1
0
mirror of https://github.com/mpv-player/mpv synced 2025-01-10 00:49:32 +00:00
mpv/video/out/placebo/ra_pl.c
Niklas Haas 6265724f33 vo_gpu: placebo: keep track of texture sample mode
This fixes an issue where dithering was effectively broken on libplacebo
versions >= 103 because the dither texture was being sampled with
edge-clamped rather than repeating semantics.
2021-03-21 17:18:20 +01:00

751 lines
24 KiB
C

#include "common/common.h"
#include "common/msg.h"
#include "ra_pl.h"
#include "utils.h"
struct ra_pl {
const struct pl_gpu *gpu;
struct ra_timer_pl *active_timer;
};
static inline const struct pl_gpu *get_gpu(const struct ra *ra)
{
struct ra_pl *p = ra->priv;
return p->gpu;
}
static struct ra_fns ra_fns_pl;
const struct pl_gpu *ra_pl_get(const struct ra *ra)
{
return ra->fns == &ra_fns_pl ? get_gpu(ra) : NULL;
}
static struct pl_timer *get_active_timer(const struct ra *ra);
struct ra *ra_create_pl(const struct pl_gpu *gpu, struct mp_log *log)
{
assert(gpu);
struct ra *ra = talloc_zero(NULL, struct ra);
ra->log = log;
ra->fns = &ra_fns_pl;
struct ra_pl *p = ra->priv = talloc_zero(ra, struct ra_pl);
p->gpu = gpu;
ra->glsl_version = gpu->glsl.version;
ra->glsl_vulkan = gpu->glsl.vulkan;
ra->glsl_es = gpu->glsl.gles;
ra->caps = RA_CAP_DIRECT_UPLOAD | RA_CAP_NESTED_ARRAY | RA_CAP_FRAGCOORD;
if (gpu->caps & PL_GPU_CAP_COMPUTE)
ra->caps |= RA_CAP_COMPUTE | RA_CAP_NUM_GROUPS;
if (gpu->caps & PL_GPU_CAP_PARALLEL_COMPUTE)
ra->caps |= RA_CAP_PARALLEL_COMPUTE;
if (gpu->caps & PL_GPU_CAP_INPUT_VARIABLES)
ra->caps |= RA_CAP_GLOBAL_UNIFORM;
if (gpu->limits.max_tex_1d_dim)
ra->caps |= RA_CAP_TEX_1D;
if (gpu->limits.max_tex_3d_dim)
ra->caps |= RA_CAP_TEX_3D;
if (gpu->limits.max_ubo_size)
ra->caps |= RA_CAP_BUF_RO;
if (gpu->limits.max_ssbo_size)
ra->caps |= RA_CAP_BUF_RW;
if (gpu->limits.min_gather_offset && gpu->limits.max_gather_offset)
ra->caps |= RA_CAP_GATHER;
// Semi-hack: assume all textures are blittable if r8 is
const struct pl_fmt *r8 = pl_find_named_fmt(gpu, "r8");
if (r8->caps & PL_FMT_CAP_BLITTABLE)
ra->caps |= RA_CAP_BLIT;
ra->max_texture_wh = gpu->limits.max_tex_2d_dim;
ra->max_shmem = gpu->limits.max_shmem_size;
ra->max_pushc_size = gpu->limits.max_pushc_size;
// Set up format wrappers
for (int i = 0; i < gpu->num_formats; i++) {
const struct pl_fmt *plfmt = gpu->formats[i];
static const enum ra_ctype fmt_type_map[PL_FMT_TYPE_COUNT] = {
[PL_FMT_UNORM] = RA_CTYPE_UNORM,
[PL_FMT_UINT] = RA_CTYPE_UINT,
[PL_FMT_FLOAT] = RA_CTYPE_FLOAT,
};
enum ra_ctype type = fmt_type_map[plfmt->type];
if (!type || !(plfmt->caps & PL_FMT_CAP_SAMPLEABLE))
continue;
struct ra_format *rafmt = talloc_zero(ra, struct ra_format);
*rafmt = (struct ra_format) {
.name = plfmt->name,
.priv = (void *) plfmt,
.ctype = type,
.ordered = pl_fmt_is_ordered(plfmt),
.num_components = plfmt->num_components,
.pixel_size = plfmt->texel_size,
.linear_filter = plfmt->caps & PL_FMT_CAP_LINEAR,
.renderable = plfmt->caps & PL_FMT_CAP_RENDERABLE,
.storable = plfmt->caps & PL_FMT_CAP_STORABLE,
.glsl_format = plfmt->glsl_format,
};
for (int c = 0; c < plfmt->num_components; c++) {
rafmt->component_size[c] = plfmt->host_bits[c];
rafmt->component_depth[c] = plfmt->component_depth[c];
}
MP_TARRAY_APPEND(ra, ra->formats, ra->num_formats, rafmt);
}
return ra;
}
static void destroy_ra_pl(struct ra *ra)
{
talloc_free(ra);
}
static struct ra_format *map_fmt(struct ra *ra, const struct pl_fmt *plfmt)
{
for (int i = 0; i < ra->num_formats; i++) {
if (ra->formats[i]->priv == plfmt)
return ra->formats[i];
}
MP_ERR(ra, "Failed mapping pl_fmt '%s' to ra_fmt?\n", plfmt->name);
return NULL;
}
bool mppl_wrap_tex(struct ra *ra, const struct pl_tex *pltex,
struct ra_tex *out_tex)
{
if (!pltex)
return false;
*out_tex = (struct ra_tex) {
.params = {
.dimensions = pl_tex_params_dimension(pltex->params),
.w = pltex->params.w,
.h = pltex->params.h,
.d = pltex->params.d,
.format = map_fmt(ra, pltex->params.format),
.render_src = pltex->params.sampleable,
.render_dst = pltex->params.renderable,
.storage_dst = pltex->params.storable,
.blit_src = pltex->params.blit_src,
.blit_dst = pltex->params.blit_dst,
.host_mutable = pltex->params.host_writable,
.downloadable = pltex->params.host_readable,
#if PL_API_VER >= 103
// These don't exist upstream, so just pick something reasonable
.src_linear = pltex->params.format->caps & PL_FMT_CAP_LINEAR,
.src_repeat = false,
#else
.src_linear = pltex->params.sample_mode == PL_TEX_SAMPLE_LINEAR,
.src_repeat = pltex->params.address_mode == PL_TEX_ADDRESS_REPEAT,
#endif
},
.priv = (void *) pltex,
};
return !!out_tex->params.format;
}
static struct ra_tex *tex_create_pl(struct ra *ra,
const struct ra_tex_params *params)
{
const struct pl_gpu *gpu = get_gpu(ra);
const struct pl_tex *pltex = pl_tex_create(gpu, &(struct pl_tex_params) {
.w = params->w,
.h = params->dimensions >= 2 ? params->h : 0,
.d = params->dimensions >= 3 ? params->d : 0,
.format = params->format->priv,
.sampleable = params->render_src,
.renderable = params->render_dst,
.storable = params->storage_dst,
.blit_src = params->blit_src,
.blit_dst = params->blit_dst || params->render_dst,
.host_writable = params->host_mutable,
.host_readable = params->downloadable,
#if PL_API_VER < 103
.sample_mode = params->src_linear ? PL_TEX_SAMPLE_LINEAR
: PL_TEX_SAMPLE_NEAREST,
.address_mode = params->src_repeat ? PL_TEX_ADDRESS_REPEAT
: PL_TEX_ADDRESS_CLAMP,
#endif
.initial_data = params->initial_data,
});
struct ra_tex *ratex = talloc_ptrtype(NULL, ratex);
if (!mppl_wrap_tex(ra, pltex, ratex)) {
pl_tex_destroy(gpu, &pltex);
talloc_free(ratex);
return NULL;
}
// Keep track of these, so we can correctly bind them later
ratex->params.src_repeat = params->src_repeat;
ratex->params.src_linear = params->src_linear;
return ratex;
}
static void tex_destroy_pl(struct ra *ra, struct ra_tex *tex)
{
if (!tex)
return;
pl_tex_destroy(get_gpu(ra), (const struct pl_tex **) &tex->priv);
talloc_free(tex);
}
static bool tex_upload_pl(struct ra *ra, const struct ra_tex_upload_params *params)
{
const struct pl_gpu *gpu = get_gpu(ra);
const struct pl_tex *tex = params->tex->priv;
struct pl_tex_transfer_params pl_params = {
.tex = tex,
.buf = params->buf ? params->buf->priv : NULL,
.buf_offset = params->buf_offset,
.ptr = (void *) params->src,
.timer = get_active_timer(ra),
};
const struct pl_buf *staging = NULL;
if (params->tex->params.dimensions == 2) {
size_t texel_size = tex->params.format->texel_size;
pl_params.stride_w = params->stride / texel_size;
size_t stride = pl_params.stride_w * texel_size;
int lines = tex->params.h;
if (params->rc) {
pl_params.rc = (struct pl_rect3d) {
.x0 = params->rc->x0, .x1 = params->rc->x1,
.y0 = params->rc->y0, .y1 = params->rc->y1,
};
lines = pl_rect_h(pl_params.rc);
}
if (stride != params->stride) {
// Fall back to uploading via a staging buffer prepared in CPU
staging = pl_buf_create(gpu, &(struct pl_buf_params) {
.type = PL_BUF_TEX_TRANSFER,
.size = lines * stride,
.memory_type = PL_BUF_MEM_HOST,
.host_mapped = true,
});
if (!staging)
return false;
const uint8_t *src = params->buf ? params->buf->data : params->src;
assert(src);
for (int y = 0; y < lines; y++)
memcpy(staging->data + y * stride, src + y * params->stride, stride);
pl_params.ptr = NULL;
pl_params.buf = staging;
pl_params.buf_offset = 0;
}
}
bool ok = pl_tex_upload(gpu, &pl_params);
pl_buf_destroy(gpu, &staging);
return ok;
}
static bool tex_download_pl(struct ra *ra, struct ra_tex_download_params *params)
{
const struct pl_tex *tex = params->tex->priv;
size_t texel_size = tex->params.format->texel_size;
struct pl_tex_transfer_params pl_params = {
.tex = tex,
.ptr = params->dst,
.stride_w = params->stride / texel_size,
.timer = get_active_timer(ra),
};
uint8_t *staging = NULL;
size_t stride = pl_params.stride_w * texel_size;
if (stride != params->stride) {
staging = talloc_size(NULL, tex->params.h * stride);
pl_params.ptr = staging;
}
bool ok = pl_tex_download(get_gpu(ra), &pl_params);
if (ok && staging) {
for (int y = 0; y < tex->params.h; y++) {
memcpy((uint8_t *) params->dst + y * params->stride,
staging + y * stride,
stride);
}
}
talloc_free(staging);
return ok;
}
static struct ra_buf *buf_create_pl(struct ra *ra,
const struct ra_buf_params *params)
{
static const enum pl_buf_type buf_type[] = {
[RA_BUF_TYPE_TEX_UPLOAD] = PL_BUF_TEX_TRANSFER,
[RA_BUF_TYPE_SHADER_STORAGE] = PL_BUF_STORAGE,
[RA_BUF_TYPE_UNIFORM] = PL_BUF_UNIFORM,
[RA_BUF_TYPE_SHARED_MEMORY] = 0,
};
const struct pl_buf *plbuf = pl_buf_create(get_gpu(ra), &(struct pl_buf_params) {
.type = buf_type[params->type],
.size = params->size,
.host_mapped = params->host_mapped,
.host_writable = params->host_mutable,
.initial_data = params->initial_data,
});
if (!plbuf)
return NULL;
struct ra_buf *rabuf = talloc_ptrtype(NULL, rabuf);
*rabuf = (struct ra_buf) {
.params = *params,
.data = plbuf->data,
.priv = (void *) plbuf,
};
rabuf->params.initial_data = NULL;
return rabuf;
}
static void buf_destroy_pl(struct ra *ra, struct ra_buf *buf)
{
if (!buf)
return;
pl_buf_destroy(get_gpu(ra), (const struct pl_buf **) &buf->priv);
talloc_free(buf);
}
static void buf_update_pl(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset,
const void *data, size_t size)
{
pl_buf_write(get_gpu(ra), buf->priv, offset, data, size);
}
static bool buf_poll_pl(struct ra *ra, struct ra_buf *buf)
{
return !pl_buf_poll(get_gpu(ra), buf->priv, 0);
}
static void clear_pl(struct ra *ra, struct ra_tex *dst, float color[4],
struct mp_rect *scissor)
{
// TODO: implement scissor clearing by bltting a 1x1 tex instead
pl_tex_clear(get_gpu(ra), dst->priv, color);
}
static void blit_pl(struct ra *ra, struct ra_tex *dst, struct ra_tex *src,
struct mp_rect *dst_rc, struct mp_rect *src_rc)
{
struct pl_rect3d plsrc = {0}, pldst = {0};
if (src_rc) {
plsrc.x0 = MPMIN(MPMAX(src_rc->x0, 0), src->params.w);
plsrc.y0 = MPMIN(MPMAX(src_rc->y0, 0), src->params.h);
plsrc.x1 = MPMIN(MPMAX(src_rc->x1, 0), src->params.w);
plsrc.y1 = MPMIN(MPMAX(src_rc->y1, 0), src->params.h);
}
if (dst_rc) {
pldst.x0 = MPMIN(MPMAX(dst_rc->x0, 0), dst->params.w);
pldst.y0 = MPMIN(MPMAX(dst_rc->y0, 0), dst->params.h);
pldst.x1 = MPMIN(MPMAX(dst_rc->x1, 0), dst->params.w);
pldst.y1 = MPMIN(MPMAX(dst_rc->y1, 0), dst->params.h);
}
#if PL_API_VER >= 103
pl_tex_blit(get_gpu(ra), &(struct pl_tex_blit_params) {
.src = src->priv,
.dst = dst->priv,
.src_rc = plsrc,
.dst_rc = pldst,
.sample_mode = src->params.src_linear ? PL_TEX_SAMPLE_LINEAR
: PL_TEX_SAMPLE_NEAREST,
});
#else
pl_tex_blit(get_gpu(ra), dst->priv, src->priv, pldst, plsrc);
#endif
}
static const enum pl_var_type var_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = PL_VAR_SINT,
[RA_VARTYPE_FLOAT] = PL_VAR_FLOAT,
};
static const enum pl_desc_type desc_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_TEX] = PL_DESC_SAMPLED_TEX,
[RA_VARTYPE_IMG_W] = PL_DESC_STORAGE_IMG,
[RA_VARTYPE_BUF_RO] = PL_DESC_BUF_UNIFORM,
[RA_VARTYPE_BUF_RW] = PL_DESC_BUF_STORAGE,
};
static const enum pl_fmt_type fmt_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = PL_FMT_SINT,
[RA_VARTYPE_FLOAT] = PL_FMT_FLOAT,
[RA_VARTYPE_BYTE_UNORM] = PL_FMT_UNORM,
};
static const size_t var_size[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = sizeof(int),
[RA_VARTYPE_FLOAT] = sizeof(float),
[RA_VARTYPE_BYTE_UNORM] = sizeof(uint8_t),
};
static struct ra_layout uniform_layout_pl(struct ra_renderpass_input *inp)
{
// To get the alignment requirements, we try laying this out with
// an offset of 1 and then see where it ends up. This will always be
// the minimum alignment requirement.
struct pl_var_layout layout = pl_buf_uniform_layout(1, &(struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
return (struct ra_layout) {
.align = layout.offset,
.stride = layout.stride,
.size = layout.size,
};
}
static struct ra_layout push_constant_layout_pl(struct ra_renderpass_input *inp)
{
struct pl_var_layout layout = pl_push_constant_layout(1, &(struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
return (struct ra_layout) {
.align = layout.offset,
.stride = layout.stride,
.size = layout.size,
};
}
static int desc_namespace_pl(struct ra *ra, enum ra_vartype type)
{
return pl_desc_namespace(get_gpu(ra), desc_type[type]);
}
struct pass_priv {
const struct pl_pass *pl_pass;
uint16_t *inp_index; // index translation map
// Space to hold the descriptor bindings and variable updates
struct pl_desc_binding *binds;
struct pl_var_update *varups;
int num_varups;
};
static struct ra_renderpass *renderpass_create_pl(struct ra *ra,
const struct ra_renderpass_params *params)
{
void *tmp = talloc_new(NULL);
const struct pl_gpu *gpu = get_gpu(ra);
struct ra_renderpass *pass = NULL;
static const enum pl_pass_type pass_type[] = {
[RA_RENDERPASS_TYPE_RASTER] = PL_PASS_RASTER,
[RA_RENDERPASS_TYPE_COMPUTE] = PL_PASS_COMPUTE,
};
struct pl_var *vars = NULL;
struct pl_desc *descs = NULL;
int num_vars = 0, num_descs = 0;
struct pass_priv *priv = talloc_ptrtype(tmp, priv);
priv->inp_index = talloc_zero_array(priv, uint16_t, params->num_inputs);
for (int i = 0; i < params->num_inputs; i++) {
const struct ra_renderpass_input *inp = &params->inputs[i];
if (var_type[inp->type]) {
priv->inp_index[i] = num_vars;
MP_TARRAY_APPEND(tmp, vars, num_vars, (struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
} else if (desc_type[inp->type]) {
priv->inp_index[i] = num_descs;
MP_TARRAY_APPEND(tmp, descs, num_descs, (struct pl_desc) {
.name = inp->name,
.type = desc_type[inp->type],
.binding = inp->binding,
.access = inp->type == RA_VARTYPE_IMG_W ? PL_DESC_ACCESS_WRITEONLY
: inp->type == RA_VARTYPE_BUF_RW ? PL_DESC_ACCESS_READWRITE
: PL_DESC_ACCESS_READONLY,
});
}
}
// Allocate space to store the bindings map persistently
priv->binds = talloc_zero_array(priv, struct pl_desc_binding, num_descs);
struct pl_pass_params pl_params = {
.type = pass_type[params->type],
.variables = vars,
.num_variables = num_vars,
.descriptors = descs,
.num_descriptors = num_descs,
.push_constants_size = params->push_constants_size,
.glsl_shader = params->type == RA_RENDERPASS_TYPE_COMPUTE
? params->compute_shader
: params->frag_shader,
.cached_program = params->cached_program.start,
.cached_program_len = params->cached_program.len,
};
struct pl_blend_params blend_params;
if (params->type == RA_RENDERPASS_TYPE_RASTER) {
pl_params.vertex_shader = params->vertex_shader;
pl_params.vertex_type = PL_PRIM_TRIANGLE_LIST;
pl_params.vertex_stride = params->vertex_stride;
pl_params.target_dummy.params.format = params->target_format->priv;
pl_params.load_target = !params->invalidate_target;
if (params->enable_blend) {
pl_params.blend_params = &blend_params;
blend_params = (struct pl_blend_params) {
// Same enum order as ra_blend
.src_rgb = (enum ra_blend) params->blend_src_rgb,
.dst_rgb = (enum ra_blend) params->blend_dst_rgb,
.src_alpha = (enum ra_blend) params->blend_src_alpha,
.dst_alpha = (enum ra_blend) params->blend_dst_alpha,
};
}
for (int i = 0; i < params->num_vertex_attribs; i++) {
const struct ra_renderpass_input *inp = &params->vertex_attribs[i];
struct pl_vertex_attrib attrib = {
.name = inp->name,
.offset = inp->offset,
.location = i,
.fmt = pl_find_fmt(gpu, fmt_type[inp->type], inp->dim_v, 0,
var_size[inp->type] * 8, PL_FMT_CAP_VERTEX),
};
if (!attrib.fmt) {
MP_ERR(ra, "Failed mapping vertex attrib '%s' to pl_fmt?\n",
inp->name);
goto error;
}
MP_TARRAY_APPEND(tmp, pl_params.vertex_attribs,
pl_params.num_vertex_attribs, attrib);
}
}
priv->pl_pass = pl_pass_create(gpu, &pl_params);
if (!priv->pl_pass)
goto error;
pass = talloc_ptrtype(NULL, pass);
*pass = (struct ra_renderpass) {
.params = *ra_renderpass_params_copy(pass, params),
.priv = talloc_steal(pass, priv),
};
pass->params.cached_program = (struct bstr) {
.start = (void *) priv->pl_pass->params.cached_program,
.len = priv->pl_pass->params.cached_program_len,
};
// fall through
error:
talloc_free(tmp);
return pass;
}
static void renderpass_destroy_pl(struct ra *ra, struct ra_renderpass *pass)
{
if (!pass)
return;
struct pass_priv *priv = pass->priv;
pl_pass_destroy(get_gpu(ra), (const struct pl_pass **) &priv->pl_pass);
talloc_free(pass);
}
static void renderpass_run_pl(struct ra *ra,
const struct ra_renderpass_run_params *params)
{
struct pass_priv *p = params->pass->priv;
p->num_varups = 0;
for (int i = 0; i < params->num_values; i++) {
const struct ra_renderpass_input_val *val = &params->values[i];
const struct ra_renderpass_input *inp = &params->pass->params.inputs[i];
if (var_type[inp->type]) {
MP_TARRAY_APPEND(p, p->varups, p->num_varups, (struct pl_var_update) {
.index = p->inp_index[val->index],
.data = val->data,
});
} else {
struct pl_desc_binding bind;
switch (inp->type) {
case RA_VARTYPE_TEX:
case RA_VARTYPE_IMG_W: {
struct ra_tex *tex = *((struct ra_tex **) val->data);
bind.object = tex->priv;
#if PL_API_VER >= 103
bind.sample_mode = tex->params.src_linear ? PL_TEX_SAMPLE_LINEAR
: PL_TEX_SAMPLE_NEAREST;
bind.address_mode = tex->params.src_repeat ? PL_TEX_ADDRESS_REPEAT
: PL_TEX_ADDRESS_CLAMP;
#endif
break;
}
case RA_VARTYPE_BUF_RO:
case RA_VARTYPE_BUF_RW:
bind.object = (* (struct ra_buf **) val->data)->priv;
break;
default: abort();
};
p->binds[p->inp_index[val->index]] = bind;
};
}
struct pl_pass_run_params pl_params = {
.pass = p->pl_pass,
.var_updates = p->varups,
.num_var_updates = p->num_varups,
.desc_bindings = p->binds,
.push_constants = params->push_constants,
#if PL_API_VER >= 60
.timer = get_active_timer(ra),
#endif
};
if (p->pl_pass->params.type == PL_PASS_RASTER) {
pl_params.target = params->target->priv;
pl_params.viewport = mp_rect2d_to_pl(params->viewport);
pl_params.scissors = mp_rect2d_to_pl(params->scissors);
pl_params.vertex_data = params->vertex_data;
pl_params.vertex_count = params->vertex_count;
} else {
for (int i = 0; i < MP_ARRAY_SIZE(pl_params.compute_groups); i++)
pl_params.compute_groups[i] = params->compute_groups[i];
}
pl_pass_run(get_gpu(ra), &pl_params);
}
struct ra_timer_pl {
// Because libpplacebo only supports one operation per timer, we need
// to use multiple pl_timers to sum up multiple passes/transfers
struct pl_timer **timers;
int num_timers;
int idx_timers;
};
static ra_timer *timer_create_pl(struct ra *ra)
{
struct ra_timer_pl *t = talloc_zero(ra, struct ra_timer_pl);
return t;
}
static void timer_destroy_pl(struct ra *ra, ra_timer *timer)
{
const struct pl_gpu *gpu = get_gpu(ra);
struct ra_timer_pl *t = timer;
for (int i = 0; i < t->num_timers; i++)
pl_timer_destroy(gpu, &t->timers[i]);
talloc_free(t);
}
static void timer_start_pl(struct ra *ra, ra_timer *timer)
{
struct ra_pl *p = ra->priv;
struct ra_timer_pl *t = timer;
// There's nothing easy we can do in this case, since libplacebo only
// supports one timer object per operation; so just ignore "inner" timers
// when the user is nesting different timer queries
if (p->active_timer)
return;
p->active_timer = t;
t->idx_timers = 0;
}
static uint64_t timer_stop_pl(struct ra *ra, ra_timer *timer)
{
struct ra_pl *p = ra->priv;
struct ra_timer_pl *t = timer;
if (p->active_timer != t)
return 0;
p->active_timer = NULL;
// Sum up all of the active results
uint64_t res = 0;
for (int i = 0; i < t->idx_timers; i++)
res += pl_timer_query(p->gpu, t->timers[i]);
return res;
}
static struct pl_timer *get_active_timer(const struct ra *ra)
{
struct ra_pl *p = ra->priv;
if (!p->active_timer)
return NULL;
struct ra_timer_pl *t = p->active_timer;
if (t->idx_timers == t->num_timers)
MP_TARRAY_APPEND(t, t->timers, t->num_timers, pl_timer_create(p->gpu));
return t->timers[t->idx_timers++];
}
static struct ra_fns ra_fns_pl = {
.destroy = destroy_ra_pl,
.tex_create = tex_create_pl,
.tex_destroy = tex_destroy_pl,
.tex_upload = tex_upload_pl,
.tex_download = tex_download_pl,
.buf_create = buf_create_pl,
.buf_destroy = buf_destroy_pl,
.buf_update = buf_update_pl,
.buf_poll = buf_poll_pl,
.clear = clear_pl,
.blit = blit_pl,
.uniform_layout = uniform_layout_pl,
.push_constant_layout = push_constant_layout_pl,
.desc_namespace = desc_namespace_pl,
.renderpass_create = renderpass_create_pl,
.renderpass_destroy = renderpass_destroy_pl,
.renderpass_run = renderpass_run_pl,
.timer_create = timer_create_pl,
.timer_destroy = timer_destroy_pl,
.timer_start = timer_start_pl,
.timer_stop = timer_stop_pl,
};