1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-09 08:29:36 +00:00
mpv/video/repack.c
Niklas Haas 8bd0dee531 osdep: rename MP_UNREACHABLE
It was pointed out on IRC that the name is misleading, since the actual
semantics of the macro is to assert first.
2021-11-03 15:15:20 +01:00

1201 lines
43 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <libavutil/bswap.h>
#include <libavutil/pixfmt.h>
#include "common/common.h"
#include "repack.h"
#include "video/csputils.h"
#include "video/fmt-conversion.h"
#include "video/img_format.h"
#include "video/mp_image.h"
enum repack_step_type {
REPACK_STEP_FLOAT,
REPACK_STEP_REPACK,
REPACK_STEP_ENDIAN,
};
struct repack_step {
enum repack_step_type type;
// 0=input, 1=output
struct mp_image *buf[2];
bool user_buf[2]; // user_buf[n]==true if buf[n] = user src/dst buffer
struct mp_imgfmt_desc fmt[2];
struct mp_image *tmp; // output buffer, if needed
};
struct mp_repack {
bool pack; // if false, this is for unpacking
int flags;
int imgfmt_user; // original mp format (unchanged endian)
int imgfmt_a; // original mp format (possibly packed format,
// swapped endian)
int imgfmt_b; // equivalent unpacked/planar format
struct mp_imgfmt_desc fmt_a;// ==imgfmt_a
struct mp_imgfmt_desc fmt_b;// ==imgfmt_b
void (*repack)(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w);
bool passthrough_y; // possible luma plane optimization for e.g. nv12
int endian_size; // endian swap; 0=none, 2/4=swap word size
// For packed_repack.
int components[4]; // b[n] = mp_image.planes[components[n]]
// pack: a is dst, b is src
// unpack: a is src, b is dst
void (*packed_repack_scanline)(void *a, void *b[], int w);
// Fringe RGB/YUV.
uint8_t comp_size;
uint8_t comp_map[6];
uint8_t comp_shifts[3];
uint8_t *comp_lut;
void (*repack_fringe_yuv)(void *dst, void *src[], int w, uint8_t *c);
// F32 repacking.
int f32_comp_size;
float f32_m[4], f32_o[4];
uint32_t f32_pmax[4];
enum mp_csp f32_csp_space;
enum mp_csp_levels f32_csp_levels;
// REPACK_STEP_REPACK: if true, need to copy this plane
bool copy_buf[4];
struct repack_step steps[4];
int num_steps;
bool configured;
};
// depth = number of LSB in use
static int find_gbrp_format(int depth, int num_planes)
{
if (num_planes != 3 && num_planes != 4)
return 0;
struct mp_regular_imgfmt desc = {
.component_type = MP_COMPONENT_TYPE_UINT,
.forced_csp = MP_CSP_RGB,
.component_size = depth > 8 ? 2 : 1,
.component_pad = depth - (depth > 8 ? 16 : 8),
.num_planes = num_planes,
.planes = { {1, {2}}, {1, {3}}, {1, {1}}, {1, {4}} },
};
return mp_find_regular_imgfmt(&desc);
}
// depth = number of LSB in use
static int find_yuv_format(int depth, int num_planes)
{
if (num_planes < 1 || num_planes > 4)
return 0;
struct mp_regular_imgfmt desc = {
.component_type = MP_COMPONENT_TYPE_UINT,
.component_size = depth > 8 ? 2 : 1,
.component_pad = depth - (depth > 8 ? 16 : 8),
.num_planes = num_planes,
.planes = { {1, {1}}, {1, {2}}, {1, {3}}, {1, {4}} },
};
if (num_planes == 2)
desc.planes[1].components[0] = 4;
return mp_find_regular_imgfmt(&desc);
}
// Copy one line on the plane p.
static void copy_plane(struct mp_image *dst, int dst_x, int dst_y,
struct mp_image *src, int src_x, int src_y,
int w, int p)
{
// Number of lines on this plane.
int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
size_t size = mp_image_plane_bytes(dst, p, dst_x, w);
assert(dst->fmt.bpp[p] == src->fmt.bpp[p]);
for (int y = 0; y < h; y++) {
void *pd = mp_image_pixel_ptr_ny(dst, p, dst_x, dst_y + y);
void *ps = mp_image_pixel_ptr_ny(src, p, src_x, src_y + y);
memcpy(pd, ps, size);
}
}
// Swap endian for one line.
static void swap_endian(struct mp_image *dst, int dst_x, int dst_y,
struct mp_image *src, int src_x, int src_y,
int w, int endian_size)
{
assert(src->fmt.num_planes == dst->fmt.num_planes);
for (int p = 0; p < dst->fmt.num_planes; p++) {
int xs = dst->fmt.xs[p];
int bpp = dst->fmt.bpp[p] / 8;
int words_per_pixel = bpp / endian_size;
int num_words = ((w + (1 << xs) - 1) >> xs) * words_per_pixel;
// Number of lines on this plane.
int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
assert(src->fmt.bpp[p] == bpp * 8);
for (int y = 0; y < h; y++) {
void *s = mp_image_pixel_ptr_ny(src, p, src_x, src_y + y);
void *d = mp_image_pixel_ptr_ny(dst, p, dst_x, dst_y + y);
switch (endian_size) {
case 2:
for (int x = 0; x < num_words; x++)
((uint16_t *)d)[x] = av_bswap16(((uint16_t *)s)[x]);
break;
case 4:
for (int x = 0; x < num_words; x++)
((uint32_t *)d)[x] = av_bswap32(((uint32_t *)s)[x]);
break;
default:
MP_ASSERT_UNREACHABLE();
}
}
}
}
// PA = PAck, copy planar input to single packed array
// UN = UNpack, copy packed input to planar output
// Naming convention:
// pa_/un_ prefix to identify conversion direction.
// Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
// (This is unusual; MSB to LSB is more commonly used to describe formats,
// but our convention makes more sense for byte access in little endian.)
// "c" identifies a color component.
// "z" identifies known zero padding.
// "x" identifies uninitialized padding.
// A component is followed by its size in bits.
// Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
// Unpackers will often use "x" for padding, because they ignore it, while
// packers will use "z" because they write zero.
#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \
static void name(void *dst, void *src[], int w) { \
for (int x = 0; x < w; x++) { \
((packed_t *)dst)[x] = \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \
((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \
} \
}
#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
static void name(void *src, void *dst[], int w) { \
for (int x = 0; x < w; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \
} \
}
#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \
static void name(void *dst, void *src[], int w) { \
for (int x = 0; x < w; x++) { \
((packed_t *)dst)[x] = (pad) | \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \
} \
}
UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu)
PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24)
// Not sure if this is a good idea; there may be no alignment guarantee.
UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu)
PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48)
#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \
static void name(void *src, void *dst[], int w) { \
for (int x = 0; x < w; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
} \
}
UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu)
PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0)
UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu)
PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0)
UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 0, 10, 20, 0)
#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \
static void name(void *dst, void *src[], int w) { \
for (int x = 0; x < w; x++) { \
((packed_t *)dst)[x] = (pad) | \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \
} \
}
#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \
static void name(void *src, void *dst[], int w) { \
for (int x = 0; x < w; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
} \
}
UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu)
PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0)
UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)
#define PA_SEQ_3(name, comp_t) \
static void name(void *dst, void *src[], int w) { \
comp_t *r = dst; \
for (int x = 0; x < w; x++) { \
*r++ = ((comp_t *)src[0])[x]; \
*r++ = ((comp_t *)src[1])[x]; \
*r++ = ((comp_t *)src[2])[x]; \
} \
}
#define UN_SEQ_3(name, comp_t) \
static void name(void *src, void *dst[], int w) { \
comp_t *r = src; \
for (int x = 0; x < w; x++) { \
((comp_t *)dst[0])[x] = *r++; \
((comp_t *)dst[1])[x] = *r++; \
((comp_t *)dst[2])[x] = *r++; \
} \
}
UN_SEQ_3(un_ccc8, uint8_t)
PA_SEQ_3(pa_ccc8, uint8_t)
UN_SEQ_3(un_ccc16, uint16_t)
PA_SEQ_3(pa_ccc16, uint16_t)
// "regular": single packed plane, all components have same width (except padding)
struct regular_repacker {
int packed_width; // number of bits of the packed pixel
int component_width; // number of bits for a single component
int prepadding; // number of bits of LSB padding
int num_components; // number of components that can be accessed
void (*pa_scanline)(void *a, void *b[], int w);
void (*un_scanline)(void *a, void *b[], int w);
};
static const struct regular_repacker regular_repackers[] = {
{32, 8, 0, 3, pa_ccc8z8, un_ccc8x8},
{32, 8, 8, 3, pa_z8ccc8, un_x8ccc8},
{32, 8, 0, 4, pa_cccc8, un_cccc8},
{64, 16, 0, 4, pa_cccc16, un_cccc16},
{24, 8, 0, 3, pa_ccc8, un_ccc8},
{48, 16, 0, 3, pa_ccc16, un_ccc16},
{16, 8, 0, 2, pa_cc8, un_cc8},
{32, 16, 0, 2, pa_cc16, un_cc16},
{32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
};
static void packed_repack(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
uint32_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
void *pb[4] = {0};
for (int p = 0; p < b->num_planes; p++) {
int s = rp->components[p];
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
}
rp->packed_repack_scanline(pa, pb, w);
}
// Tries to set a packer/unpacker for component-wise byte aligned formats.
static void setup_packed_packer(struct mp_repack *rp)
{
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
if (!(desc.flags & MP_IMGFLAG_HAS_COMPS) ||
!(desc.flags & MP_IMGFLAG_TYPE_UINT) ||
!(desc.flags & MP_IMGFLAG_NE) ||
desc.num_planes != 1)
return;
int num_real_components = 0;
int components[4] = {0};
for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
if (!desc.comps[n].size)
continue;
if (desc.comps[n].size != desc.comps[0].size ||
desc.comps[n].pad != desc.comps[0].pad ||
desc.comps[n].offset % desc.comps[0].size)
return;
int item = desc.comps[n].offset / desc.comps[0].size;
if (item >= 4)
return;
components[item] = n + 1;
num_real_components++;
}
int depth = desc.comps[0].size + MPMIN(0, desc.comps[0].pad);
static const int reorder_gbrp[] = {0, 3, 1, 2, 4};
static const int reorder_yuv[] = {0, 1, 2, 3, 4};
int planar_fmt = 0;
const int *reorder = NULL;
if (desc.flags & MP_IMGFLAG_COLOR_YUV) {
planar_fmt = find_yuv_format(depth, num_real_components);
reorder = reorder_yuv;
} else {
planar_fmt = find_gbrp_format(depth, num_real_components);
reorder = reorder_gbrp;
}
if (!planar_fmt)
return;
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
const struct regular_repacker *pa = &regular_repackers[i];
// The following may assume little endian (because some repack backends
// use word access, while the metadata here uses byte access).
int prepad = components[0] ? 0 : 8;
int first_comp = components[0] ? 0 : 1;
void (*repack_cb)(void *pa, void *pb[], int w) =
rp->pack ? pa->pa_scanline : pa->un_scanline;
if (pa->packed_width != desc.bpp[0] ||
pa->component_width != depth ||
pa->num_components != num_real_components ||
pa->prepadding != prepad ||
!repack_cb)
continue;
rp->repack = packed_repack;
rp->packed_repack_scanline = repack_cb;
rp->imgfmt_b = planar_fmt;
for (int n = 0; n < num_real_components; n++) {
// Determine permutation that maps component order between the two
// formats, with has_alpha special case (see above).
int c = reorder[components[first_comp + n]];
rp->components[n] = c == 4 ? num_real_components - 1 : c - 1;
}
return;
}
}
#define PA_SHIFT_LUT8(name, packed_t) \
static void name(void *dst, void *src[], int w, uint8_t *lut, \
uint8_t s0, uint8_t s1, uint8_t s2) { \
for (int x = 0; x < w; x++) { \
((packed_t *)dst)[x] = \
(lut[((uint8_t *)src[0])[x] + 256 * 0] << s0) | \
(lut[((uint8_t *)src[1])[x] + 256 * 1] << s1) | \
(lut[((uint8_t *)src[2])[x] + 256 * 2] << s2); \
} \
}
#define UN_SHIFT_LUT8(name, packed_t) \
static void name(void *src, void *dst[], int w, uint8_t *lut, \
uint8_t s0, uint8_t s1, uint8_t s2) { \
for (int x = 0; x < w; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((uint8_t *)dst[0])[x] = lut[((c >> s0) & 0xFF) + 256 * 0]; \
((uint8_t *)dst[1])[x] = lut[((c >> s1) & 0xFF) + 256 * 1]; \
((uint8_t *)dst[2])[x] = lut[((c >> s2) & 0xFF) + 256 * 2]; \
} \
}
PA_SHIFT_LUT8(pa_shift_lut8_8, uint8_t)
PA_SHIFT_LUT8(pa_shift_lut8_16, uint16_t)
UN_SHIFT_LUT8(un_shift_lut8_8, uint8_t)
UN_SHIFT_LUT8(un_shift_lut8_16, uint16_t)
static void fringe_rgb_repack(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
void *pb[4] = {0};
for (int p = 0; p < b->num_planes; p++) {
int s = rp->components[p];
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
}
assert(rp->comp_size == 1 || rp->comp_size == 2);
void (*repack)(void *pa, void *pb[], int w, uint8_t *lut,
uint8_t s0, uint8_t s1, uint8_t s2) = NULL;
if (rp->pack) {
repack = rp->comp_size == 1 ? pa_shift_lut8_8 : pa_shift_lut8_16;
} else {
repack = rp->comp_size == 1 ? un_shift_lut8_8 : un_shift_lut8_16;
}
repack(pa, pb, w, rp->comp_lut,
rp->comp_shifts[0], rp->comp_shifts[1], rp->comp_shifts[2]);
}
static void setup_fringe_rgb_packer(struct mp_repack *rp)
{
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
if (!(desc.flags & MP_IMGFLAG_HAS_COMPS))
return;
if (desc.bpp[0] > 16 || (desc.bpp[0] % 8u) ||
mp_imgfmt_get_forced_csp(rp->imgfmt_a) != MP_CSP_RGB ||
desc.num_planes != 1 || desc.comps[3].size)
return;
int depth = desc.comps[0].size;
for (int n = 0; n < 3; n++) {
struct mp_imgfmt_comp_desc *c = &desc.comps[n];
if (c->size < 1 || c->size > 8 || c->pad)
return;
if (rp->flags & REPACK_CREATE_ROUND_DOWN) {
depth = MPMIN(depth, c->size);
} else {
depth = MPMAX(depth, c->size);
}
}
if (rp->flags & REPACK_CREATE_EXPAND_8BIT)
depth = 8;
rp->imgfmt_b = find_gbrp_format(depth, 3);
if (!rp->imgfmt_b)
return;
rp->comp_lut = talloc_array(rp, uint8_t, 256 * 3);
rp->repack = fringe_rgb_repack;
for (int n = 0; n < 3; n++)
rp->components[n] = ((int[]){3, 1, 2})[n] - 1;
for (int n = 0; n < 3; n++) {
int bits = desc.comps[n].size;
rp->comp_shifts[n] = desc.comps[n].offset;
if (rp->comp_lut) {
uint8_t *lut = rp->comp_lut + 256 * n;
uint8_t zmax = (1 << depth) - 1;
uint8_t cmax = (1 << bits) - 1;
for (int v = 0; v < 256; v++) {
if (rp->pack) {
lut[v] = (v * cmax + zmax / 2) / zmax;
} else {
lut[v] = (v & cmax) * zmax / cmax;
}
}
}
}
rp->comp_size = (desc.bpp[0] + 7) / 8;
assert(rp->comp_size == 1 || rp->comp_size == 2);
if (desc.endian_shift) {
assert(rp->comp_size == 2 && (1 << desc.endian_shift) == 2);
rp->endian_size = 2;
}
}
static void unpack_pal(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
uint8_t *src = mp_image_pixel_ptr(a, 0, a_x, a_y);
uint32_t *pal = (void *)a->planes[1];
uint8_t *dst[4] = {0};
for (int p = 0; p < b->num_planes; p++)
dst[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
for (int x = 0; x < w; x++) {
uint32_t c = pal[src[x]];
dst[0][x] = (c >> 8) & 0xFF; // G
dst[1][x] = (c >> 0) & 0xFF; // B
dst[2][x] = (c >> 16) & 0xFF; // R
dst[3][x] = (c >> 24) & 0xFF; // A
}
}
static void bitmap_repack(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
uint8_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
uint8_t *pb = mp_image_pixel_ptr(b, 0, b_x, b_y);
if (rp->pack) {
for (unsigned x = 0; x < w; x += 8) {
uint8_t d = 0;
int max_b = MPMIN(8, w - x);
for (int bp = 0; bp < max_b; bp++)
d |= (rp->comp_lut[pb[x + bp]]) << (7 - bp);
pa[x / 8] = d;
}
} else {
for (unsigned x = 0; x < w; x += 8) {
uint8_t d = pa[x / 8];
int max_b = MPMIN(8, w - x);
for (int bp = 0; bp < max_b; bp++)
pb[x + bp] = rp->comp_lut[d & (1 << (7 - bp))];
}
}
}
static void setup_misc_packer(struct mp_repack *rp)
{
if (rp->imgfmt_a == IMGFMT_PAL8 && !rp->pack) {
int grap_fmt = find_gbrp_format(8, 4);
if (!grap_fmt)
return;
rp->imgfmt_b = grap_fmt;
rp->repack = unpack_pal;
} else {
enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a);
if (avfmt == AV_PIX_FMT_MONOWHITE || avfmt == AV_PIX_FMT_MONOBLACK) {
rp->comp_lut = talloc_array(rp, uint8_t, 256);
rp->imgfmt_b = IMGFMT_Y1;
int max = 1;
if (rp->flags & REPACK_CREATE_EXPAND_8BIT) {
rp->imgfmt_b = IMGFMT_Y8;
max = 255;
}
bool inv = avfmt == AV_PIX_FMT_MONOWHITE;
for (int n = 0; n < 256; n++) {
rp->comp_lut[n] = rp->pack ? (inv ^ (n >= (max + 1) / 2))
: ((inv ^ !!n) ? max : 0);
}
rp->repack = bitmap_repack;
return;
}
}
}
#define PA_P422(name, comp_t) \
static void name(void *dst, void *src[], int w, uint8_t *c) { \
for (int x = 0; x < w; x += 2) { \
((comp_t *)dst)[x * 2 + c[0]] = ((comp_t *)src[0])[x + 0]; \
((comp_t *)dst)[x * 2 + c[1]] = ((comp_t *)src[0])[x + 1]; \
((comp_t *)dst)[x * 2 + c[4]] = ((comp_t *)src[1])[x >> 1]; \
((comp_t *)dst)[x * 2 + c[5]] = ((comp_t *)src[2])[x >> 1]; \
} \
}
#define UN_P422(name, comp_t) \
static void name(void *src, void *dst[], int w, uint8_t *c) { \
for (int x = 0; x < w; x += 2) { \
((comp_t *)dst[0])[x + 0] = ((comp_t *)src)[x * 2 + c[0]]; \
((comp_t *)dst[0])[x + 1] = ((comp_t *)src)[x * 2 + c[1]]; \
((comp_t *)dst[1])[x >> 1] = ((comp_t *)src)[x * 2 + c[4]]; \
((comp_t *)dst[2])[x >> 1] = ((comp_t *)src)[x * 2 + c[5]]; \
} \
}
PA_P422(pa_p422_8, uint8_t)
PA_P422(pa_p422_16, uint16_t)
UN_P422(un_p422_8, uint8_t)
UN_P422(un_p422_16, uint16_t)
static void pa_p411_8(void *dst, void *src[], int w, uint8_t *c)
{
for (int x = 0; x < w; x += 4) {
((uint8_t *)dst)[x / 4 * 6 + c[0]] = ((uint8_t *)src[0])[x + 0];
((uint8_t *)dst)[x / 4 * 6 + c[1]] = ((uint8_t *)src[0])[x + 1];
((uint8_t *)dst)[x / 4 * 6 + c[2]] = ((uint8_t *)src[0])[x + 2];
((uint8_t *)dst)[x / 4 * 6 + c[3]] = ((uint8_t *)src[0])[x + 3];
((uint8_t *)dst)[x / 4 * 6 + c[4]] = ((uint8_t *)src[1])[x >> 2];
((uint8_t *)dst)[x / 4 * 6 + c[5]] = ((uint8_t *)src[2])[x >> 2];
}
}
static void un_p411_8(void *src, void *dst[], int w, uint8_t *c)
{
for (int x = 0; x < w; x += 4) {
((uint8_t *)dst[0])[x + 0] = ((uint8_t *)src)[x / 4 * 6 + c[0]];
((uint8_t *)dst[0])[x + 1] = ((uint8_t *)src)[x / 4 * 6 + c[1]];
((uint8_t *)dst[0])[x + 2] = ((uint8_t *)src)[x / 4 * 6 + c[2]];
((uint8_t *)dst[0])[x + 3] = ((uint8_t *)src)[x / 4 * 6 + c[3]];
((uint8_t *)dst[1])[x >> 2] = ((uint8_t *)src)[x / 4 * 6 + c[4]];
((uint8_t *)dst[2])[x >> 2] = ((uint8_t *)src)[x / 4 * 6 + c[5]];
}
}
static void fringe_yuv_repack(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
void *pb[4] = {0};
for (int p = 0; p < b->num_planes; p++)
pb[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
rp->repack_fringe_yuv(pa, pb, w, rp->comp_map);
}
static void setup_fringe_yuv_packer(struct mp_repack *rp)
{
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
if (!(desc.flags & MP_IMGFLAG_PACKED_SS_YUV) ||
mp_imgfmt_desc_get_num_comps(&desc) != 3 ||
desc.align_x > 4)
return;
uint8_t y_loc[4];
if (!mp_imgfmt_get_packed_yuv_locations(desc.id, y_loc))
return;
for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
if (!desc.comps[n].size)
continue;
if (desc.comps[n].size != desc.comps[0].size ||
desc.comps[n].pad < 0 ||
desc.comps[n].offset % desc.comps[0].size)
return;
if (n == 1 || n == 2) {
rp->comp_map[4 + (n - 1)] =
desc.comps[n].offset / desc.comps[0].size;
}
}
for (int n = 0; n < desc.align_x; n++) {
if (y_loc[n] % desc.comps[0].size)
return;
rp->comp_map[n] = y_loc[n] / desc.comps[0].size;
}
if (desc.comps[0].size == 8 && desc.align_x == 2) {
rp->repack_fringe_yuv = rp->pack ? pa_p422_8 : un_p422_8;
} else if (desc.comps[0].size == 16 && desc.align_x == 2) {
rp->repack_fringe_yuv = rp->pack ? pa_p422_16 : un_p422_16;
} else if (desc.comps[0].size == 8 && desc.align_x == 4) {
rp->repack_fringe_yuv = rp->pack ? pa_p411_8 : un_p411_8;
}
if (!rp->repack_fringe_yuv)
return;
struct mp_regular_imgfmt yuvfmt = {
.component_type = MP_COMPONENT_TYPE_UINT,
// NB: same problem with P010 and not clearing padding.
.component_size = desc.comps[0].size / 8u,
.num_planes = 3,
.planes = { {1, {1}}, {1, {2}}, {1, {3}} },
.chroma_xs = desc.chroma_xs,
.chroma_ys = 0,
};
rp->imgfmt_b = mp_find_regular_imgfmt(&yuvfmt);
rp->repack = fringe_yuv_repack;
if (desc.endian_shift) {
rp->endian_size = 1 << desc.endian_shift;
assert(rp->endian_size == 2);
}
}
static void repack_nv(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
int xs = a->fmt.chroma_xs;
uint32_t *pa = mp_image_pixel_ptr(a, 1, a_x, a_y);
void *pb[2];
for (int p = 0; p < 2; p++) {
int s = rp->components[p];
pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
}
rp->packed_repack_scanline(pa, pb, (w + (1 << xs) - 1) >> xs);
}
static void setup_nv_packer(struct mp_repack *rp)
{
struct mp_regular_imgfmt desc;
if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a))
return;
// Check for NV.
if (desc.num_planes != 2)
return;
if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
return;
if (desc.planes[1].num_components != 2)
return;
int cr0 = desc.planes[1].components[0];
int cr1 = desc.planes[1].components[1];
if (cr0 > cr1)
MPSWAP(int, cr0, cr1);
if (cr0 != 2 || cr1 != 3)
return;
// Construct equivalent planar format.
struct mp_regular_imgfmt desc2 = desc;
desc2.num_planes = 3;
desc2.planes[1].num_components = 1;
desc2.planes[1].components[0] = 2;
desc2.planes[2].num_components = 1;
desc2.planes[2].components[0] = 3;
// For P010. Strangely this concept exists only for the NV format.
if (desc2.component_pad > 0)
desc2.component_pad = 0;
int planar_fmt = mp_find_regular_imgfmt(&desc2);
if (!planar_fmt)
return;
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
const struct regular_repacker *pa = &regular_repackers[i];
void (*repack_cb)(void *pa, void *pb[], int w) =
rp->pack ? pa->pa_scanline : pa->un_scanline;
if (pa->packed_width != desc.component_size * 2 * 8 ||
pa->component_width != desc.component_size * 8 ||
pa->num_components != 2 ||
pa->prepadding != 0 ||
!repack_cb)
continue;
rp->repack = repack_nv;
rp->passthrough_y = true;
rp->packed_repack_scanline = repack_cb;
rp->imgfmt_b = planar_fmt;
rp->components[0] = desc.planes[1].components[0] - 1;
rp->components[1] = desc.planes[1].components[1] - 1;
return;
}
}
#define PA_F32(name, packed_t) \
static void name(void *dst, float *src, int w, float m, float o, \
uint32_t p_max) { \
for (int x = 0; x < w; x++) { \
((packed_t *)dst)[x] = \
MPCLAMP(lrint((src[x] + o) * m), 0, (packed_t)p_max); \
} \
}
#define UN_F32(name, packed_t) \
static void name(void *src, float *dst, int w, float m, float o, \
uint32_t unused) { \
for (int x = 0; x < w; x++) \
dst[x] = ((packed_t *)src)[x] * m + o; \
}
PA_F32(pa_f32_8, uint8_t)
UN_F32(un_f32_8, uint8_t)
PA_F32(pa_f32_16, uint16_t)
UN_F32(un_f32_16, uint16_t)
// In all this, float counts as "unpacked".
static void repack_float(struct mp_repack *rp,
struct mp_image *a, int a_x, int a_y,
struct mp_image *b, int b_x, int b_y, int w)
{
assert(rp->f32_comp_size == 1 || rp->f32_comp_size == 2);
void (*packer)(void *a, float *b, int w, float fm, float fb, uint32_t max)
= rp->pack ? (rp->f32_comp_size == 1 ? pa_f32_8 : pa_f32_16)
: (rp->f32_comp_size == 1 ? un_f32_8 : un_f32_16);
for (int p = 0; p < b->num_planes; p++) {
int h = (1 << b->fmt.chroma_ys) - (1 << b->fmt.ys[p]) + 1;
for (int y = 0; y < h; y++) {
void *pa = mp_image_pixel_ptr_ny(a, p, a_x, a_y + y);
void *pb = mp_image_pixel_ptr_ny(b, p, b_x, b_y + y);
packer(pa, pb, w >> b->fmt.xs[p], rp->f32_m[p], rp->f32_o[p],
rp->f32_pmax[p]);
}
}
}
static void update_repack_float(struct mp_repack *rp)
{
if (!rp->f32_comp_size)
return;
// Image in input format.
struct mp_image *ui = rp->pack ? rp->steps[rp->num_steps - 1].buf[1]
: rp->steps[0].buf[0];
enum mp_csp csp = ui->params.color.space;
enum mp_csp_levels levels = ui->params.color.levels;
if (rp->f32_csp_space == csp && rp->f32_csp_levels == levels)
return;
// The fixed point format.
struct mp_regular_imgfmt desc = {0};
mp_get_regular_imgfmt(&desc, rp->imgfmt_b);
assert(desc.component_size);
int comp_bits = desc.component_size * 8 + MPMIN(desc.component_pad, 0);
for (int p = 0; p < desc.num_planes; p++) {
double m, o;
mp_get_csp_uint_mul(csp, levels, comp_bits, desc.planes[p].components[0],
&m, &o);
rp->f32_m[p] = rp->pack ? 1.0 / m : m;
rp->f32_o[p] = rp->pack ? -o : o;
rp->f32_pmax[p] = (1u << comp_bits) - 1;
}
rp->f32_csp_space = csp;
rp->f32_csp_levels = levels;
}
void repack_line(struct mp_repack *rp, int dst_x, int dst_y,
int src_x, int src_y, int w)
{
assert(rp->configured);
struct repack_step *first = &rp->steps[0];
struct repack_step *last = &rp->steps[rp->num_steps - 1];
assert(dst_x >= 0 && dst_y >= 0 && src_x >= 0 && src_y >= 0 && w >= 0);
assert(dst_x + w <= MP_ALIGN_UP(last->buf[1]->w, last->fmt[1].align_x));
assert(src_x + w <= MP_ALIGN_UP(first->buf[0]->w, first->fmt[0].align_x));
assert(dst_y < last->buf[1]->h);
assert(src_y < first->buf[0]->h);
assert(!(dst_x & (last->fmt[1].align_x - 1)));
assert(!(src_x & (first->fmt[0].align_x - 1)));
assert(!(w & ((1 << first->fmt[0].chroma_xs) - 1)));
assert(!(dst_y & (last->fmt[1].align_y - 1)));
assert(!(src_y & (first->fmt[0].align_y - 1)));
for (int n = 0; n < rp->num_steps; n++) {
struct repack_step *rs = &rp->steps[n];
// When writing to temporary buffers, always write to the start (maybe
// helps with locality).
int sx = rs->user_buf[0] ? src_x : 0;
int sy = rs->user_buf[0] ? src_y : 0;
int dx = rs->user_buf[1] ? dst_x : 0;
int dy = rs->user_buf[1] ? dst_y : 0;
struct mp_image *buf_a = rs->buf[rp->pack];
struct mp_image *buf_b = rs->buf[!rp->pack];
int a_x = rp->pack ? dx : sx;
int a_y = rp->pack ? dy : sy;
int b_x = rp->pack ? sx : dx;
int b_y = rp->pack ? sy : dy;
switch (rs->type) {
case REPACK_STEP_REPACK: {
if (rp->repack)
rp->repack(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w);
for (int p = 0; p < rs->fmt[0].num_planes; p++) {
if (rp->copy_buf[p])
copy_plane(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w, p);
}
break;
}
case REPACK_STEP_ENDIAN:
swap_endian(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w,
rp->endian_size);
break;
case REPACK_STEP_FLOAT:
repack_float(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w);
break;
}
}
}
static bool setup_format_ne(struct mp_repack *rp)
{
if (!rp->imgfmt_b)
setup_nv_packer(rp);
if (!rp->imgfmt_b)
setup_misc_packer(rp);
if (!rp->imgfmt_b)
setup_packed_packer(rp);
if (!rp->imgfmt_b)
setup_fringe_rgb_packer(rp);
if (!rp->imgfmt_b)
setup_fringe_yuv_packer(rp);
if (!rp->imgfmt_b)
rp->imgfmt_b = rp->imgfmt_a; // maybe it was planar after all
struct mp_regular_imgfmt desc;
if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_b))
return false;
// no weird stuff
if (desc.num_planes > 4)
return false;
// Endian swapping.
if (rp->imgfmt_a != rp->imgfmt_user &&
rp->imgfmt_a == mp_find_other_endian(rp->imgfmt_user))
{
struct mp_imgfmt_desc desc_a = mp_imgfmt_get_desc(rp->imgfmt_a);
struct mp_imgfmt_desc desc_u = mp_imgfmt_get_desc(rp->imgfmt_user);
rp->endian_size = 1 << desc_u.endian_shift;
if (!desc_a.endian_shift && rp->endian_size != 2 && rp->endian_size != 4)
return false;
}
// Accept only true planar formats (with known components and no padding).
for (int n = 0; n < desc.num_planes; n++) {
if (desc.planes[n].num_components != 1)
return false;
int c = desc.planes[n].components[0];
if (c < 1 || c > 4)
return false;
}
rp->fmt_a = mp_imgfmt_get_desc(rp->imgfmt_a);
rp->fmt_b = mp_imgfmt_get_desc(rp->imgfmt_b);
// This is if we did a pack step.
if (rp->flags & REPACK_CREATE_PLANAR_F32) {
// imgfmt_b with float32 component type.
struct mp_regular_imgfmt fdesc = desc;
fdesc.component_type = MP_COMPONENT_TYPE_FLOAT;
fdesc.component_size = 4;
fdesc.component_pad = 0;
int ffmt = mp_find_regular_imgfmt(&fdesc);
if (!ffmt)
return false;
if (ffmt != rp->imgfmt_b) {
if (desc.component_type != MP_COMPONENT_TYPE_UINT ||
(desc.component_size != 1 && desc.component_size != 2))
return false;
rp->f32_comp_size = desc.component_size;
rp->f32_csp_space = MP_CSP_COUNT;
rp->f32_csp_levels = MP_CSP_LEVELS_COUNT;
rp->steps[rp->num_steps++] = (struct repack_step) {
.type = REPACK_STEP_FLOAT,
.fmt = {
mp_imgfmt_get_desc(ffmt),
rp->fmt_b,
},
};
}
}
rp->steps[rp->num_steps++] = (struct repack_step) {
.type = REPACK_STEP_REPACK,
.fmt = { rp->fmt_b, rp->fmt_a },
};
if (rp->endian_size) {
rp->steps[rp->num_steps++] = (struct repack_step) {
.type = REPACK_STEP_ENDIAN,
.fmt = {
rp->fmt_a,
mp_imgfmt_get_desc(rp->imgfmt_user),
},
};
}
// Reverse if unpack (to reflect actual data flow)
if (!rp->pack) {
for (int n = 0; n < rp->num_steps / 2; n++) {
MPSWAP(struct repack_step, rp->steps[n],
rp->steps[rp->num_steps - 1 - n]);
}
for (int n = 0; n < rp->num_steps; n++) {
struct repack_step *rs = &rp->steps[n];
MPSWAP(struct mp_imgfmt_desc, rs->fmt[0], rs->fmt[1]);
}
}
for (int n = 0; n < rp->num_steps - 1; n++)
assert(rp->steps[n].fmt[1].id == rp->steps[n + 1].fmt[0].id);
return true;
}
static void reset_params(struct mp_repack *rp)
{
rp->num_steps = 0;
rp->imgfmt_b = 0;
rp->repack = NULL;
rp->passthrough_y = false;
rp->endian_size = 0;
rp->packed_repack_scanline = NULL;
rp->comp_size = 0;
talloc_free(rp->comp_lut);
rp->comp_lut = NULL;
}
static bool setup_format(struct mp_repack *rp)
{
reset_params(rp);
rp->imgfmt_a = rp->imgfmt_user;
if (setup_format_ne(rp))
return true;
// Try reverse endian.
reset_params(rp);
rp->imgfmt_a = mp_find_other_endian(rp->imgfmt_user);
return rp->imgfmt_a && setup_format_ne(rp);
}
struct mp_repack *mp_repack_create_planar(int imgfmt, bool pack, int flags)
{
struct mp_repack *rp = talloc_zero(NULL, struct mp_repack);
rp->imgfmt_user = imgfmt;
rp->pack = pack;
rp->flags = flags;
if (!setup_format(rp)) {
talloc_free(rp);
return NULL;
}
return rp;
}
int mp_repack_get_format_src(struct mp_repack *rp)
{
return rp->steps[0].fmt[0].id;
}
int mp_repack_get_format_dst(struct mp_repack *rp)
{
return rp->steps[rp->num_steps - 1].fmt[1].id;
}
int mp_repack_get_align_x(struct mp_repack *rp)
{
// We really want the LCM between those, but since only one of them is
// packed (or they're the same format), and the chroma subsampling is the
// same for both, only the packed one matters.
return rp->fmt_a.align_x;
}
int mp_repack_get_align_y(struct mp_repack *rp)
{
return rp->fmt_a.align_y; // should be the same for packed/planar formats
}
static void image_realloc(struct mp_image **img, int fmt, int w, int h)
{
if (*img && (*img)->imgfmt == fmt && (*img)->w == w && (*img)->h == h)
return;
talloc_free(*img);
*img = mp_image_alloc(fmt, w, h);
}
bool repack_config_buffers(struct mp_repack *rp,
int dst_flags, struct mp_image *dst,
int src_flags, struct mp_image *src,
bool *enable_passthrough)
{
struct repack_step *rs_first = &rp->steps[0];
struct repack_step *rs_last = &rp->steps[rp->num_steps - 1];
rp->configured = false;
assert(dst && src);
int buf_w = MPMAX(dst->w, src->w);
assert(dst->imgfmt == rs_last->fmt[1].id);
assert(src->imgfmt == rs_first->fmt[0].id);
// Chain/allocate buffers.
for (int n = 0; n < rp->num_steps; n++)
rp->steps[n].buf[0] = rp->steps[n].buf[1] = NULL;
rs_first->buf[0] = src;
rs_last->buf[1] = dst;
for (int n = 0; n < rp->num_steps; n++) {
struct repack_step *rs = &rp->steps[n];
if (!rs->buf[0]) {
assert(n > 0);
rs->buf[0] = rp->steps[n - 1].buf[1];
}
if (rs->buf[1])
continue;
// Note: since repack_line() can have different src/dst offsets, we
// can't do true in-place in general.
bool can_inplace = rs->type == REPACK_STEP_ENDIAN &&
rs->buf[0] != src && rs->buf[0] != dst;
if (can_inplace) {
rs->buf[1] = rs->buf[0];
continue;
}
if (rs != rs_last) {
struct repack_step *next = &rp->steps[n + 1];
if (next->buf[0]) {
rs->buf[1] = next->buf[0];
continue;
}
}
image_realloc(&rs->tmp, rs->fmt[1].id, buf_w, rs->fmt[1].align_y);
if (!rs->tmp)
return false;
talloc_steal(rp, rs->tmp);
rs->buf[1] = rs->tmp;
}
for (int n = 0; n < rp->num_steps; n++) {
struct repack_step *rs = &rp->steps[n];
rs->user_buf[0] = rs->buf[0] == src || rs->buf[0] == dst;
rs->user_buf[1] = rs->buf[1] == src || rs->buf[1] == dst;
}
// If repacking is the only operation. It's also responsible for simply
// copying src to dst if absolutely no filtering is done.
bool may_passthrough =
rp->num_steps == 1 && rp->steps[0].type == REPACK_STEP_REPACK;
for (int p = 0; p < rp->fmt_b.num_planes; p++) {
// (All repack callbacks copy, except nv12 does not copy luma.)
bool repack_copies_plane = rp->repack && !(rp->passthrough_y && p == 0);
bool can_pt = may_passthrough && !repack_copies_plane &&
enable_passthrough && enable_passthrough[p];
// Copy if needed, unless the repack callback does it anyway.
rp->copy_buf[p] = !repack_copies_plane && !can_pt;
if (enable_passthrough)
enable_passthrough[p] = can_pt && !rp->copy_buf[p];
}
if (enable_passthrough) {
for (int n = rp->fmt_b.num_planes; n < MP_MAX_PLANES; n++)
enable_passthrough[n] = false;
}
update_repack_float(rp);
rp->configured = true;
return true;
}