == p->plane_count);
mp_image_t mpi2 = *mpi;
bool pbo = false;
if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) {
for (int n = 0; n < p->plane_count; n++) {
int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n];
memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n],
mpi2.stride[n], mpi->stride[n]);
}
pbo = true;
}
vimg->image_flipped = mpi2.stride[0] < 0;
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
void *plane_ptr = mpi2.planes[n];
if (pbo) {
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer);
if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER))
MP_FATAL(p, "Video PBO upload failed. "
"Remove the 'pbo' suboption.\n");
plane->buffer_ptr = NULL;
plane_ptr = NULL; // PBO offset 0
}
gl->ActiveTexture(GL_TEXTURE0 + n);
gl->BindTexture(p->gl_target, plane->gl_texture);
glUploadTex(gl, p->gl_target, plane->gl_format, plane->gl_type,
plane_ptr, mpi2.stride[n], 0, 0, plane->w, plane->h, 0);
}
gl->ActiveTexture(GL_TEXTURE0);
if (pbo)
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
static bool test_fbo(struct gl_video *p, bool *success)
{
if (!*success)
return false;
GL *gl = p->gl;
*success = false;
MP_VERBOSE(p, "Testing user-set FBO format (0x%x)\n",
(unsigned)p->opts.fbo_format);
struct fbotex fbo = {0};
if (fbotex_init(&fbo, p->gl, p->log, 16, 16, p->gl_target, GL_LINEAR,
p->opts.fbo_format))
{
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
*success = true;
}
fbotex_uninit(&fbo);
glCheckError(gl, p->log, "FBO test");
return *success;
}
// Disable features that are not supported with the current OpenGL version.
static void check_gl_features(struct gl_video *p)
{
GL *gl = p->gl;
bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX;
bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB;
bool have_arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS;
bool have_1d_tex = gl->mpgl_caps & MPGL_CAP_1D_TEX;
bool have_3d_tex = gl->mpgl_caps & MPGL_CAP_3D_TEX;
bool have_mix = gl->glsl_version >= 130;
char *disabled[10];
int n_disabled = 0;
// Normally, we want to disable them by default if FBOs are unavailable,
// because they will be slow (not critically slow, but still slower).
// Without FP textures, we must always disable them.
// I don't know if luminance alpha float textures exist, so disregard them.
for (int n = 0; n < 2; n++) {
const struct filter_kernel *kernel = mp_find_filter_kernel(p->opts.scalers[n]);
if (kernel) {
char *reason = NULL;
if (!test_fbo(p, &have_fbo))
reason = "scaler (FBO)";
if (!have_float_tex)
reason = "scaler (float tex.)";
if (!have_arrays)
reason = "scaler (no GLSL support)";
if (!have_1d_tex && kernel->polar)
reason = "scaler (1D tex.)";
if (reason) {
p->opts.scalers[n] = "bilinear";
disabled[n_disabled++] = reason;
}
}
}
// GLES3 doesn't provide filtered 16 bit integer textures
// GLES2 doesn't even provide 3D textures
if (p->use_lut_3d && !(have_3d_tex && have_float_tex)) {
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (GLES unsupported)";
}
// Missing float textures etc. (maybe ordered would actually work)
if (p->opts.dither_algo >= 0 && gl->es) {
p->opts.dither_algo = -1;
disabled[n_disabled++] = "dithering (GLES unsupported)";
}
int use_cms = p->opts.srgb || p->use_lut_3d;
// srgb_compand() not available
if (!have_mix && p->opts.srgb) {
p->opts.srgb = false;
disabled[n_disabled++] = "sRGB output (GLSL version)";
}
if (use_cms && !test_fbo(p, &have_fbo)) {
p->opts.srgb = false;
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (FBO)";
}
if (p->opts.smoothmotion && !test_fbo(p, &have_fbo)) {
p->opts.smoothmotion = false;
disabled[n_disabled++] = "smoothmotion (FBO)";
}
// because of bt709_expand()
if (!have_mix && p->use_lut_3d) {
p->use_lut_3d = false;
disabled[n_disabled++] = "color management (GLSL version)";
}
if (gl->es && p->opts.pbo) {
p->opts.pbo = 0;
disabled[n_disabled++] = "PBOs (GLES unsupported)";
}
if (n_disabled) {
MP_ERR(p, "Some OpenGL extensions not detected, disabling: ");
for (int n = 0; n < n_disabled; n++) {
if (n)
MP_ERR(p, ", ");
MP_ERR(p, "%s", disabled[n]);
}
MP_ERR(p, ".\n");
}
}
static int init_gl(struct gl_video *p)
{
GL *gl = p->gl;
debug_check_gl(p, "before init_gl");
check_gl_features(p);
gl->Disable(GL_DITHER);
gl_vao_init(&p->vao, gl, sizeof(struct vertex), vertex_vao);
gl_video_set_gl_state(p);
// Test whether we can use 10 bit. Hope that testing a single format/channel
// is good enough (instead of testing all 1-4 channels variants etc.).
const struct fmt_entry *fmt = find_tex_format(gl, 2, 1);
if (gl->GetTexLevelParameteriv && fmt->format) {
GLuint tex;
gl->GenTextures(1, &tex);
gl->BindTexture(GL_TEXTURE_2D, tex);
gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, 64, 64, 0,
fmt->format, fmt->type, NULL);
GLenum pname = 0;
switch (fmt->format) {
case GL_RED: pname = GL_TEXTURE_RED_SIZE; break;
case GL_LUMINANCE: pname = GL_TEXTURE_LUMINANCE_SIZE; break;
}
GLint param = 0;
if (pname)
gl->GetTexLevelParameteriv(GL_TEXTURE_2D, 0, pname, &param);
if (param) {
MP_VERBOSE(p, "16 bit texture depth: %d.\n", (int)param);
p->texture_16bit_depth = param;
}
gl->DeleteTextures(1, &tex);
}
debug_check_gl(p, "after init_gl");
return 1;
}
void gl_video_uninit(struct gl_video *p)
{
if (!p)
return;
GL *gl = p->gl;
uninit_video(p);
gl_vao_uninit(&p->vao);
gl->DeleteTextures(1, &p->lut_3d_texture);
mpgl_osd_destroy(p->osd);
gl_set_debug_logger(gl, NULL);
talloc_free(p);
}
void gl_video_set_gl_state(struct gl_video *p)
{
GL *gl = p->gl;
struct m_color c = p->opts.background;
gl->ClearColor(c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0);
gl->ActiveTexture(GL_TEXTURE0);
if (gl->mpgl_caps & MPGL_CAP_ROW_LENGTH)
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
void gl_video_unset_gl_state(struct gl_video *p)
{
/* nop */
}
void gl_video_reset(struct gl_video *p)
{
for (int i = 0; i < FBOSURFACES_MAX; i++)
p->surfaces[i].pts = 0;
p->surface_idx = 0;
}
bool gl_video_showing_interpolated_frame(struct gl_video *p)
{
return p->is_interpolated;
}
// dest = src.<w> (always using 4 components)
static void packed_fmt_swizzle(char w[5], const struct fmt_entry *texfmt,
const struct packed_fmt_entry *fmt)
{
const char *comp = "rgba";
// Normally, we work with GL_RG
if (texfmt && texfmt->internal_format == GL_LUMINANCE_ALPHA)
comp = "ragb";
for (int c = 0; c < 4; c++)
w[c] = comp[MPMAX(fmt->components[c] - 1, 0)];
w[4] = '\0';
}
static bool init_format(int fmt, struct gl_video *init)
{
struct GL *gl = init->gl;
init->hwdec_active = false;
if (init->hwdec && init->hwdec->driver->imgfmt == fmt) {
fmt = init->hwdec->converted_imgfmt;
init->hwdec_active = true;
}
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt);
if (!desc.id)
return false;
if (desc.num_planes > 4)
return false;
const struct fmt_entry *plane_format[4] = {0};
init->color_swizzle[0] = '\0';
init->has_alpha = false;
// YUV/planar formats
if (desc.flags & MP_IMGFLAG_YUV_P) {
int bits = desc.component_bits;
if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) {
init->has_alpha = desc.num_planes > 3;
plane_format[0] = find_tex_format(gl, (bits + 7) / 8, 1);
for (int p = 1; p < desc.num_planes; p++)
plane_format[p] = plane_format[0];
goto supported;
}
}
// YUV/half-packed
if (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21) {
if (!(init->gl->mpgl_caps & MPGL_CAP_TEX_RG))
return false;
plane_format[0] = find_tex_format(gl, 1, 1);
plane_format[1] = find_tex_format(gl, 1, 2);
if (fmt == IMGFMT_NV21)
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga");
goto supported;
}
// RGB/planar
if (fmt == IMGFMT_GBRP) {
snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga");
plane_format[0] = find_tex_format(gl, 1, 1);
for (int p = 1; p < desc.num_planes; p++)
plane_format[p] = plane_format[0];
goto supported;
}
// XYZ (same organization as RGB packed, but requires conversion matrix)
if (fmt == IMGFMT_XYZ12) {
plane_format[0] = find_tex_format(gl, 2, 3);
goto supported;
}
// Packed RGB special formats
for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) {
if (!gl->es && e->mp_format == fmt) {
plane_format[0] = e;
goto supported;
}
}
// Packed RGB(A) formats
for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) {
if (e->fmt == fmt) {
int n_comp = desc.bytes[0] / e->component_size;
plane_format[0] = find_tex_format(gl, e->component_size, n_comp);
packed_fmt_swizzle(init->color_swizzle, plane_format[0], e);
init->has_alpha = e->components[3] != 0;
goto supported;
}
}
// Packed YUV Apple formats
if (init->gl->mpgl_caps & MPGL_CAP_APPLE_RGB_422) {
for (const struct fmt_entry *e = gl_apple_formats; e->mp_format; e++) {
if (e->mp_format == fmt) {
init->is_packed_yuv = true;
snprintf(init->color_swizzle, sizeof(init->color_swizzle),
"gbra");
plane_format[0] = e;
goto supported;
}
}
}
// Unsupported format
return false;
supported:
// Stuff like IMGFMT_420AP10. Untested, most likely insane.
if (desc.num_planes == 4 && (desc.component_bits % 8) != 0)
return false;
if (desc.component_bits > 8 && desc.component_bits < 16) {
if (init->texture_16bit_depth < 16)
return false;
}
for (int p = 0; p < desc.num_planes; p++) {
if (!plane_format[p]->format)
return false;
}
for (int p = 0; p < desc.num_planes; p++) {
struct texplane *plane = &init->image.planes[p];
const struct fmt_entry *format = plane_format[p];
assert(format);
plane->gl_format = format->format;
plane->gl_internal_format = format->internal_format;
plane->gl_type = format->type;
}
init->is_yuv = desc.flags & MP_IMGFLAG_YUV;
init->is_rgb = desc.flags & MP_IMGFLAG_RGB;
init->plane_count = desc.num_planes;
init->image_desc = desc;
return true;
}
bool gl_video_check_format(struct gl_video *p, int mp_format)
{
struct gl_video tmp = *p;
return init_format(mp_format, &tmp);
}
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
{
mp_image_unrefp(&p->image.mpi);
if (!mp_image_params_equal(&p->real_image_params, params)) {
uninit_video(p);
p->real_image_params = *params;
p->image_params = *params;
if (params->imgfmt)
init_video(p);
}
check_resize(p);
}
void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b)
{
MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b);
p->depth_g = g;
}
struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd)
{
if (gl->version < 210 && gl->es < 200) {
mp_err(log, "At least OpenGL 2.1 or OpenGL ES 2.0 required.\n");
return NULL;
}
struct gl_video *p = talloc_ptrtype(NULL, p);
*p = (struct gl_video) {
.gl = gl,
.log = log,
.osd_state = osd,
.opts = gl_video_opts_def,
.gl_target = GL_TEXTURE_2D,
.texture_16bit_depth = 16,
.user_gamma = 1.0f,
.scalers = {
{ .index = 0, .name = "bilinear" },
{ .index = 1, .name = "bilinear" },
},
.scratch = talloc_zero_array(p, char *, 1),
};
gl_video_set_debug(p, true);
init_gl(p);
recreate_osd(p);
return p;
}
// Get static string for scaler shader.
static const char *handle_scaler_opt(const char *name)
{
if (name && name[0]) {
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
if (kernel)
return kernel->name;
for (const char *const *filter = fixed_scale_filters; *filter; filter++) {
if (strcmp(*filter, name) == 0)
return *filter;
}
}
return NULL;
}
// Set the options, and possibly update the filter chain too.
// Note: assumes all options are valid and verified by the option parser.
void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts)
{
p->opts = *opts;
for (int n = 0; n < 2; n++) {
p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]);
p->opts.dscaler = (char *)handle_scaler_opt(p->opts.dscaler);
}
check_gl_features(p);
reinit_rendering(p);
check_resize(p);
}
void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params)
{
*params = p->image_params; // supports everything
}
struct mp_csp_equalizer *gl_video_eq_ptr(struct gl_video *p)
{
return &p->video_eq;
}
// Call when the mp_csp_equalizer returned by gl_video_eq_ptr() was changed.
void gl_video_eq_update(struct gl_video *p)
{
update_settings(p);
if (p->need_reinit_rendering) {
reinit_rendering(p);
check_resize(p);
} else {
update_all_uniforms(p);
}
}
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT - 1;
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
if (!handle_scaler_opt(s))
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available scalers:\n");
for (const char *const *filter = fixed_scale_filters; *filter; filter++)
mp_info(log, " %s\n", *filter);
for (int n = 0; mp_filter_kernels[n].name; n++)
mp_info(log, " %s\n", mp_filter_kernels[n].name);
if (s[0])
mp_fatal(log, "No scaler named '%s' found!\n", s);
}
return r;
}
// Resize and redraw the contents of the window without further configuration.
// Intended to be used in situations where the frontend can't really be
// involved with reconfiguring the VO properly.
// gl_video_resize() should be called when user interaction is done.
void gl_video_resize_redraw(struct gl_video *p, int w, int h)
{
p->vp_w = w;
p->vp_h = h;
gl_video_render_frame(p, 0, NULL);
}
float gl_video_scale_ambient_lux(float lmin, float lmax,
float rmin, float rmax, float lux)
{
assert(lmax > lmin);
float num = (rmax - rmin) * (log10(lux) - log10(lmin));
float den = log10(lmax) - log10(lmin);
float result = num / den + rmin;
// clamp the result
float max = MPMAX(rmax, rmin);
float min = MPMIN(rmax, rmin);
return MPMAX(MPMIN(result, max), min);
}
void gl_video_set_ambient_lux(struct gl_video *p, int lux)
{
if (p->opts.gamma_auto) {
float gamma = gl_video_scale_ambient_lux(16.0, 64.0, 2.40, 1.961, lux);
MP_VERBOSE(p, "ambient light changed: %dlux (gamma: %f)\n", lux, gamma);
p->opts.gamma = MPMIN(1.0, 1.961 / gamma);
gl_video_eq_update(p);
}
}
void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec)
{
p->hwdec = hwdec;
mp_image_unrefp(&p->image.mpi);
}