mpv/video/filter/vf_unsharp.c

260 lines
7.5 KiB
C

/*
* Copyright (C) 2002 Remi Guyomarch <rguyom@pobox.com>
*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <math.h>
#include "config.h"
#include "common/msg.h"
#include "common/cpudetect.h"
#include "options/m_option.h"
#include "video/img_format.h"
#include "video/mp_image.h"
#include "vf.h"
#include "video/memcpy_pic.h"
#include "libavutil/common.h"
#include "vf_lavfi.h"
//===========================================================================//
#define MIN_MATRIX_SIZE 3
#define MAX_MATRIX_SIZE 63
typedef struct FilterParam {
int msizeX, msizeY;
double amount;
uint32_t *SC[MAX_MATRIX_SIZE-1];
} FilterParam;
struct vf_priv_s {
FilterParam lumaParam;
FilterParam chromaParam;
struct vf_lw_opts *lw_opts;
};
//===========================================================================//
/* This code is based on :
An Efficient algorithm for Gaussian blur using finite-state machines
Frederick M. Waltz and John W. V. Miller
SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII
Originally published Boston, Nov 98
*/
static void unsharp( uint8_t *dst, uint8_t *src, int dstStride, int srcStride, int width, int height, FilterParam *fp ) {
uint32_t **SC = fp->SC;
uint32_t SR[MAX_MATRIX_SIZE-1], Tmp1, Tmp2;
uint8_t* src2 = src; // avoid gcc warning
int32_t res;
int x, y, z;
int amount = fp->amount * 65536.0;
int stepsX = fp->msizeX/2;
int stepsY = fp->msizeY/2;
int scalebits = (stepsX+stepsY)*2;
int32_t halfscale = 1 << ((stepsX+stepsY)*2-1);
if( !fp->amount ) {
if( src == dst )
return;
if( dstStride == srcStride )
memcpy( dst, src, srcStride*height );
else
for( y=0; y<height; y++, dst+=dstStride, src+=srcStride )
memcpy( dst, src, width );
return;
}
for( y=0; y<2*stepsY; y++ )
memset( SC[y], 0, sizeof(SC[y][0]) * (width+2*stepsX) );
for( y=-stepsY; y<height+stepsY; y++ ) {
if( y < height ) src2 = src;
memset( SR, 0, sizeof(SR[0]) * (2*stepsX-1) );
for( x=-stepsX; x<width+stepsX; x++ ) {
Tmp1 = x<=0 ? src2[0] : x>=width ? src2[width-1] : src2[x];
for( z=0; z<stepsX*2; z+=2 ) {
Tmp2 = SR[z+0] + Tmp1; SR[z+0] = Tmp1;
Tmp1 = SR[z+1] + Tmp2; SR[z+1] = Tmp2;
}
for( z=0; z<stepsY*2; z+=2 ) {
Tmp2 = SC[z+0][x+stepsX] + Tmp1; SC[z+0][x+stepsX] = Tmp1;
Tmp1 = SC[z+1][x+stepsX] + Tmp2; SC[z+1][x+stepsX] = Tmp2;
}
if( x>=stepsX && y>=stepsY ) {
uint8_t* srx = src - stepsY*srcStride + x - stepsX;
uint8_t* dsx = dst - stepsY*dstStride + x - stepsX;
res = (int32_t)*srx + ( ( ( (int32_t)*srx - (int32_t)((Tmp1+halfscale) >> scalebits) ) * amount ) >> 16 );
*dsx = res>255 ? 255 : res<0 ? 0 : (uint8_t)res;
}
}
if( y >= 0 ) {
dst += dstStride;
src += srcStride;
}
}
}
//===========================================================================//
static int config( struct vf_instance *vf,
int width, int height, int d_width, int d_height,
unsigned int flags, unsigned int outfmt ) {
int z, stepsX, stepsY;
FilterParam *fp;
// allocate buffers
fp = &vf->priv->lumaParam;
memset( fp->SC, 0, sizeof( fp->SC ) );
stepsX = fp->msizeX/2;
stepsY = fp->msizeY/2;
for( z=0; z<2*stepsY; z++ )
fp->SC[z] = av_malloc(sizeof(*(fp->SC[z])) * (width+2*stepsX));
fp = &vf->priv->chromaParam;
memset( fp->SC, 0, sizeof( fp->SC ) );
stepsX = fp->msizeX/2;
stepsY = fp->msizeY/2;
for( z=0; z<2*stepsY; z++ )
fp->SC[z] = av_malloc(sizeof(*(fp->SC[z])) * (width+2*stepsX));
return vf_next_config( vf, width, height, d_width, d_height, flags, outfmt );
}
//===========================================================================//
static struct mp_image *filter(struct vf_instance *vf, struct mp_image *mpi)
{
struct mp_image *dmpi = mpi;
if (!mp_image_is_writeable(mpi)) {
dmpi = vf_alloc_out_image(vf);
mp_image_copy_attributes(dmpi, mpi);
}
unsharp( dmpi->planes[0], mpi->planes[0], dmpi->stride[0], mpi->stride[0], mpi->w, mpi->h, &vf->priv->lumaParam );
unsharp( dmpi->planes[1], mpi->planes[1], dmpi->stride[1], mpi->stride[1], mpi->w/2, mpi->h/2, &vf->priv->chromaParam );
unsharp( dmpi->planes[2], mpi->planes[2], dmpi->stride[2], mpi->stride[2], mpi->w/2, mpi->h/2, &vf->priv->chromaParam );
#if HAVE_MMX
if(gCpuCaps.hasMMX)
__asm__ volatile ("emms\n\t");
#endif
#if HAVE_MMX2
if(gCpuCaps.hasMMX2)
__asm__ volatile ("sfence\n\t");
#endif
if (dmpi != mpi)
talloc_free(mpi);
return dmpi;
}
static void uninit( struct vf_instance *vf ) {
unsigned int z;
FilterParam *fp;
if( !vf->priv ) return;
fp = &vf->priv->lumaParam;
for( z=0; z<sizeof(fp->SC)/sizeof(fp->SC[0]); z++ ) {
av_free( fp->SC[z] );
fp->SC[z] = NULL;
}
fp = &vf->priv->chromaParam;
for( z=0; z<sizeof(fp->SC)/sizeof(fp->SC[0]); z++ ) {
av_free( fp->SC[z] );
fp->SC[z] = NULL;
}
}
//===========================================================================//
static int query_format( struct vf_instance *vf, unsigned int fmt ) {
switch(fmt) {
case IMGFMT_420P:
return vf_next_query_format( vf, IMGFMT_420P );
}
return 0;
}
static int vf_open( vf_instance_t *vf) {
vf->config = config;
vf->filter = filter;
vf->query_format = query_format;
vf->uninit = uninit;
struct vf_priv_s *p = vf->priv;
p->lumaParam.msizeX |= 1;
p->lumaParam.msizeY |= 1;
p->chromaParam.msizeX |= 1;
p->chromaParam.msizeY |= 1;
if (vf_lw_set_graph(vf, p->lw_opts, "unsharp", "%d:%d:%f:%d:%d:%f",
p->lumaParam.msizeX, p->lumaParam.msizeY, p->lumaParam.amount,
p->chromaParam.msizeX, p->chromaParam.msizeY, p->chromaParam.amount)
>= 0)
{
return 1;
}
return 1;
}
// same as MIN_/MAX_MATRIX_SIZE
#define MIN_SIZE 3
#define MAX_SIZE 63
#define OPT_BASE_STRUCT struct vf_priv_s
const vf_info_t vf_info_unsharp = {
.description = "unsharp mask & gaussian blur",
.name = "unsharp",
.open = vf_open,
.priv_size = sizeof(struct vf_priv_s),
.priv_defaults = &(const struct vf_priv_s){
.lumaParam = {5, 5, 1.0},
.chromaParam = {5, 5, 0.0},
},
.options = (const struct m_option[]){
OPT_INTRANGE("lx", lumaParam.msizeX, 0, MIN_SIZE, MAX_SIZE),
OPT_INTRANGE("ly", lumaParam.msizeY, 0, MIN_SIZE, MAX_SIZE),
OPT_DOUBLE("la", lumaParam.amount, CONF_RANGE, .min = -2, .max = 6),
OPT_INTRANGE("cx", chromaParam.msizeX, 0, MIN_SIZE, MAX_SIZE),
OPT_INTRANGE("cy", chromaParam.msizeY, 0, MIN_SIZE, MAX_SIZE),
OPT_DOUBLE("ca", chromaParam.amount, CONF_RANGE, .min = -2, .max = 6),
OPT_SUBSTRUCT("", lw_opts, vf_lw_conf, 0),
{0}
},
};
//===========================================================================//