mirror of https://github.com/mpv-player/mpv
416 lines
12 KiB
C
416 lines
12 KiB
C
/* Experimental audio filter that mixes 5.1 and 5.1 with matrix
|
|
encoded rear channels into headphone signal using FIR filtering
|
|
with HRTF.
|
|
*/
|
|
//#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include "af.h"
|
|
#include "dsp.h"
|
|
|
|
/* HRTF filter coefficients and adjustable parameters */
|
|
#include "af_hrtf.h"
|
|
|
|
typedef struct af_hrtf_s {
|
|
/* Lengths */
|
|
int dlbuflen, hrflen, basslen;
|
|
/* L, C, R, Ls, Rs channels */
|
|
float *lf, *rf, *lr, *rr, *cf, *cr;
|
|
float *cf_ir, *af_ir, *of_ir, *ar_ir, *or_ir, *cr_ir;
|
|
int cf_o, af_o, of_o, ar_o, or_o, cr_o;
|
|
/* Bass */
|
|
float *ba_l, *ba_r;
|
|
float *ba_ir;
|
|
/* Whether to matrix decode the rear center channel */
|
|
int matrix_mode;
|
|
/* Full wave rectified amplitude used to steer the active matrix
|
|
decoding of center rear channel */
|
|
float lr_fwr, rr_fwr;
|
|
/* Cyclic position on the ring buffer */
|
|
int cyc_pos;
|
|
} af_hrtf_t;
|
|
|
|
/* Convolution on a ring buffer
|
|
* nx: length of the ring buffer
|
|
* nk: length of the convolution kernel
|
|
* sx: ring buffer
|
|
* sk: convolution kernel
|
|
* offset: offset on the ring buffer, can be
|
|
*/
|
|
static float conv(const int nx, const int nk, float *sx, float *sk,
|
|
const int offset)
|
|
{
|
|
/* k = reminder of offset / nx */
|
|
int k = offset >= 0 ? offset % nx : nx + (offset % nx);
|
|
|
|
if(nk + k <= nx)
|
|
return fir(nk, sx + k, sk);
|
|
else
|
|
return fir(nk + k - nx, sx, sk + nx - k) +
|
|
fir(nx - k, sx + k, sk);
|
|
}
|
|
|
|
/* Detect when the impulse response starts (significantly) */
|
|
int pulse_detect(float *sx)
|
|
{
|
|
/* nmax must be the reference impulse response length (128) minus
|
|
s->hrflen */
|
|
const int nmax = 128 - HRTFFILTLEN;
|
|
const float thresh = IRTHRESH;
|
|
int i;
|
|
|
|
for(i = 0; i < nmax; i++)
|
|
if(fabs(sx[i]) > thresh)
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
inline void update_ch(af_hrtf_t *s, short *in, const int k)
|
|
{
|
|
/* Update the full wave rectified total amplutude */
|
|
s->lr_fwr += abs(in[2]) - fabs(s->lr[k]);
|
|
s->rr_fwr += abs(in[3]) - fabs(s->rr[k]);
|
|
|
|
s->lf[k] = in[0];
|
|
s->cf[k] = in[4];
|
|
s->rf[k] = in[1];
|
|
s->lr[k] = in[2];
|
|
s->rr[k] = in[3];
|
|
|
|
s->ba_l[k] = in[0] + in[4] + in[2];
|
|
s->ba_r[k] = in[4] + in[1] + in[3];
|
|
}
|
|
|
|
inline void matrix_decode_cr(af_hrtf_t *s, short *in, const int k)
|
|
{
|
|
/* Active matrix decoding of the center rear channel, 1 in the
|
|
denominator is to prevent singularity */
|
|
float lr_agc = in[2] * (s->lr_fwr + s->rr_fwr) /
|
|
(1 + s->lr_fwr + s->lr_fwr);
|
|
float rr_agc = in[3] * (s->lr_fwr + s->rr_fwr) /
|
|
(1 + s->rr_fwr + s->rr_fwr);
|
|
|
|
s->cr[k] = (lr_agc + rr_agc) * M_SQRT1_2;
|
|
}
|
|
|
|
/* Initialization and runtime control */
|
|
static int control(struct af_instance_s *af, int cmd, void* arg)
|
|
{
|
|
af_hrtf_t *s = af->setup;
|
|
char mode;
|
|
|
|
switch(cmd) {
|
|
case AF_CONTROL_REINIT:
|
|
af->data->rate = ((af_data_t*)arg)->rate;
|
|
if(af->data->rate != 48000) {
|
|
// automatic samplerate adjustment in the filter chain
|
|
// is not yet supported.
|
|
af_msg(AF_MSG_ERROR,
|
|
"[hrtf] ERROR: Sampling rate is not 48000 Hz (%d)!\n",
|
|
af->data->rate);
|
|
return AF_ERROR;
|
|
}
|
|
af->data->nch = ((af_data_t*)arg)->nch;
|
|
if(af->data->nch < 5) {
|
|
af->data->nch = 5;
|
|
}
|
|
af->data->format = AF_FORMAT_SI | AF_FORMAT_NE;
|
|
af->data->bps = 2;
|
|
return af_test_output(af, (af_data_t*)arg);
|
|
case AF_CONTROL_COMMAND_LINE:
|
|
sscanf((char*)arg, "%c", &mode);
|
|
switch(mode) {
|
|
case 'm':
|
|
s->matrix_mode = 1;
|
|
break;
|
|
case '0':
|
|
s->matrix_mode = 0;
|
|
break;
|
|
default:
|
|
af_msg(AF_MSG_ERROR,
|
|
"[hrtf] Mode is neither 'm', nor '0' (%c).\n",
|
|
mode);
|
|
return AF_ERROR;
|
|
}
|
|
return AF_OK;
|
|
}
|
|
|
|
af_msg(AF_MSG_INFO,
|
|
"[hrtf] Using HRTF to mix %s discrete surround into "
|
|
"L, R channels\n", s->matrix_mode ? "5" : "5+1");
|
|
if(s->matrix_mode)
|
|
af_msg(AF_MSG_INFO,
|
|
"[hrtf] Using active matrix to decode rear center "
|
|
"channel\n");
|
|
|
|
return AF_UNKNOWN;
|
|
}
|
|
|
|
/* Deallocate memory */
|
|
static void uninit(struct af_instance_s *af)
|
|
{
|
|
if(af->setup) {
|
|
af_hrtf_t *s = af->setup;
|
|
|
|
if(s->lf)
|
|
free(s->lf);
|
|
if(s->rf)
|
|
free(s->rf);
|
|
if(s->lr)
|
|
free(s->lr);
|
|
if(s->rr)
|
|
free(s->rr);
|
|
if(s->cf)
|
|
free(s->cf);
|
|
if(s->cr)
|
|
free(s->cr);
|
|
if(s->ba_l)
|
|
free(s->ba_l);
|
|
if(s->ba_r)
|
|
free(s->ba_r);
|
|
if(s->ba_ir)
|
|
free(s->ba_ir);
|
|
free(af->setup);
|
|
}
|
|
if(af->data)
|
|
free(af->data);
|
|
}
|
|
|
|
/* Filter data through filter
|
|
|
|
Two "tricks" are used to compensate the "color" of the KEMAR data:
|
|
|
|
1. The KEMAR data is refiltered to ensure that the front L, R channels
|
|
on the same side of the ear are equalized (especially in the high
|
|
frequencies).
|
|
|
|
2. A bass compensation is introduced to ensure that 0-200 Hz are not
|
|
damped (without any real 3D acoustical image, however).
|
|
*/
|
|
static af_data_t* play(struct af_instance_s *af, af_data_t *data)
|
|
{
|
|
af_hrtf_t *s = af->setup;
|
|
short *in = data->audio; // Input audio data
|
|
short *out = NULL; // Output audio data
|
|
short *end = in + data->len / sizeof(short); // Loop end
|
|
float common, left, right, diff, left_b, right_b;
|
|
const int dblen = s->dlbuflen, hlen = s->hrflen, blen = s->basslen;
|
|
|
|
if(AF_OK != RESIZE_LOCAL_BUFFER(af, data))
|
|
return NULL;
|
|
|
|
out = af->data->audio;
|
|
|
|
/* MPlayer's 5 channel layout (notation for the variable):
|
|
*
|
|
* 0: L (LF), 1: R (RF), 2: Ls (LR), 3: Rs (RR), 4: C (CF), matrix
|
|
* encoded: Cs (CR)
|
|
*
|
|
* or: L = left, C = center, R = right, F = front, R = rear
|
|
*
|
|
* Filter notation:
|
|
*
|
|
* CF
|
|
* OF AF
|
|
* Ear->
|
|
* OR AR
|
|
* CR
|
|
*
|
|
* or: C = center, A = same side, O = opposite, F = front, R = rear
|
|
*/
|
|
|
|
while(in < end) {
|
|
const int k = s->cyc_pos;
|
|
|
|
update_ch(s, in, k);
|
|
|
|
/* Simulate a 7.5 ms -20 dB echo of the center channel in the
|
|
front channels (like reflection from a room wall) - a kind of
|
|
psycho-acoustically "cheating" to focus the center front
|
|
channel, which is normally hard to be perceived as front */
|
|
s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
|
|
s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
|
|
|
|
/* Mixer filter matrix */
|
|
common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
|
|
if(s->matrix_mode) {
|
|
/* In matrix decoding mode, the rear channel gain must be
|
|
renormalized, as there is an additional channel. */
|
|
matrix_decode_cr(s, in, k);
|
|
common +=
|
|
conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
|
|
M1_76DB;
|
|
left =
|
|
( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
|
|
conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
|
|
(conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
|
|
conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
|
|
M1_76DB + common);
|
|
right =
|
|
( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
|
|
conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
|
|
(conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
|
|
conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
|
|
M1_76DB + common);
|
|
}
|
|
else {
|
|
left =
|
|
( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
|
|
conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
|
|
conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
|
|
conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
|
|
common);
|
|
right =
|
|
( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
|
|
conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
|
|
conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
|
|
conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
|
|
common);
|
|
}
|
|
|
|
/* Bass compensation for the lower frequency cut of the HRTF. A
|
|
cross talk of the left and right channel is introduced to
|
|
match the directional characteristics of higher frequencies.
|
|
The bass will not have any real 3D perception, but that is
|
|
OK. */
|
|
left_b = conv(dblen, blen, s->ba_l, s->ba_ir, k);
|
|
right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
|
|
left += (1 - BASSCROSS) * left_b + BASSCROSS * right_b;
|
|
right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
|
|
/* Also mix the LFE channel (if available) */
|
|
if(af->data->nch >= 6) {
|
|
left += out[5] * M3_01DB;
|
|
right += out[5] * M3_01DB;
|
|
}
|
|
|
|
/* Amplitude renormalization. */
|
|
left *= AMPLNORM;
|
|
right *= AMPLNORM;
|
|
|
|
/* "Cheating": linear stereo expansion to amplify the 3D
|
|
perception. Note: Too much will destroy the acoustic space
|
|
and may even result in headaches. */
|
|
diff = STEXPAND2 * (left - right);
|
|
out[0] = (int16_t)(left + diff);
|
|
out[1] = (int16_t)(right - diff);
|
|
|
|
/* The remaining channels are not needed any more */
|
|
out[2] = out[3] = out[4] = 0;
|
|
if(af->data->nch >= 6)
|
|
out[5] = 0;
|
|
|
|
/* Next sample... */
|
|
in = &in[data->nch];
|
|
out = &out[af->data->nch];
|
|
(s->cyc_pos)--;
|
|
if(s->cyc_pos < 0)
|
|
s->cyc_pos += dblen;
|
|
}
|
|
|
|
/* Set output data */
|
|
data->audio = af->data->audio;
|
|
data->len = (data->len * af->mul.n) / af->mul.d;
|
|
data->nch = af->data->nch;
|
|
|
|
return data;
|
|
}
|
|
|
|
static int allocate(af_hrtf_t *s)
|
|
{
|
|
if ((s->lf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->rf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->lr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->rr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->cf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->cr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->ba_l = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
if ((s->ba_r = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate memory and set function pointers */
|
|
static int open(af_instance_t* af)
|
|
{
|
|
int i;
|
|
af_hrtf_t *s;
|
|
float fc;
|
|
|
|
af_msg(AF_MSG_INFO,
|
|
"[hrtf] Head related impulse response (HRIR) derived from KEMAR measurement\n"
|
|
"[hrtf] data by Bill Gardner <billg@media.mit.edu>\n"
|
|
"[hrtf] and Keith Martin <kdm@media.mit.edu>.\n"
|
|
"[hrtf] This data is Copyright 1994 by the MIT Media Laboratory. It is\n"
|
|
"[hrtf] provided free with no restrictions on use, provided the authors are\n"
|
|
"[hrtf] cited when the data is used in any research or commercial application.\n"
|
|
"[hrtf] URL: http://sound.media.mit.edu/KEMAR.html\n");
|
|
|
|
af->control = control;
|
|
af->uninit = uninit;
|
|
af->play = play;
|
|
af->mul.n = 1;
|
|
af->mul.d = 1;
|
|
af->data = calloc(1, sizeof(af_data_t));
|
|
af->setup = calloc(1, sizeof(af_hrtf_t));
|
|
if((af->data == NULL) || (af->setup == NULL))
|
|
return AF_ERROR;
|
|
|
|
s = af->setup;
|
|
|
|
s->dlbuflen = DELAYBUFLEN;
|
|
s->hrflen = HRTFFILTLEN;
|
|
s->basslen = BASSFILTLEN;
|
|
|
|
s->cyc_pos = s->dlbuflen - 1;
|
|
s->matrix_mode = 1;
|
|
|
|
if (allocate(s) != 0) {
|
|
af_msg(AF_MSG_ERROR, "[hrtf] Memory allocation error.\n");
|
|
return AF_ERROR;
|
|
}
|
|
|
|
for(i = 0; i < s->dlbuflen; i++)
|
|
s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
|
|
s->cr[i] = 0;
|
|
|
|
s->lr_fwr =
|
|
s->rr_fwr = 0;
|
|
|
|
s->cf_ir = cf_filt + (s->cf_o = pulse_detect(cf_filt));
|
|
s->af_ir = af_filt + (s->af_o = pulse_detect(af_filt));
|
|
s->of_ir = of_filt + (s->of_o = pulse_detect(of_filt));
|
|
s->ar_ir = ar_filt + (s->ar_o = pulse_detect(ar_filt));
|
|
s->or_ir = or_filt + (s->or_o = pulse_detect(or_filt));
|
|
s->cr_ir = cr_filt + (s->cr_o = pulse_detect(cr_filt));
|
|
|
|
if((s->ba_ir = malloc(s->basslen * sizeof(float))) == NULL) {
|
|
af_msg(AF_MSG_ERROR, "[hrtf] Memory allocation error.\n");
|
|
return AF_ERROR;
|
|
}
|
|
fc = 2.0 * BASSFILTFREQ / (float)af->data->rate;
|
|
if(design_fir(s->basslen, s->ba_ir, &fc, LP | KAISER, 4 * M_PI) ==
|
|
-1) {
|
|
af_msg(AF_MSG_ERROR, "[hrtf] Unable to design low-pass "
|
|
"filter.\n");
|
|
return AF_ERROR;
|
|
}
|
|
for(i = 0; i < s->basslen; i++)
|
|
s->ba_ir[i] *= BASSGAIN;
|
|
|
|
return AF_OK;
|
|
}
|
|
|
|
/* Description of this filter */
|
|
af_info_t af_info_hrtf = {
|
|
"HRTF Headphone",
|
|
"hrtf",
|
|
"ylai",
|
|
"",
|
|
AF_FLAGS_REENTRANT,
|
|
open
|
|
};
|