/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "video.h"
#include "misc/bstr.h"
#include "options/m_config.h"
#include "common/global.h"
#include "options/options.h"
#include "common.h"
#include "formats.h"
#include "utils.h"
#include "hwdec.h"
#include "osd.h"
#include "ra.h"
#include "ra_gl.h"
#include "stream/stream.h"
#include "video_shaders.h"
#include "user_shaders.h"
#include "video/out/filter_kernels.h"
#include "video/out/aspect.h"
#include "video/out/dither.h"
#include "video/out/vo.h"
// scale/cscale arguments that map directly to shader filter routines.
// Note that the convolution filters are not included in this list.
static const char *const fixed_scale_filters[] = {
"bilinear",
"bicubic_fast",
"oversample",
NULL
};
static const char *const fixed_tscale_filters[] = {
"oversample",
"linear",
NULL
};
// must be sorted, and terminated with 0
int filter_sizes[] =
{2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0};
int tscale_sizes[] = {2, 4, 6, 0}; // limited by TEXUNIT_VIDEO_NUM
struct vertex_pt {
float x, y;
};
struct vertex {
struct vertex_pt position;
struct vertex_pt texcoord[TEXUNIT_VIDEO_NUM];
};
static const struct gl_vao_entry vertex_vao[] = {
{"position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
{"texcoord0", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[0])},
{"texcoord1", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[1])},
{"texcoord2", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[2])},
{"texcoord3", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[3])},
{"texcoord4", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[4])},
{"texcoord5", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[5])},
{0}
};
struct texplane {
struct ra_tex *tex;
int w, h;
bool flipped;
};
struct video_image {
struct texplane planes[4];
struct mp_image *mpi; // original input image
uint64_t id; // unique ID identifying mpi contents
bool hwdec_mapped;
// Temporary wrappers for GL hwdec textures.
struct ra_tex *hwdec_tex[4];
};
enum plane_type {
PLANE_NONE = 0,
PLANE_RGB,
PLANE_LUMA,
PLANE_CHROMA,
PLANE_ALPHA,
PLANE_XYZ,
};
static const char *plane_names[] = {
[PLANE_NONE] = "unknown",
[PLANE_RGB] = "rgb",
[PLANE_LUMA] = "luma",
[PLANE_CHROMA] = "chroma",
[PLANE_ALPHA] = "alpha",
[PLANE_XYZ] = "xyz",
};
// A self-contained description of a source image which can be bound to a
// texture unit and sampled from. Contains metadata about how it's to be used
struct img_tex {
enum plane_type type; // must be set to something non-zero
int components; // number of relevant coordinates
float multiplier; // multiplier to be used when sampling
struct ra_tex *tex;
int w, h; // logical size (after transformation)
struct gl_transform transform; // rendering transformation
};
// A named img_tex, for user scripting purposes
struct saved_tex {
const char *name;
struct img_tex tex;
};
// A texture hook. This is some operation that transforms a named texture as
// soon as it's generated
struct tex_hook {
const char *save_tex;
const char *hook_tex[SHADER_MAX_HOOKS];
const char *bind_tex[TEXUNIT_VIDEO_NUM];
int components; // how many components are relevant (0 = same as input)
void *priv; // this gets talloc_freed when the tex_hook is removed
void (*hook)(struct gl_video *p, struct img_tex tex, // generates GLSL
struct gl_transform *trans, void *priv);
bool (*cond)(struct gl_video *p, struct img_tex tex, void *priv);
};
struct fbosurface {
struct fbotex fbotex;
uint64_t id;
double pts;
};
#define FBOSURFACES_MAX 10
struct cached_file {
char *path;
struct bstr body;
};
struct pass_info {
struct bstr desc;
struct mp_pass_perf perf;
};
#define PASS_INFO_MAX (SHADER_MAX_PASSES + 32)
struct dr_buffer {
struct ra_mapped_buffer *buffer;
// The mpi reference will keep the data from being recycled (or from other
// references gaining write access) while the GPU is accessing the buffer.
struct mp_image *mpi;
};
struct gl_video {
GL *gl;
struct ra *ra;
struct mpv_global *global;
struct mp_log *log;
struct gl_video_opts opts;
struct m_config_cache *opts_cache;
struct gl_lcms *cms;
bool gl_debug;
int fb_depth; // actual bits available in GL main framebuffer
struct gl_shader_cache *sc;
struct osd_state *osd_state;
struct mpgl_osd *osd;
double osd_pts;
struct ra_tex *lut_3d_texture;
bool use_lut_3d;
int lut_3d_size[3];
struct ra_tex *dither_texture;
struct mp_image_params real_image_params; // configured format
struct mp_image_params image_params; // texture format (mind hwdec case)
struct ra_imgfmt_desc ra_format; // texture format
int plane_count;
bool is_gray;
bool has_alpha;
char color_swizzle[5];
bool use_integer_conversion;
struct video_image image;
struct dr_buffer *dr_buffers;
int num_dr_buffers;
bool using_dr_path;
bool dumb_mode;
bool forced_dumb_mode;
const struct ra_format *fbo_format;
struct fbotex merge_fbo[4];
struct fbotex scale_fbo[4];
struct fbotex integer_fbo[4];
struct fbotex indirect_fbo;
struct fbotex blend_subs_fbo;
struct fbotex screen_fbo;
struct fbotex output_fbo;
struct fbosurface surfaces[FBOSURFACES_MAX];
struct fbotex vdpau_deinterleave_fbo[2];
GLuint hdr_peak_ssbo;
// user pass descriptions and textures
struct tex_hook tex_hooks[SHADER_MAX_PASSES];
int tex_hook_num;
struct gl_user_shader_tex user_textures[SHADER_MAX_PASSES];
int user_tex_num;
int surface_idx;
int surface_now;
int frames_drawn;
bool is_interpolated;
bool output_fbo_valid;
// state for configured scalers
struct scaler scaler[SCALER_COUNT];
struct mp_csp_equalizer video_eq;
struct mp_rect src_rect; // displayed part of the source video
struct mp_rect dst_rect; // video rectangle on output window
struct mp_osd_res osd_rect; // OSD size/margins
int vp_w, vp_h;
// temporary during rendering
struct img_tex pass_tex[TEXUNIT_VIDEO_NUM];
struct compute_info pass_compute; // compute shader metadata for this pass
int pass_tex_num;
int texture_w, texture_h;
struct gl_transform texture_offset; // texture transform without rotation
int components;
bool use_linear;
float user_gamma;
// pass info / metrics
struct pass_info pass_fresh[PASS_INFO_MAX];
struct pass_info pass_redraw[PASS_INFO_MAX];
struct pass_info *pass;
int pass_idx;
struct gl_timer *upload_timer;
struct gl_timer *blit_timer;
// intermediate textures
struct saved_tex saved_tex[SHADER_MAX_SAVED];
int saved_tex_num;
struct fbotex hook_fbos[SHADER_MAX_SAVED];
int hook_fbo_num;
int frames_uploaded;
int frames_rendered;
AVLFG lfg;
// Cached because computing it can take relatively long
int last_dither_matrix_size;
float *last_dither_matrix;
struct cached_file *files;
int num_files;
struct gl_hwdec *hwdec;
bool hwdec_active;
bool dsi_warned;
bool broken_frame; // temporary error state
};
static const struct gl_video_opts gl_video_opts_def = {
.dither_algo = DITHER_FRUIT,
.dither_depth = -1,
.dither_size = 6,
.temporal_dither_period = 1,
.fbo_format = "auto",
.sigmoid_center = 0.75,
.sigmoid_slope = 6.5,
.scaler = {
{{"bilinear", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // scale
{{NULL, .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // dscale
{{"bilinear", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.cutoff = 0.001}, // cscale
{{"mitchell", .params={NAN, NAN}}, {.params = {NAN, NAN}},
.clamp = 1, }, // tscale
},
.scaler_resizes_only = 1,
.scaler_lut_size = 6,
.interpolation_threshold = 0.0001,
.alpha_mode = ALPHA_BLEND_TILES,
.background = {0, 0, 0, 255},
.gamma = 1.0f,
.tone_mapping = TONE_MAPPING_MOBIUS,
.tone_mapping_param = NAN,
.tone_mapping_desat = 2.0,
.early_flush = -1,
};
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param);
#define OPT_BASE_STRUCT struct gl_video_opts
#define SCALER_OPTS(n, i) \
OPT_STRING_VALIDATE(n, scaler[i].kernel.name, 0, validate_scaler_opt), \
OPT_FLOAT(n"-param1", scaler[i].kernel.params[0], 0), \
OPT_FLOAT(n"-param2", scaler[i].kernel.params[1], 0), \
OPT_FLOAT(n"-blur", scaler[i].kernel.blur, 0), \
OPT_FLOATRANGE(n"-cutoff", scaler[i].cutoff, 0, 0.0, 1.0), \
OPT_FLOATRANGE(n"-taper", scaler[i].kernel.taper, 0, 0.0, 1.0), \
OPT_FLOAT(n"-wparam", scaler[i].window.params[0], 0), \
OPT_FLOAT(n"-wblur", scaler[i].window.blur, 0), \
OPT_FLOATRANGE(n"-wtaper", scaler[i].window.taper, 0, 0.0, 1.0), \
OPT_FLOATRANGE(n"-clamp", scaler[i].clamp, 0, 0.0, 1.0), \
OPT_FLOATRANGE(n"-radius", scaler[i].radius, 0, 0.5, 16.0), \
OPT_FLOATRANGE(n"-antiring", scaler[i].antiring, 0, 0.0, 1.0), \
OPT_STRING_VALIDATE(n"-window", scaler[i].window.name, 0, validate_window_opt)
const struct m_sub_options gl_video_conf = {
.opts = (const m_option_t[]) {
OPT_CHOICE("opengl-dumb-mode", dumb_mode, 0,
({"auto", 0}, {"yes", 1}, {"no", -1})),
OPT_FLOATRANGE("opengl-gamma", gamma, 0, 0.1, 2.0),
OPT_FLAG("gamma-auto", gamma_auto, 0),
OPT_CHOICE_C("target-prim", target_prim, 0, mp_csp_prim_names),
OPT_CHOICE_C("target-trc", target_trc, 0, mp_csp_trc_names),
OPT_CHOICE("tone-mapping", tone_mapping, 0,
({"clip", TONE_MAPPING_CLIP},
{"mobius", TONE_MAPPING_MOBIUS},
{"reinhard", TONE_MAPPING_REINHARD},
{"hable", TONE_MAPPING_HABLE},
{"gamma", TONE_MAPPING_GAMMA},
{"linear", TONE_MAPPING_LINEAR})),
OPT_FLAG("hdr-compute-peak", compute_hdr_peak, 0),
OPT_FLOAT("tone-mapping-param", tone_mapping_param, 0),
OPT_FLOAT("tone-mapping-desaturate", tone_mapping_desat, 0),
OPT_FLAG("opengl-pbo", pbo, 0),
SCALER_OPTS("scale", SCALER_SCALE),
SCALER_OPTS("dscale", SCALER_DSCALE),
SCALER_OPTS("cscale", SCALER_CSCALE),
SCALER_OPTS("tscale", SCALER_TSCALE),
OPT_INTRANGE("scaler-lut-size", scaler_lut_size, 0, 4, 10),
OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0),
OPT_FLAG("linear-scaling", linear_scaling, 0),
OPT_FLAG("correct-downscaling", correct_downscaling, 0),
OPT_FLAG("sigmoid-upscaling", sigmoid_upscaling, 0),
OPT_FLOATRANGE("sigmoid-center", sigmoid_center, 0, 0.0, 1.0),
OPT_FLOATRANGE("sigmoid-slope", sigmoid_slope, 0, 1.0, 20.0),
OPT_STRING("opengl-fbo-format", fbo_format, 0),
OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16,
({"no", -1}, {"auto", 0})),
OPT_CHOICE("dither", dither_algo, 0,
({"fruit", DITHER_FRUIT},
{"ordered", DITHER_ORDERED},
{"no", DITHER_NONE})),
OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8),
OPT_FLAG("temporal-dither", temporal_dither, 0),
OPT_INTRANGE("temporal-dither-period", temporal_dither_period, 0, 1, 128),
OPT_CHOICE("alpha", alpha_mode, 0,
({"no", ALPHA_NO},
{"yes", ALPHA_YES},
{"blend", ALPHA_BLEND},
{"blend-tiles", ALPHA_BLEND_TILES})),
OPT_FLAG("opengl-rectangle-textures", use_rectangle, 0),
OPT_COLOR("background", background, 0),
OPT_FLAG("interpolation", interpolation, 0),
OPT_FLOAT("interpolation-threshold", interpolation_threshold, 0),
OPT_CHOICE("blend-subtitles", blend_subs, 0,
({"no", BLEND_SUBS_NO},
{"yes", BLEND_SUBS_YES},
{"video", BLEND_SUBS_VIDEO})),
OPT_PATHLIST("opengl-shaders", user_shaders, 0),
OPT_CLI_ALIAS("opengl-shader", "opengl-shaders-append"),
OPT_FLAG("deband", deband, 0),
OPT_SUBSTRUCT("deband", deband_opts, deband_conf, 0),
OPT_FLOAT("sharpen", unsharp, 0),
OPT_INTRANGE("opengl-tex-pad-x", tex_pad_x, 0, 0, 4096),
OPT_INTRANGE("opengl-tex-pad-y", tex_pad_y, 0, 0, 4096),
OPT_SUBSTRUCT("", icc_opts, mp_icc_conf, 0),
OPT_CHOICE("opengl-early-flush", early_flush, 0,
({"no", 0}, {"yes", 1}, {"auto", -1})),
OPT_STRING("opengl-shader-cache-dir", shader_cache_dir, 0),
OPT_REPLACED("hdr-tone-mapping", "tone-mapping"),
{0}
},
.size = sizeof(struct gl_video_opts),
.defaults = &gl_video_opts_def,
.change_flags = UPDATE_RENDERER,
};
static void uninit_rendering(struct gl_video *p);
static void uninit_scaler(struct gl_video *p, struct scaler *scaler);
static void check_gl_features(struct gl_video *p);
static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id);
static const char *handle_scaler_opt(const char *name, bool tscale);
static void reinit_from_options(struct gl_video *p);
static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2]);
static void gl_video_setup_hooks(struct gl_video *p);
#define GLSL(x) gl_sc_add(p->sc, #x "\n");
#define GLSLF(...) gl_sc_addf(p->sc, __VA_ARGS__)
#define GLSLHF(...) gl_sc_haddf(p->sc, __VA_ARGS__)
#define PRELUDE(...) gl_sc_paddf(p->sc, __VA_ARGS__)
static struct bstr load_cached_file(struct gl_video *p, const char *path)
{
if (!path || !path[0])
return (struct bstr){0};
for (int n = 0; n < p->num_files; n++) {
if (strcmp(p->files[n].path, path) == 0)
return p->files[n].body;
}
// not found -> load it
struct bstr s = stream_read_file(path, p, p->global, 1024000); // 1024 kB
if (s.len) {
struct cached_file new = {
.path = talloc_strdup(p, path),
.body = s,
};
MP_TARRAY_APPEND(p, p->files, p->num_files, new);
return new.body;
}
return (struct bstr){0};
}
static void debug_check_gl(struct gl_video *p, const char *msg)
{
if (p->gl_debug)
gl_check_error(p->gl, p->log, msg);
}
void gl_video_set_debug(struct gl_video *p, bool enable)
{
GL *gl = p->gl;
p->gl_debug = enable;
if (p->gl->debug_context)
gl_set_debug_logger(gl, enable ? p->log : NULL);
}
static void gl_video_reset_surfaces(struct gl_video *p)
{
for (int i = 0; i < FBOSURFACES_MAX; i++) {
p->surfaces[i].id = 0;
p->surfaces[i].pts = MP_NOPTS_VALUE;
}
p->surface_idx = 0;
p->surface_now = 0;
p->frames_drawn = 0;
p->output_fbo_valid = false;
}
static void gl_video_reset_hooks(struct gl_video *p)
{
for (int i = 0; i < p->tex_hook_num; i++)
talloc_free(p->tex_hooks[i].priv);
for (int i = 0; i < p->user_tex_num; i++)
ra_tex_free(p->ra, &p->user_textures[i].tex);
p->tex_hook_num = 0;
p->user_tex_num = 0;
}
static inline int fbosurface_wrap(int id)
{
id = id % FBOSURFACES_MAX;
return id < 0 ? id + FBOSURFACES_MAX : id;
}
static void reinit_osd(struct gl_video *p)
{
mpgl_osd_destroy(p->osd);
p->osd = NULL;
if (p->osd_state) {
p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state);
mpgl_osd_set_options(p->osd, p->opts.pbo);
}
}
static void uninit_rendering(struct gl_video *p)
{
for (int n = 0; n < SCALER_COUNT; n++)
uninit_scaler(p, &p->scaler[n]);
ra_tex_free(p->ra, &p->dither_texture);
for (int n = 0; n < 4; n++) {
fbotex_uninit(&p->merge_fbo[n]);
fbotex_uninit(&p->scale_fbo[n]);
fbotex_uninit(&p->integer_fbo[n]);
}
fbotex_uninit(&p->indirect_fbo);
fbotex_uninit(&p->blend_subs_fbo);
fbotex_uninit(&p->screen_fbo);
fbotex_uninit(&p->output_fbo);
for (int n = 0; n < FBOSURFACES_MAX; n++)
fbotex_uninit(&p->surfaces[n].fbotex);
for (int n = 0; n < SHADER_MAX_SAVED; n++)
fbotex_uninit(&p->hook_fbos[n]);
for (int n = 0; n < 2; n++)
fbotex_uninit(&p->vdpau_deinterleave_fbo[n]);
gl_video_reset_surfaces(p);
gl_video_reset_hooks(p);
gl_sc_reset_error(p->sc);
}
bool gl_video_gamma_auto_enabled(struct gl_video *p)
{
return p->opts.gamma_auto;
}
struct mp_colorspace gl_video_get_output_colorspace(struct gl_video *p)
{
return (struct mp_colorspace) {
.primaries = p->opts.target_prim,
.gamma = p->opts.target_trc,
};
}
// Warning: profile.start must point to a ta allocation, and the function
// takes over ownership.
void gl_video_set_icc_profile(struct gl_video *p, bstr icc_data)
{
if (gl_lcms_set_memory_profile(p->cms, icc_data))
reinit_from_options(p);
}
bool gl_video_icc_auto_enabled(struct gl_video *p)
{
return p->opts.icc_opts ? p->opts.icc_opts->profile_auto : false;
}
static bool gl_video_get_lut3d(struct gl_video *p, enum mp_csp_prim prim,
enum mp_csp_trc trc)
{
if (!p->use_lut_3d)
return false;
struct AVBufferRef *icc = NULL;
if (p->image.mpi)
icc = p->image.mpi->icc_profile;
if (p->lut_3d_texture && !gl_lcms_has_changed(p->cms, prim, trc, icc))
return true;
// GLES3 doesn't provide filtered 16 bit integer textures
// GLES2 doesn't even provide 3D textures
const struct ra_format *fmt = ra_find_unorm_format(p->ra, 2, 3);
if (!fmt || !(p->ra->caps & RA_CAP_TEX_3D)) {
p->use_lut_3d = false;
MP_WARN(p, "Disabling color management (no RGB16 3D textures).\n");
return false;
}
struct lut3d *lut3d = NULL;
if (!fmt || !gl_lcms_get_lut3d(p->cms, &lut3d, prim, trc, icc) || !lut3d) {
p->use_lut_3d = false;
return false;
}
ra_tex_free(p->ra, &p->lut_3d_texture);
struct ra_tex_params params = {
.dimensions = 3,
.w = lut3d->size[0],
.h = lut3d->size[1],
.d = lut3d->size[2],
.format = fmt,
.render_src = true,
.src_linear = true,
.initial_data = lut3d->data,
};
p->lut_3d_texture = ra_tex_create(p->ra, ¶ms);
debug_check_gl(p, "after 3d lut creation");
for (int i = 0; i < 3; i++)
p->lut_3d_size[i] = lut3d->size[i];
talloc_free(lut3d);
return true;
}
// Fill an img_tex struct from an FBO + some metadata
static struct img_tex img_tex_fbo(struct fbotex *fbo, enum plane_type type,
int components)
{
assert(type != PLANE_NONE);
return (struct img_tex){
.type = type,
.tex = fbo->tex,
.multiplier = 1.0,
.w = fbo->lw,
.h = fbo->lh,
.transform = identity_trans,
.components = components,
};
}
// Bind an img_tex to a free texture unit and return its ID. At most
// TEXUNIT_VIDEO_NUM texture units can be bound at once
static int pass_bind(struct gl_video *p, struct img_tex tex)
{
assert(p->pass_tex_num < TEXUNIT_VIDEO_NUM);
p->pass_tex[p->pass_tex_num] = tex;
return p->pass_tex_num++;
}
// Rotation by 90° and flipping.
// w/h is used for recentering.
static void get_transform(float w, float h, int rotate, bool flip,
struct gl_transform *out_tr)
{
int a = rotate % 90 ? 0 : rotate / 90;
int sin90[4] = {0, 1, 0, -1}; // just to avoid rounding issues etc.
int cos90[4] = {1, 0, -1, 0};
struct gl_transform tr = {{{ cos90[a], sin90[a]},
{-sin90[a], cos90[a]}}};
// basically, recenter to keep the whole image in view
float b[2] = {1, 1};
gl_transform_vec(tr, &b[0], &b[1]);
tr.t[0] += b[0] < 0 ? w : 0;
tr.t[1] += b[1] < 0 ? h : 0;
if (flip) {
struct gl_transform fliptr = {{{1, 0}, {0, -1}}, {0, h}};
gl_transform_trans(fliptr, &tr);
}
*out_tr = tr;
}
// Return the chroma plane upscaled to luma size, but with additional padding
// for image sizes not aligned to subsampling.
static int chroma_upsize(int size, int pixel)
{
return (size + pixel - 1) / pixel * pixel;
}
// If a and b are on the same plane, return what plane type should be used.
// If a or b are none, the other type always wins.
// Usually: LUMA/RGB/XYZ > CHROMA > ALPHA
static enum plane_type merge_plane_types(enum plane_type a, enum plane_type b)
{
if (a == PLANE_NONE)
return b;
if (b == PLANE_LUMA || b == PLANE_RGB || b == PLANE_XYZ)
return b;
if (b != PLANE_NONE && a == PLANE_ALPHA)
return b;
return a;
}
// Places a video_image's image textures + associated metadata into tex[]. The
// number of textures is equal to p->plane_count. Any necessary plane offsets
// are stored in off. (e.g. chroma position)
static void pass_get_img_tex(struct gl_video *p, struct video_image *vimg,
struct img_tex tex[4], struct gl_transform off[4])
{
assert(vimg->mpi);
int w = p->image_params.w;
int h = p->image_params.h;
// Determine the chroma offset
float ls_w = 1.0 / p->ra_format.chroma_w;
float ls_h = 1.0 / p->ra_format.chroma_h;
struct gl_transform chroma = {{{ls_w, 0.0}, {0.0, ls_h}}};
if (p->image_params.chroma_location != MP_CHROMA_CENTER) {
int cx, cy;
mp_get_chroma_location(p->image_params.chroma_location, &cx, &cy);
// By default texture coordinates are such that chroma is centered with
// any chroma subsampling. If a specific direction is given, make it
// so that the luma and chroma sample line up exactly.
// For 4:4:4, setting chroma location should have no effect at all.
// luma sample size (in chroma coord. space)
chroma.t[0] = ls_w < 1 ? ls_w * -cx / 2 : 0;
chroma.t[1] = ls_h < 1 ? ls_h * -cy / 2 : 0;
}
int msb_valid_bits =
p->ra_format.component_bits + MPMIN(p->ra_format.component_pad, 0);
// The existing code assumes we just have a single tex multiplier for
// all of the planes. This may change in the future
float tex_mul = 1.0 / mp_get_csp_mul(p->image_params.color.space,
msb_valid_bits,
p->ra_format.component_bits);
memset(tex, 0, 4 * sizeof(tex[0]));
for (int n = 0; n < p->plane_count; n++) {
struct texplane *t = &vimg->planes[n];
enum plane_type type = PLANE_NONE;
for (int i = 0; i < 4; i++) {
int c = p->ra_format.components[n][i];
enum plane_type ctype;
if (c == 0) {
ctype = PLANE_NONE;
} else if (c == 4) {
ctype = PLANE_ALPHA;
} else if (p->image_params.color.space == MP_CSP_RGB) {
ctype = PLANE_RGB;
} else if (p->image_params.color.space == MP_CSP_XYZ) {
ctype = PLANE_XYZ;
} else {
ctype = c == 1 ? PLANE_LUMA : PLANE_CHROMA;
}
type = merge_plane_types(type, ctype);
}
tex[n] = (struct img_tex){
.type = type,
.tex = t->tex,
.multiplier = tex_mul,
.w = t->w,
.h = t->h,
};
for (int i = 0; i < 4; i++)
tex[n].components += !!p->ra_format.components[n][i];
get_transform(t->w, t->h, p->image_params.rotate, t->flipped,
&tex[n].transform);
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, tex[n].w, tex[n].h);
off[n] = identity_trans;
if (type == PLANE_CHROMA) {
struct gl_transform rot;
get_transform(0, 0, p->image_params.rotate, true, &rot);
struct gl_transform tr = chroma;
gl_transform_vec(rot, &tr.t[0], &tr.t[1]);
float dx = (chroma_upsize(w, p->ra_format.chroma_w) - w) * ls_w;
float dy = (chroma_upsize(h, p->ra_format.chroma_h) - h) * ls_h;
// Adjust the chroma offset if the real chroma size is fractional
// due image sizes not aligned to chroma subsampling.
struct gl_transform rot2;
get_transform(0, 0, p->image_params.rotate, t->flipped, &rot2);
if (rot2.m[0][0] < 0)
tr.t[0] += dx;
if (rot2.m[1][0] < 0)
tr.t[0] += dy;
if (rot2.m[0][1] < 0)
tr.t[1] += dx;
if (rot2.m[1][1] < 0)
tr.t[1] += dy;
off[n] = tr;
}
}
}
// Return the index of the given component (assuming all non-padding components
// of all planes are concatenated into a linear list).
static int find_comp(struct ra_imgfmt_desc *desc, int component)
{
int cur = 0;
for (int n = 0; n < desc->num_planes; n++) {
for (int i = 0; i < 4; i++) {
if (desc->components[n][i]) {
if (desc->components[n][i] == component)
return cur;
cur++;
}
}
}
return -1;
}
static void init_video(struct gl_video *p)
{
p->hwdec_active = false;
p->use_integer_conversion = false;
if (p->hwdec && gl_hwdec_test_format(p->hwdec, p->image_params.imgfmt)) {
if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0)
MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
const char **exts = p->hwdec->glsl_extensions;
for (int n = 0; exts && exts[n]; n++)
gl_sc_enable_extension(p->sc, (char *)exts[n]);
p->hwdec_active = true;
if (p->hwdec->driver->overlay_frame) {
MP_WARN(p, "Using HW-overlay mode. No GL filtering is performed "
"on the video!\n");
}
}
p->ra_format = (struct ra_imgfmt_desc){0};
ra_get_imgfmt_desc(p->ra, p->image_params.imgfmt, &p->ra_format);
p->plane_count = p->ra_format.num_planes;
p->has_alpha = false;
p->is_gray = true;
for (int n = 0; n < p->ra_format.num_planes; n++) {
for (int i = 0; i < 4; i++) {
if (p->ra_format.components[n][i]) {
p->has_alpha |= p->ra_format.components[n][i] == 4;
p->is_gray &= p->ra_format.components[n][i] == 1 ||
p->ra_format.components[n][i] == 4;
}
}
}
for (int c = 0; c < 4; c++) {
int loc = find_comp(&p->ra_format, c + 1);
p->color_swizzle[c] = "rgba"[loc >= 0 && loc < 4 ? loc : 0];
}
p->color_swizzle[4] = '\0';
// Format-dependent checks.
check_gl_features(p);
mp_image_params_guess_csp(&p->image_params);
int eq_caps = MP_CSP_EQ_CAPS_GAMMA;
if (p->image_params.color.space != MP_CSP_BT_2020_C)
eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX;
if (p->image_params.color.space == MP_CSP_XYZ)
eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS;
p->video_eq.capabilities = eq_caps;
av_lfg_init(&p->lfg, 1);
debug_check_gl(p, "before video texture creation");
if (!p->hwdec_active) {
struct video_image *vimg = &p->image;
struct mp_image layout = {0};
mp_image_set_params(&layout, &p->image_params);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
const struct ra_format *format = p->ra_format.planes[n];
plane->w = mp_image_plane_w(&layout, n);
plane->h = mp_image_plane_h(&layout, n);
struct ra_tex_params params = {
.dimensions = 2,
.w = plane->w + p->opts.tex_pad_x,
.h = plane->h + p->opts.tex_pad_y,
.d = 1,
.format = format,
.src_linear = format->linear_filter,
.non_normalized = p->opts.use_rectangle,
};
MP_VERBOSE(p, "Texture for plane %d: %dx%d\n", n,
params.w, params.h);
plane->tex = ra_tex_create(p->ra, ¶ms);
if (!plane->tex)
abort(); // shit happens
p->use_integer_conversion |= format->ctype == RA_CTYPE_UINT;
}
}
debug_check_gl(p, "after video texture creation");
gl_video_setup_hooks(p);
}
// Release any texture mappings associated with the current frame.
static void unmap_current_image(struct gl_video *p)
{
struct video_image *vimg = &p->image;
if (vimg->hwdec_mapped) {
assert(p->hwdec_active);
for (int n = 0; n < 4; n++)
ra_tex_free(p->ra, &vimg->hwdec_tex[n]);
if (p->hwdec->driver->unmap)
p->hwdec->driver->unmap(p->hwdec);
memset(vimg->planes, 0, sizeof(vimg->planes));
vimg->hwdec_mapped = false;
vimg->id = 0; // needs to be mapped again
}
}
static struct dr_buffer *gl_find_dr_buffer(struct gl_video *p, uint8_t *ptr)
{
for (int i = 0; i < p->num_dr_buffers; i++) {
struct dr_buffer *buffer = &p->dr_buffers[i];
uint8_t *buf = buffer->buffer->data;
size_t size = buffer->buffer->size;
if (ptr >= buf && ptr < buf + size)
return buffer;
}
return NULL;
}
static void gc_pending_dr_fences(struct gl_video *p, bool force)
{
again:;
for (int n = 0; n < p->num_dr_buffers; n++) {
struct dr_buffer *buffer = &p->dr_buffers[n];
if (!buffer->mpi)
continue;
bool res = p->ra->fns->poll_mapped_buffer(p->ra, buffer->buffer);
if (res || force) {
// Unreferencing the image could cause gl_video_dr_free_buffer()
// to be called by the talloc destructor (if it was the last
// reference). This will implicitly invalidate the buffer pointer
// and change the p->dr_buffers array. To make it worse, it could
// free multiple dr_buffers due to weird theoretical corner cases.
// This is also why we use the goto to iterate again from the
// start, because everything gets fucked up. Hail satan!
struct mp_image *ref = buffer->mpi;
buffer->mpi = NULL;
talloc_free(ref);
goto again;
}
}
}
static void unref_current_image(struct gl_video *p)
{
unmap_current_image(p);
p->image.id = 0;
mp_image_unrefp(&p->image.mpi);
// While we're at it, also garbage collect pending fences in here to
// get it out of the way.
gc_pending_dr_fences(p, false);
}
// If overlay mode is used, make sure to remove the overlay.
// Be careful with this. Removing the overlay and adding another one will
// lead to flickering artifacts.
static void unmap_overlay(struct gl_video *p)
{
if (p->hwdec_active && p->hwdec->driver->overlay_frame)
p->hwdec->driver->overlay_frame(p->hwdec, NULL);
}
static void uninit_video(struct gl_video *p)
{
uninit_rendering(p);
struct video_image *vimg = &p->image;
unmap_overlay(p);
unref_current_image(p);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
ra_tex_free(p->ra, &plane->tex);
}
*vimg = (struct video_image){0};
// Invalidate image_params to ensure that gl_video_config() will call
// init_video() on uninitialized gl_video.
p->real_image_params = (struct mp_image_params){0};
p->image_params = p->real_image_params;
p->hwdec_active = false;
}
static void pass_record(struct gl_video *p, struct mp_pass_perf perf)
{
if (!p->pass || p->pass_idx == PASS_INFO_MAX)
return;
struct pass_info *pass = &p->pass[p->pass_idx];
pass->perf = perf;
if (pass->desc.len == 0)
bstr_xappend(p, &pass->desc, bstr0("(unknown)"));
p->pass_idx++;
}
PRINTF_ATTRIBUTE(2, 3)
static void pass_describe(struct gl_video *p, const char *textf, ...)
{
if (!p->pass || p->pass_idx == PASS_INFO_MAX)
return;
struct pass_info *pass = &p->pass[p->pass_idx];
if (pass->desc.len > 0)
bstr_xappend(p, &pass->desc, bstr0(" + "));
va_list ap;
va_start(ap, textf);
bstr_xappend_vasprintf(p, &pass->desc, textf, ap);
va_end(ap);
}
static void pass_info_reset(struct gl_video *p, bool is_redraw)
{
p->pass = is_redraw ? p->pass_redraw : p->pass_fresh;
p->pass_idx = 0;
for (int i = 0; i < PASS_INFO_MAX; i++) {
p->pass[i].desc.len = 0;
p->pass[i].perf = (struct mp_pass_perf){0};
}
}
static void pass_report_performance(struct gl_video *p)
{
if (!p->pass)
return;
for (int i = 0; i < PASS_INFO_MAX; i++) {
struct pass_info *pass = &p->pass[i];
if (pass->desc.len) {
MP_DBG(p, "pass '%.*s': last %dus avg %dus peak %dus\n",
BSTR_P(pass->desc),
(int)pass->perf.last/1000,
(int)pass->perf.avg/1000,
(int)pass->perf.peak/1000);
}
}
}
static void pass_prepare_src_tex(struct gl_video *p)
{
struct gl_shader_cache *sc = p->sc;
for (int n = 0; n < p->pass_tex_num; n++) {
struct img_tex *s = &p->pass_tex[n];
if (!s->tex)
continue;
char *texture_name = mp_tprintf(32, "texture%d", n);
char *texture_size = mp_tprintf(32, "texture_size%d", n);
char *texture_rot = mp_tprintf(32, "texture_rot%d", n);
char *texture_off = mp_tprintf(32, "texture_off%d", n);
char *pixel_size = mp_tprintf(32, "pixel_size%d", n);
gl_sc_uniform_texture(sc, texture_name, s->tex);
float f[2] = {1, 1};
if (!s->tex->params.non_normalized) {
f[0] = s->tex->params.w;
f[1] = s->tex->params.h;
}
gl_sc_uniform_vec2(sc, texture_size, f);
gl_sc_uniform_mat2(sc, texture_rot, true, (float *)s->transform.m);
gl_sc_uniform_vec2(sc, texture_off, (float *)s->transform.t);
gl_sc_uniform_vec2(sc, pixel_size, (GLfloat[]){1.0f / f[0],
1.0f / f[1]});
}
}
// Sets the appropriate compute shader metadata for an implicit compute pass
// bw/bh: block size
static void pass_is_compute(struct gl_video *p, int bw, int bh)
{
p->pass_compute = (struct compute_info){
.active = true,
.block_w = bw,
.block_h = bh,
};
}
// w/h: the width/height of the compute shader's operating domain (e.g. the
// target target that needs to be written, or the source texture that needs to
// be reduced)
static void dispatch_compute(struct gl_video *p, int w, int h,
struct compute_info info)
{
GL *gl = p->gl;
PRELUDE("layout (local_size_x = %d, local_size_y = %d) in;\n",
info.threads_w > 0 ? info.threads_w : info.block_w,
info.threads_h > 0 ? info.threads_h : info.block_h);
pass_prepare_src_tex(p);
gl_sc_set_vertex_format(p->sc, vertex_vao, sizeof(struct vertex));
// Since we don't actually have vertices, we pretend for convenience
// reasons that we do and calculate the right texture coordinates based on
// the output sample ID
gl_sc_uniform_vec2(p->sc, "out_scale", (GLfloat[2]){ 1.0 / w, 1.0 / h });
PRELUDE("#define outcoord(id) (out_scale * (vec2(id) + vec2(0.5)))\n");
for (int n = 0; n < TEXUNIT_VIDEO_NUM; n++) {
struct img_tex *s = &p->pass_tex[n];
if (!s->tex)
continue;
// We need to rescale the coordinates to the true texture size
char tex_scale[32];
snprintf(tex_scale, sizeof(tex_scale), "tex_scale%d", n);
gl_sc_uniform_vec2(p->sc, tex_scale, (GLfloat[2]){
(float)s->w / s->tex->params.w,
(float)s->h / s->tex->params.h,
});
PRELUDE("#define texcoord%d_raw(id) (tex_scale%d * outcoord(id))\n", n, n);
PRELUDE("#define texcoord%d_rot(id) (texture_rot%d * texcoord%d_raw(id) + "
"pixel_size%d * texture_off%d)\n", n, n, n, n, n);
// Clamp the texture coordinates to prevent sampling out-of-bounds in
// threads that exceed the requested width/height
PRELUDE("#define texmap%d(id) min(texcoord%d_rot(id), vec2(1.0))\n", n, n);
PRELUDE("#define texcoord%d texmap%d(gl_GlobalInvocationID)\n", n, n);
}
pass_record(p, gl_sc_generate(p->sc, GL_COMPUTE_SHADER));
// always round up when dividing to make sure we don't leave off a part of
// the image
int num_x = info.block_w > 0 ? (w + info.block_w - 1) / info.block_w : 1,
num_y = info.block_h > 0 ? (h + info.block_h - 1) / info.block_h : 1;
gl->DispatchCompute(num_x, num_y, 1);
gl_sc_reset(p->sc);
debug_check_gl(p, "after dispatching compute shader");
memset(&p->pass_tex, 0, sizeof(p->pass_tex));
p->pass_tex_num = 0;
}
static void render_pass_quad(struct gl_video *p, int vp_w, int vp_h,
const struct mp_rect *dst)
{
struct vertex va[6] = {0};
struct gl_transform t;
gl_transform_ortho(&t, 0, vp_w, 0, vp_h);
float x[2] = {dst->x0, dst->x1};
float y[2] = {dst->y0, dst->y1};
gl_transform_vec(t, &x[0], &y[0]);
gl_transform_vec(t, &x[1], &y[1]);
for (int n = 0; n < 4; n++) {
struct vertex *v = &va[n];
v->position.x = x[n / 2];
v->position.y = y[n % 2];
for (int i = 0; i < p->pass_tex_num; i++) {
struct img_tex *s = &p->pass_tex[i];
if (!s->tex)
continue;
struct gl_transform tr = s->transform;
float tx = (n / 2) * s->w;
float ty = (n % 2) * s->h;
gl_transform_vec(tr, &tx, &ty);
bool rect = s->tex->params.non_normalized;
v->texcoord[i].x = tx / (rect ? 1 : s->tex->params.w);
v->texcoord[i].y = ty / (rect ? 1 : s->tex->params.h);
}
}
va[4] = va[2];
va[5] = va[1];
p->gl->Viewport(0, 0, vp_w, abs(vp_h));
gl_sc_draw_data(p->sc, GL_TRIANGLES, va, 6);
debug_check_gl(p, "after rendering");
}
static void finish_pass_direct(struct gl_video *p, struct ra_tex *target,
int vp_w, int vp_h, const struct mp_rect *dst)
{
GL *gl = p->gl;
pass_prepare_src_tex(p);
gl_sc_set_vertex_format(p->sc, vertex_vao, sizeof(struct vertex));
pass_record(p, gl_sc_generate(p->sc, GL_FRAGMENT_SHADER));
struct ra_tex_gl *tex_gl = target ? target->priv : NULL;
int fbo = tex_gl ? tex_gl->fbo : 0;
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo);
render_pass_quad(p, vp_w, vp_h, dst);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
gl_sc_reset(p->sc);
memset(&p->pass_tex, 0, sizeof(p->pass_tex));
p->pass_tex_num = 0;
}
// dst_fbo: this will be used for rendering; possibly reallocating the whole
// FBO, if the required parameters have changed
// w, h: required FBO target dimension, and also defines the target rectangle
// used for rasterization
// flags: 0 or combination of FBOTEX_FUZZY_W/FBOTEX_FUZZY_H (setting the fuzzy
// flags allows the FBO to be larger than the w/h parameters)
static void finish_pass_fbo(struct gl_video *p, struct fbotex *dst_fbo,
int w, int h, int flags)
{
fbotex_change(dst_fbo, p->ra, p->log, w, h, p->fbo_format, flags);
if (p->pass_compute.active) {
if (!dst_fbo->tex)
return;
struct ra_tex_gl *tex_gl = dst_fbo->tex->priv;
gl_sc_uniform_image2D(p->sc, "out_image", tex_gl->texture,
tex_gl->internal_format, GL_WRITE_ONLY);
if (!p->pass_compute.directly_writes)
GLSL(imageStore(out_image, ivec2(gl_GlobalInvocationID), color);)
dispatch_compute(p, w, h, p->pass_compute);
p->gl->MemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT);
p->pass_compute = (struct compute_info){0};
} else {
finish_pass_direct(p, dst_fbo->tex, dst_fbo->rw, dst_fbo->rh,
&(struct mp_rect){0, 0, w, h});
}
}
static const char *get_tex_swizzle(struct img_tex *img)
{
return img->tex->params.format->luminance_alpha ? "raaa" : "rgba";
}
// Copy a texture to the vec4 color, while increasing offset. Also applies
// the texture multiplier to the sampled color
static void copy_img_tex(struct gl_video *p, int *offset, struct img_tex img)
{
int count = img.components;
assert(*offset + count <= 4);
int id = pass_bind(p, img);
char src[5] = {0};
char dst[5] = {0};
const char *tex_fmt = get_tex_swizzle(&img);
const char *dst_fmt = "rgba";
for (int i = 0; i < count; i++) {
src[i] = tex_fmt[i];
dst[i] = dst_fmt[*offset + i];
}
if (img.tex && img.tex->params.format->ctype == RA_CTYPE_UINT) {
uint64_t tex_max = 1ull << p->ra_format.component_bits;
img.multiplier *= 1.0 / (tex_max - 1);
}
GLSLF("color.%s = %f * vec4(texture(texture%d, texcoord%d)).%s;\n",
dst, img.multiplier, id, id, src);
*offset += count;
}
static void skip_unused(struct gl_video *p, int num_components)
{
for (int i = num_components; i < 4; i++)
GLSLF("color.%c = %f;\n", "rgba"[i], i < 3 ? 0.0 : 1.0);
}
static void uninit_scaler(struct gl_video *p, struct scaler *scaler)
{
fbotex_uninit(&scaler->sep_fbo);
ra_tex_free(p->ra, &scaler->lut);
scaler->kernel = NULL;
scaler->initialized = false;
}
static void hook_prelude(struct gl_video *p, const char *name, int id,
struct img_tex tex)
{
GLSLHF("#define %s_raw texture%d\n", name, id);
GLSLHF("#define %s_pos texcoord%d\n", name, id);
GLSLHF("#define %s_size texture_size%d\n", name, id);
GLSLHF("#define %s_rot texture_rot%d\n", name, id);
GLSLHF("#define %s_pt pixel_size%d\n", name, id);
GLSLHF("#define %s_map texmap%d\n", name, id);
GLSLHF("#define %s_mul %f\n", name, tex.multiplier);
// Set up the sampling functions
GLSLHF("#define %s_tex(pos) (%s_mul * vec4(texture(%s_raw, pos)).%s)\n",
name, name, name, get_tex_swizzle(&tex));
// Since the extra matrix multiplication impacts performance,
// skip it unless the texture was actually rotated
if (gl_transform_eq(tex.transform, identity_trans)) {
GLSLHF("#define %s_texOff(off) %s_tex(%s_pos + %s_pt * vec2(off))\n",
name, name, name, name);
} else {
GLSLHF("#define %s_texOff(off) "
"%s_tex(%s_pos + %s_rot * vec2(off)/%s_size)\n",
name, name, name, name, name);
}
}
static bool saved_tex_find(struct gl_video *p, const char *name,
struct img_tex *out)
{
if (!name || !out)
return false;
for (int i = 0; i < p->saved_tex_num; i++) {
if (strcmp(p->saved_tex[i].name, name) == 0) {
*out = p->saved_tex[i].tex;
return true;
}
}
return false;
}
static void saved_tex_store(struct gl_video *p, const char *name,
struct img_tex tex)
{
assert(name);
for (int i = 0; i < p->saved_tex_num; i++) {
if (strcmp(p->saved_tex[i].name, name) == 0) {
p->saved_tex[i].tex = tex;
return;
}
}
assert(p->saved_tex_num < SHADER_MAX_SAVED);
p->saved_tex[p->saved_tex_num++] = (struct saved_tex) {
.name = name,
.tex = tex
};
}
static bool pass_hook_setup_binds(struct gl_video *p, const char *name,
struct img_tex tex, struct tex_hook *hook)
{
for (int t = 0; t < TEXUNIT_VIDEO_NUM; t++) {
char *bind_name = (char *)hook->bind_tex[t];
if (!bind_name)
continue;
// This is a special name that means "currently hooked texture"
if (strcmp(bind_name, "HOOKED") == 0) {
int id = pass_bind(p, tex);
hook_prelude(p, "HOOKED", id, tex);
hook_prelude(p, name, id, tex);
continue;
}
// BIND can also be used to load user-defined textures, in which
// case we will directly load them as a uniform instead of
// generating the hook_prelude boilerplate
for (int u = 0; u < p->user_tex_num; u++) {
struct gl_user_shader_tex *utex = &p->user_textures[u];
if (bstr_equals0(utex->name, bind_name)) {
gl_sc_uniform_texture(p->sc, bind_name, utex->tex);
goto next_bind;
}
}
struct img_tex bind_tex;
if (!saved_tex_find(p, bind_name, &bind_tex)) {
// Clean up texture bindings and move on to the next hook
MP_DBG(p, "Skipping hook on %s due to no texture named %s.\n",
name, bind_name);
p->pass_tex_num -= t;
return false;
}
hook_prelude(p, bind_name, pass_bind(p, bind_tex), bind_tex);
next_bind: ;
}
return true;
}
// Process hooks for a plane, saving the result and returning a new img_tex
// If 'trans' is NULL, the shader is forbidden from transforming tex
static struct img_tex pass_hook(struct gl_video *p, const char *name,
struct img_tex tex, struct gl_transform *trans)
{
if (!name)
return tex;
saved_tex_store(p, name, tex);
MP_DBG(p, "Running hooks for %s\n", name);
for (int i = 0; i < p->tex_hook_num; i++) {
struct tex_hook *hook = &p->tex_hooks[i];
// Figure out if this pass hooks this texture
for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
goto found;
}
continue;
found:
// Check the hook's condition
if (hook->cond && !hook->cond(p, tex, hook->priv)) {
MP_DBG(p, "Skipping hook on %s due to condition.\n", name);
continue;
}
if (!pass_hook_setup_binds(p, name, tex, hook))
continue;
// Run the actual hook. This generates a series of GLSL shader
// instructions sufficient for drawing the hook's output
struct gl_transform hook_off = identity_trans;
hook->hook(p, tex, &hook_off, hook->priv);
int comps = hook->components ? hook->components : tex.components;
skip_unused(p, comps);
// Compute the updated FBO dimensions and store the result
struct mp_rect_f sz = {0, 0, tex.w, tex.h};
gl_transform_rect(hook_off, &sz);
int w = lroundf(fabs(sz.x1 - sz.x0));
int h = lroundf(fabs(sz.y1 - sz.y0));
assert(p->hook_fbo_num < SHADER_MAX_SAVED);
struct fbotex *fbo = &p->hook_fbos[p->hook_fbo_num++];
finish_pass_fbo(p, fbo, w, h, 0);
const char *store_name = hook->save_tex ? hook->save_tex : name;
struct img_tex saved_tex = img_tex_fbo(fbo, tex.type, comps);
// If the texture we're saving overwrites the "current" texture, also
// update the tex parameter so that the future loop cycles will use the
// updated values, and export the offset
if (strcmp(store_name, name) == 0) {
if (!trans && !gl_transform_eq(hook_off, identity_trans)) {
MP_ERR(p, "Hook tried changing size of unscalable texture %s!\n",
name);
return tex;
}
tex = saved_tex;
if (trans)
gl_transform_trans(hook_off, trans);
}
saved_tex_store(p, store_name, saved_tex);
}
return tex;
}
// This can be used at any time in the middle of rendering to specify an
// optional hook point, which if triggered will render out to a new FBO and
// load the result back into vec4 color. Offsets applied by the hooks are
// accumulated in tex_trans, and the FBO is dimensioned according
// to p->texture_w/h
static void pass_opt_hook_point(struct gl_video *p, const char *name,
struct gl_transform *tex_trans)
{
if (!name)
return;
for (int i = 0; i < p->tex_hook_num; i++) {
struct tex_hook *hook = &p->tex_hooks[i];
for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
goto found;
}
for (int b = 0; b < TEXUNIT_VIDEO_NUM; b++) {
if (hook->bind_tex[b] && strcmp(hook->bind_tex[b], name) == 0)
goto found;
}
}
// Nothing uses this texture, don't bother storing it
return;
found:
assert(p->hook_fbo_num < SHADER_MAX_SAVED);
struct fbotex *fbo = &p->hook_fbos[p->hook_fbo_num++];
finish_pass_fbo(p, fbo, p->texture_w, p->texture_h, 0);
struct img_tex img = img_tex_fbo(fbo, PLANE_RGB, p->components);
img = pass_hook(p, name, img, tex_trans);
copy_img_tex(p, &(int){0}, img);
p->texture_w = img.w;
p->texture_h = img.h;
p->components = img.components;
pass_describe(p, "(remainder pass)");
}
static void load_shader(struct gl_video *p, struct bstr body)
{
gl_sc_hadd_bstr(p->sc, body);
gl_sc_uniform_f(p->sc, "random", (double)av_lfg_get(&p->lfg) / UINT32_MAX);
gl_sc_uniform_i(p->sc, "frame", p->frames_uploaded);
gl_sc_uniform_vec2(p->sc, "input_size",
(GLfloat[]){(p->src_rect.x1 - p->src_rect.x0) *
p->texture_offset.m[0][0],
(p->src_rect.y1 - p->src_rect.y0) *
p->texture_offset.m[1][1]});
gl_sc_uniform_vec2(p->sc, "target_size",
(GLfloat[]){p->dst_rect.x1 - p->dst_rect.x0,
p->dst_rect.y1 - p->dst_rect.y0});
gl_sc_uniform_vec2(p->sc, "tex_offset",
(GLfloat[]){p->src_rect.x0 * p->texture_offset.m[0][0] +
p->texture_offset.t[0],
p->src_rect.y0 * p->texture_offset.m[1][1] +
p->texture_offset.t[1]});
}
// Semantic equality
static bool double_seq(double a, double b)
{
return (isnan(a) && isnan(b)) || a == b;
}
static bool scaler_fun_eq(struct scaler_fun a, struct scaler_fun b)
{
if ((a.name && !b.name) || (b.name && !a.name))
return false;
return ((!a.name && !b.name) || strcmp(a.name, b.name) == 0) &&
double_seq(a.params[0], b.params[0]) &&
double_seq(a.params[1], b.params[1]) &&
a.blur == b.blur &&
a.taper == b.taper;
}
static bool scaler_conf_eq(struct scaler_config a, struct scaler_config b)
{
// Note: antiring isn't compared because it doesn't affect LUT
// generation
return scaler_fun_eq(a.kernel, b.kernel) &&
scaler_fun_eq(a.window, b.window) &&
a.radius == b.radius &&
a.clamp == b.clamp;
}
static void reinit_scaler(struct gl_video *p, struct scaler *scaler,
const struct scaler_config *conf,
double scale_factor,
int sizes[])
{
if (scaler_conf_eq(scaler->conf, *conf) &&
scaler->scale_factor == scale_factor &&
scaler->initialized)
return;
uninit_scaler(p, scaler);
scaler->conf = *conf;
bool is_tscale = scaler->index == SCALER_TSCALE;
scaler->conf.kernel.name = (char *)handle_scaler_opt(conf->kernel.name, is_tscale);
scaler->conf.window.name = (char *)handle_scaler_opt(conf->window.name, is_tscale);
scaler->scale_factor = scale_factor;
scaler->insufficient = false;
scaler->initialized = true;
const struct filter_kernel *t_kernel = mp_find_filter_kernel(conf->kernel.name);
if (!t_kernel)
return;
scaler->kernel_storage = *t_kernel;
scaler->kernel = &scaler->kernel_storage;
const char *win = conf->window.name;
if (!win || !win[0])
win = t_kernel->window; // fall back to the scaler's default window
const struct filter_window *t_window = mp_find_filter_window(win);
if (t_window)
scaler->kernel->w = *t_window;
for (int n = 0; n < 2; n++) {
if (!isnan(conf->kernel.params[n]))
scaler->kernel->f.params[n] = conf->kernel.params[n];
if (!isnan(conf->window.params[n]))
scaler->kernel->w.params[n] = conf->window.params[n];
}
if (conf->kernel.blur > 0.0)
scaler->kernel->f.blur = conf->kernel.blur;
if (conf->window.blur > 0.0)
scaler->kernel->w.blur = conf->window.blur;
if (conf->kernel.taper > 0.0)
scaler->kernel->f.taper = conf->kernel.taper;
if (conf->window.taper > 0.0)
scaler->kernel->w.taper = conf->window.taper;
if (scaler->kernel->f.resizable && conf->radius > 0.0)
scaler->kernel->f.radius = conf->radius;
scaler->kernel->clamp = conf->clamp;
scaler->kernel->value_cutoff = conf->cutoff;
scaler->insufficient = !mp_init_filter(scaler->kernel, sizes, scale_factor);
int size = scaler->kernel->size;
int elems_per_pixel = 4;
if (size == 1) {
elems_per_pixel = 1;
} else if (size == 2) {
elems_per_pixel = 2;
} else if (size == 6) {
elems_per_pixel = 3;
}
int width = size / elems_per_pixel;
assert(size == width * elems_per_pixel);
const struct ra_format *fmt = ra_find_float16_format(p->ra, elems_per_pixel);
assert(fmt);
scaler->lut_size = 1 << p->opts.scaler_lut_size;
float *weights = talloc_array(NULL, float, scaler->lut_size * size);
mp_compute_lut(scaler->kernel, scaler->lut_size, weights);
bool use_1d = scaler->kernel->polar && (p->ra->caps & RA_CAP_TEX_1D);
struct ra_tex_params lut_params = {
.dimensions = use_1d ? 1 : 2,
.w = use_1d ? scaler->lut_size : width,
.h = use_1d ? 1 : scaler->lut_size,
.d = 1,
.format = fmt,
.render_src = true,
.src_linear = true,
.initial_data = weights,
};
scaler->lut = ra_tex_create(p->ra, &lut_params);
talloc_free(weights);
debug_check_gl(p, "after initializing scaler");
}
// Special helper for sampling from two separated stages
static void pass_sample_separated(struct gl_video *p, struct img_tex src,
struct scaler *scaler, int w, int h)
{
// Separate the transformation into x and y components, per pass
struct gl_transform t_x = {
.m = {{src.transform.m[0][0], 0.0}, {src.transform.m[1][0], 1.0}},
.t = {src.transform.t[0], 0.0},
};
struct gl_transform t_y = {
.m = {{1.0, src.transform.m[0][1]}, {0.0, src.transform.m[1][1]}},
.t = {0.0, src.transform.t[1]},
};
// First pass (scale only in the y dir)
src.transform = t_y;
sampler_prelude(p->sc, pass_bind(p, src));
GLSLF("// first pass\n");
pass_sample_separated_gen(p->sc, scaler, 0, 1);
GLSLF("color *= %f;\n", src.multiplier);
finish_pass_fbo(p, &scaler->sep_fbo, src.w, h, FBOTEX_FUZZY_H);
// Second pass (scale only in the x dir)
src = img_tex_fbo(&scaler->sep_fbo, src.type, src.components);
src.transform = t_x;
pass_describe(p, "%s second pass", scaler->conf.kernel.name);
sampler_prelude(p->sc, pass_bind(p, src));
pass_sample_separated_gen(p->sc, scaler, 1, 0);
}
// Picks either the compute shader version or the regular sampler version
// depending on hardware support
static void pass_dispatch_sample_polar(struct gl_video *p, struct scaler *scaler,
struct img_tex tex, int w, int h)
{
GL *gl = p->gl;
GLenum reqs = MPGL_CAP_COMPUTE_SHADER | MPGL_CAP_NESTED_ARRAY;
if ((gl->mpgl_caps & reqs) != reqs)
goto fallback;
int bound = ceil(scaler->kernel->radius_cutoff);
int offset = bound - 1; // padding top/left
int padding = offset + bound; // total padding
float ratiox = (float)w / tex.w,
ratioy = (float)h / tex.h;
// For performance we want to load at least as many pixels
// horizontally as there are threads in a warp (32 for nvidia), as
// well as enough to take advantage of shmem parallelism
const int warp_size = 32, threads = 256;
int bw = warp_size;
int bh = threads / bw;
// We need to sample everything from base_min to base_max, so make sure
// we have enough room in shmem
int iw = (int)ceil(bw / ratiox) + padding + 1,
ih = (int)ceil(bh / ratioy) + padding + 1;
int shmem_req = iw * ih * tex.components * sizeof(GLfloat);
if (shmem_req > gl->max_shmem)
goto fallback;
pass_is_compute(p, bw, bh);
pass_compute_polar(p->sc, scaler, tex.components, bw, bh, iw, ih);
return;
fallback:
// Fall back to regular polar shader when compute shaders are unsupported
// or the kernel is too big for shmem
pass_sample_polar(p->sc, scaler, tex.components, p->gl->glsl_version);
}
// Sample from img_tex, with the src rectangle given by it.
// The dst rectangle is implicit by what the caller will do next, but w and h
// must still be what is going to be used (to dimension FBOs correctly).
// This will write the scaled contents to the vec4 "color".
// The scaler unit is initialized by this function; in order to avoid cache
// thrashing, the scaler unit should usually use the same parameters.
static void pass_sample(struct gl_video *p, struct img_tex tex,
struct scaler *scaler, const struct scaler_config *conf,
double scale_factor, int w, int h)
{
reinit_scaler(p, scaler, conf, scale_factor, filter_sizes);
// Describe scaler
const char *scaler_opt[] = {
[SCALER_SCALE] = "scale",
[SCALER_DSCALE] = "dscale",
[SCALER_CSCALE] = "cscale",
[SCALER_TSCALE] = "tscale",
};
pass_describe(p, "%s=%s (%s)", scaler_opt[scaler->index],
scaler->conf.kernel.name, plane_names[tex.type]);
bool is_separated = scaler->kernel && !scaler->kernel->polar;
// Set up the transformation+prelude and bind the texture, for everything
// other than separated scaling (which does this in the subfunction)
if (!is_separated)
sampler_prelude(p->sc, pass_bind(p, tex));
// Dispatch the scaler. They're all wildly different.
const char *name = scaler->conf.kernel.name;
if (strcmp(name, "bilinear") == 0) {
GLSL(color = texture(tex, pos);)
} else if (strcmp(name, "bicubic_fast") == 0) {
pass_sample_bicubic_fast(p->sc);
} else if (strcmp(name, "oversample") == 0) {
pass_sample_oversample(p->sc, scaler, w, h);
} else if (scaler->kernel && scaler->kernel->polar) {
pass_dispatch_sample_polar(p, scaler, tex, w, h);
} else if (scaler->kernel) {
pass_sample_separated(p, tex, scaler, w, h);
} else {
// Should never happen
abort();
}
// Apply any required multipliers. Separated scaling already does this in
// its first stage
if (!is_separated)
GLSLF("color *= %f;\n", tex.multiplier);
// Micro-optimization: Avoid scaling unneeded channels
skip_unused(p, tex.components);
}
// Returns true if two img_texs are semantically equivalent (same metadata)
static bool img_tex_equiv(struct img_tex a, struct img_tex b)
{
return a.type == b.type &&
a.components == b.components &&
a.multiplier == b.multiplier &&
a.tex->params.format == b.tex->params.format &&
a.tex->params.w == b.tex->params.w &&
a.tex->params.h == b.tex->params.h &&
a.w == b.w &&
a.h == b.h &&
gl_transform_eq(a.transform, b.transform);
}
static bool add_hook(struct gl_video *p, struct tex_hook hook)
{
if (p->tex_hook_num < SHADER_MAX_PASSES) {
p->tex_hooks[p->tex_hook_num++] = hook;
return true;
} else {
MP_ERR(p, "Too many passes! Limit is %d.\n", SHADER_MAX_PASSES);
talloc_free(hook.priv);
return false;
}
}
static void deband_hook(struct gl_video *p, struct img_tex tex,
struct gl_transform *trans, void *priv)
{
pass_describe(p, "debanding (%s)", plane_names[tex.type]);
pass_sample_deband(p->sc, p->opts.deband_opts, &p->lfg);
}
static void unsharp_hook(struct gl_video *p, struct img_tex tex,
struct gl_transform *trans, void *priv)
{
pass_describe(p, "unsharp masking");
GLSLF("#define tex HOOKED\n");
GLSLF("#define pos HOOKED_pos\n");
GLSLF("#define pt HOOKED_pt\n");
pass_sample_unsharp(p->sc, p->opts.unsharp);
}
struct szexp_ctx {
struct gl_video *p;
struct img_tex tex;
};
static bool szexp_lookup(void *priv, struct bstr var, float size[2])
{
struct szexp_ctx *ctx = priv;
struct gl_video *p = ctx->p;
if (bstr_equals0(var, "NATIVE_CROPPED")) {
size[0] = (p->src_rect.x1 - p->src_rect.x0) * p->texture_offset.m[0][0];
size[1] = (p->src_rect.y1 - p->src_rect.y0) * p->texture_offset.m[1][1];
return true;
}
// The size of OUTPUT is determined. It could be useful for certain
// user shaders to skip passes.
if (bstr_equals0(var, "OUTPUT")) {
size[0] = p->dst_rect.x1 - p->dst_rect.x0;
size[1] = p->dst_rect.y1 - p->dst_rect.y0;
return true;
}
// HOOKED is a special case
if (bstr_equals0(var, "HOOKED")) {
size[0] = ctx->tex.w;
size[1] = ctx->tex.h;
return true;
}
for (int o = 0; o < p->saved_tex_num; o++) {
if (bstr_equals0(var, p->saved_tex[o].name)) {
size[0] = p->saved_tex[o].tex.w;
size[1] = p->saved_tex[o].tex.h;
return true;
}
}
return false;
}
static bool user_hook_cond(struct gl_video *p, struct img_tex tex, void *priv)
{
struct gl_user_shader_hook *shader = priv;
assert(shader);
float res = false;
eval_szexpr(p->log, &(struct szexp_ctx){p, tex}, szexp_lookup, shader->cond, &res);
return res;
}
static void user_hook(struct gl_video *p, struct img_tex tex,
struct gl_transform *trans, void *priv)
{
struct gl_user_shader_hook *shader = priv;
assert(shader);
load_shader(p, shader->pass_body);
pass_describe(p, "user shader: %.*s (%s)", BSTR_P(shader->pass_desc),
plane_names[tex.type]);
if (shader->compute.active) {
p->pass_compute = shader->compute;
GLSLF("hook();\n");
} else {
GLSLF("color = hook();\n");
}
// Make sure we at least create a legal FBO on failure, since it's better
// to do this and display an error message than just crash OpenGL
float w = 1.0, h = 1.0;
eval_szexpr(p->log, &(struct szexp_ctx){p, tex}, szexp_lookup, shader->width, &w);
eval_szexpr(p->log, &(struct szexp_ctx){p, tex}, szexp_lookup, shader->height, &h);
*trans = (struct gl_transform){{{w / tex.w, 0}, {0, h / tex.h}}};
gl_transform_trans(shader->offset, trans);
}
static bool add_user_hook(void *priv, struct gl_user_shader_hook hook)
{
struct gl_video *p = priv;
struct gl_user_shader_hook *copy = talloc_ptrtype(p, copy);
*copy = hook;
struct tex_hook texhook = {
.save_tex = bstrdup0(copy, hook.save_tex),
.components = hook.components,
.hook = user_hook,
.cond = user_hook_cond,
.priv = copy,
};
for (int h = 0; h < SHADER_MAX_HOOKS; h++)
texhook.hook_tex[h] = bstrdup0(copy, hook.hook_tex[h]);
for (int h = 0; h < SHADER_MAX_BINDS; h++)
texhook.bind_tex[h] = bstrdup0(copy, hook.bind_tex[h]);
return add_hook(p, texhook);
}
static bool add_user_tex(void *priv, struct gl_user_shader_tex tex)
{
struct gl_video *p = priv;
if (p->user_tex_num == SHADER_MAX_PASSES) {
MP_ERR(p, "Too many textures! Limit is %d.\n", SHADER_MAX_PASSES);
goto err;
}
tex.tex = ra_tex_create(p->ra, &tex.params);
TA_FREEP(&tex.params.initial_data);
p->user_textures[p->user_tex_num++] = tex;
return true;
err:
talloc_free(tex.params.initial_data);
return false;
}
static void load_user_shaders(struct gl_video *p, char **shaders)
{
if (!shaders)
return;
for (int n = 0; shaders[n] != NULL; n++) {
struct bstr file = load_cached_file(p, shaders[n]);
parse_user_shader(p->log, p->ra, file, p, add_user_hook, add_user_tex);
}
}
static void gl_video_setup_hooks(struct gl_video *p)
{
gl_video_reset_hooks(p);
if (p->opts.deband) {
add_hook(p, (struct tex_hook) {
.hook_tex = {"LUMA", "CHROMA", "RGB", "XYZ"},
.bind_tex = {"HOOKED"},
.hook = deband_hook,
});
}
if (p->opts.unsharp != 0.0) {
add_hook(p, (struct tex_hook) {
.hook_tex = {"MAIN"},
.bind_tex = {"HOOKED"},
.hook = unsharp_hook,
});
}
load_user_shaders(p, p->opts.user_shaders);
}
// sample from video textures, set "color" variable to yuv value
static void pass_read_video(struct gl_video *p)
{
struct img_tex tex[4];
struct gl_transform offsets[4];
pass_get_img_tex(p, &p->image, tex, offsets);
// To keep the code as simple as possibly, we currently run all shader
// stages even if they would be unnecessary (e.g. no hooks for a texture).
// In the future, deferred img_tex should optimize this away.
// Merge semantically identical textures. This loop is done from back
// to front so that merged textures end up in the right order while
// simultaneously allowing us to skip unnecessary merges
for (int n = 3; n >= 0; n--) {
if (tex[n].type == PLANE_NONE)
continue;
int first = n;
int num = 0;
for (int i = 0; i < n; i++) {
if (img_tex_equiv(tex[n], tex[i]) &&
gl_transform_eq(offsets[n], offsets[i]))
{
GLSLF("// merging plane %d ...\n", i);
copy_img_tex(p, &num, tex[i]);
first = MPMIN(first, i);
tex[i] = (struct img_tex){0};
}
}
if (num > 0) {
GLSLF("// merging plane %d ... into %d\n", n, first);
copy_img_tex(p, &num, tex[n]);
pass_describe(p, "merging planes");
finish_pass_fbo(p, &p->merge_fbo[n], tex[n].w, tex[n].h, 0);
tex[first] = img_tex_fbo(&p->merge_fbo[n], tex[n].type, num);
tex[n] = (struct img_tex){0};
}
}
// If any textures are still in integer format by this point, we need
// to introduce an explicit conversion pass to avoid breaking hooks/scaling
for (int n = 0; n < 4; n++) {
if (tex[n].tex && tex[n].tex->params.format->ctype == RA_CTYPE_UINT) {
GLSLF("// use_integer fix for plane %d\n", n);
copy_img_tex(p, &(int){0}, tex[n]);
pass_describe(p, "use_integer fix");
finish_pass_fbo(p, &p->integer_fbo[n], tex[n].w, tex[n].h, 0);
tex[n] = img_tex_fbo(&p->integer_fbo[n], tex[n].type,
tex[n].components);
}
}
// Dispatch the hooks for all of these textures, saving and perhaps
// modifying them in the process
for (int n = 0; n < 4; n++) {
const char *name;
switch (tex[n].type) {
case PLANE_RGB: name = "RGB"; break;
case PLANE_LUMA: name = "LUMA"; break;
case PLANE_CHROMA: name = "CHROMA"; break;
case PLANE_ALPHA: name = "ALPHA"; break;
case PLANE_XYZ: name = "XYZ"; break;
default: continue;
}
tex[n] = pass_hook(p, name, tex[n], &offsets[n]);
}
// At this point all planes are finalized but they may not be at the
// required size yet. Furthermore, they may have texture offsets that
// require realignment. For lack of something better to do, we assume
// the rgb/luma texture is the "reference" and scale everything else
// to match.
for (int n = 0; n < 4; n++) {
switch (tex[n].type) {
case PLANE_RGB:
case PLANE_XYZ:
case PLANE_LUMA: break;
default: continue;
}
p->texture_w = tex[n].w;
p->texture_h = tex[n].h;
p->texture_offset = offsets[n];
break;
}
// Compute the reference rect
struct mp_rect_f src = {0.0, 0.0, p->image_params.w, p->image_params.h};
struct mp_rect_f ref = src;
gl_transform_rect(p->texture_offset, &ref);
MP_DBG(p, "ref rect: {%f %f} {%f %f}\n", ref.x0, ref.y0, ref.x1, ref.y1);
// Explicitly scale all of the textures that don't match
for (int n = 0; n < 4; n++) {
if (tex[n].type == PLANE_NONE)
continue;
// If the planes are aligned identically, we will end up with the
// exact same source rectangle.
struct mp_rect_f rect = src;
gl_transform_rect(offsets[n], &rect);
MP_DBG(p, "rect[%d]: {%f %f} {%f %f}\n", n,
rect.x0, rect.y0, rect.x1, rect.y1);
if (mp_rect_f_seq(ref, rect))
continue;
// If the rectangles differ, then our planes have a different
// alignment and/or size. First of all, we have to compute the
// corrections required to meet the target rectangle
struct gl_transform fix = {
.m = {{(ref.x1 - ref.x0) / (rect.x1 - rect.x0), 0.0},
{0.0, (ref.y1 - ref.y0) / (rect.y1 - rect.y0)}},
.t = {ref.x0, ref.y0},
};
MP_DBG(p, "-> fix[%d] = {%f %f} + off {%f %f}\n", n,
fix.m[0][0], fix.m[1][1], fix.t[0], fix.t[1]);
// Since the scale in texture space is different from the scale in
// absolute terms, we have to scale the coefficients down to be
// relative to the texture's physical dimensions and local offset
struct gl_transform scale = {
.m = {{(float)tex[n].w / p->texture_w, 0.0},
{0.0, (float)tex[n].h / p->texture_h}},
.t = {-rect.x0, -rect.y0},
};
if (p->image_params.rotate % 180 == 90)
MPSWAP(double, scale.m[0][0], scale.m[1][1]);
gl_transform_trans(scale, &fix);
MP_DBG(p, "-> scaled[%d] = {%f %f} + off {%f %f}\n", n,
fix.m[0][0], fix.m[1][1], fix.t[0], fix.t[1]);
// Since the texture transform is a function of the texture coordinates
// to texture space, rather than the other way around, we have to
// actually apply the *inverse* of this. Fortunately, calculating
// the inverse is relatively easy here.
fix.m[0][0] = 1.0 / fix.m[0][0];
fix.m[1][1] = 1.0 / fix.m[1][1];
fix.t[0] = fix.m[0][0] * -fix.t[0];
fix.t[1] = fix.m[1][1] * -fix.t[1];
gl_transform_trans(fix, &tex[n].transform);
int scaler_id = -1;
const char *name = NULL;
switch (tex[n].type) {
case PLANE_RGB:
case PLANE_LUMA:
case PLANE_XYZ:
scaler_id = SCALER_SCALE;
// these aren't worth hooking, fringe hypothetical cases only
break;
case PLANE_CHROMA:
scaler_id = SCALER_CSCALE;
name = "CHROMA_SCALED";
break;
case PLANE_ALPHA:
// alpha always uses bilinear
name = "ALPHA_SCALED";
}
if (scaler_id < 0)
continue;
const struct scaler_config *conf = &p->opts.scaler[scaler_id];
struct scaler *scaler = &p->scaler[scaler_id];
// bilinear scaling is a free no-op thanks to GPU sampling
if (strcmp(conf->kernel.name, "bilinear") != 0) {
GLSLF("// upscaling plane %d\n", n);
pass_sample(p, tex[n], scaler, conf, 1.0, p->texture_w, p->texture_h);
finish_pass_fbo(p, &p->scale_fbo[n], p->texture_w, p->texture_h, 0);
tex[n] = img_tex_fbo(&p->scale_fbo[n], tex[n].type, tex[n].components);
}
// Run any post-scaling hooks
tex[n] = pass_hook(p, name, tex[n], NULL);
}
// All planes are of the same size and properly aligned at this point
GLSLF("// combining planes\n");
int coord = 0;
for (int i = 0; i < 4; i++) {
if (tex[i].type != PLANE_NONE)
copy_img_tex(p, &coord, tex[i]);
}
p->components = coord;
}
// Utility function that simply binds an FBO and reads from it, without any
// transformations.
static void pass_read_fbo(struct gl_video *p, struct fbotex *fbo)
{
struct img_tex tex = img_tex_fbo(fbo, PLANE_RGB, p->components);
copy_img_tex(p, &(int){0}, tex);
}
// yuv conversion, and any other conversions before main up/down-scaling
static void pass_convert_yuv(struct gl_video *p)
{
struct gl_shader_cache *sc = p->sc;
struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
cparams.gray = p->is_gray;
mp_csp_set_image_params(&cparams, &p->image_params);
mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
p->user_gamma = 1.0 / (cparams.gamma * p->opts.gamma);
pass_describe(p, "color conversion");
if (p->color_swizzle[0])
GLSLF("color = color.%s;\n", p->color_swizzle);
// Pre-colormatrix input gamma correction
if (cparams.color.space == MP_CSP_XYZ)
GLSL(color.rgb = pow(color.rgb, vec3(2.6));) // linear light
// We always explicitly normalize the range in pass_read_video
cparams.input_bits = cparams.texture_bits = 0;
// Conversion to RGB. For RGB itself, this still applies e.g. brightness
// and contrast controls, or expansion of e.g. LSB-packed 10 bit data.
struct mp_cmat m = {{{0}}};
mp_get_csp_matrix(&cparams, &m);
gl_sc_uniform_mat3(sc, "colormatrix", true, &m.m[0][0]);
gl_sc_uniform_vec3(sc, "colormatrix_c", m.c);
GLSL(color.rgb = mat3(colormatrix) * color.rgb + colormatrix_c;)
if (p->image_params.color.space == MP_CSP_BT_2020_C) {
// Conversion for C'rcY'cC'bc via the BT.2020 CL system:
// C'bc = (B'-Y'c) / 1.9404 | C'bc <= 0
// = (B'-Y'c) / 1.5816 | C'bc > 0
//
// C'rc = (R'-Y'c) / 1.7184 | C'rc <= 0
// = (R'-Y'c) / 0.9936 | C'rc > 0
//
// as per the BT.2020 specification, table 4. This is a non-linear
// transformation because (constant) luminance receives non-equal
// contributions from the three different channels.
GLSLF("// constant luminance conversion\n");
GLSL(color.br = color.br * mix(vec2(1.5816, 0.9936),
vec2(1.9404, 1.7184),
lessThanEqual(color.br, vec2(0)))
+ color.gg;)
// Expand channels to camera-linear light. This shader currently just
// assumes everything uses the BT.2020 12-bit gamma function, since the
// difference between 10 and 12-bit is negligible for anything other
// than 12-bit content.
GLSL(color.rgb = mix(color.rgb * vec3(1.0/4.5),
pow((color.rgb + vec3(0.0993))*vec3(1.0/1.0993),
vec3(1.0/0.45)),
lessThanEqual(vec3(0.08145), color.rgb));)
// Calculate the green channel from the expanded RYcB
// The BT.2020 specification says Yc = 0.2627*R + 0.6780*G + 0.0593*B
GLSL(color.g = (color.g - 0.2627*color.r - 0.0593*color.b)*1.0/0.6780;)
// Recompress to receive the R'G'B' result, same as other systems
GLSL(color.rgb = mix(color.rgb * vec3(4.5),
vec3(1.0993) * pow(color.rgb, vec3(0.45)) - vec3(0.0993),
lessThanEqual(vec3(0.0181), color.rgb));)
}
p->components = 3;
if (!p->has_alpha || p->opts.alpha_mode == ALPHA_NO) {
GLSL(color.a = 1.0;)
} else { // alpha present in image
p->components = 4;
GLSL(color = vec4(color.rgb * color.a, color.a);)
}
}
static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2])
{
double target_w = p->src_rect.x1 - p->src_rect.x0;
double target_h = p->src_rect.y1 - p->src_rect.y0;
if (transpose_rot && p->image_params.rotate % 180 == 90)
MPSWAP(double, target_w, target_h);
xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) / target_w;
xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) / target_h;
}
// Cropping.
static void compute_src_transform(struct gl_video *p, struct gl_transform *tr)
{
float sx = (p->src_rect.x1 - p->src_rect.x0) / (float)p->texture_w,
sy = (p->src_rect.y1 - p->src_rect.y0) / (float)p->texture_h,
ox = p->src_rect.x0,
oy = p->src_rect.y0;
struct gl_transform transform = {{{sx, 0}, {0, sy}}, {ox, oy}};
gl_transform_trans(p->texture_offset, &transform);
*tr = transform;
}
// Takes care of the main scaling and pre/post-conversions
static void pass_scale_main(struct gl_video *p)
{
// Figure out the main scaler.
double xy[2];
get_scale_factors(p, true, xy);
// actual scale factor should be divided by the scale factor of prescaling.
xy[0] /= p->texture_offset.m[0][0];
xy[1] /= p->texture_offset.m[1][1];
bool downscaling = xy[0] < 1.0 || xy[1] < 1.0;
bool upscaling = !downscaling && (xy[0] > 1.0 || xy[1] > 1.0);
double scale_factor = 1.0;
struct scaler *scaler = &p->scaler[SCALER_SCALE];
struct scaler_config scaler_conf = p->opts.scaler[SCALER_SCALE];
if (p->opts.scaler_resizes_only && !downscaling && !upscaling) {
scaler_conf.kernel.name = "bilinear";
// For scaler-resizes-only, we round the texture offset to
// the nearest round value in order to prevent ugly blurriness
// (in exchange for slightly shifting the image by up to half a
// subpixel)
p->texture_offset.t[0] = roundf(p->texture_offset.t[0]);
p->texture_offset.t[1] = roundf(p->texture_offset.t[1]);
}
if (downscaling && p->opts.scaler[SCALER_DSCALE].kernel.name) {
scaler_conf = p->opts.scaler[SCALER_DSCALE];
scaler = &p->scaler[SCALER_DSCALE];
}
// When requesting correct-downscaling and the clip is anamorphic, and
// because only a single scale factor is used for both axes, enable it only
// when both axes are downscaled, and use the milder of the factors to not
// end up with too much blur on one axis (even if we end up with sub-optimal
// scale factor on the other axis). This is better than not respecting
// correct scaling at all for anamorphic clips.
double f = MPMAX(xy[0], xy[1]);
if (p->opts.correct_downscaling && f < 1.0)
scale_factor = 1.0 / f;
// Pre-conversion, like linear light/sigmoidization
GLSLF("// scaler pre-conversion\n");
bool use_linear = p->opts.linear_scaling || p->opts.sigmoid_upscaling;
// Linear light downscaling results in nasty artifacts for HDR curves due
// to the potentially extreme brightness differences severely compounding
// any ringing. So just scale in gamma light instead.
if (mp_trc_is_hdr(p->image_params.color.gamma) && downscaling)
use_linear = false;
if (use_linear) {
p->use_linear = true;
pass_linearize(p->sc, p->image_params.color.gamma);
pass_opt_hook_point(p, "LINEAR", NULL);
}
bool use_sigmoid = use_linear && p->opts.sigmoid_upscaling && upscaling;
float sig_center, sig_slope, sig_offset, sig_scale;
if (use_sigmoid) {
// Coefficients for the sigmoidal transform are taken from the
// formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal
sig_center = p->opts.sigmoid_center;
sig_slope = p->opts.sigmoid_slope;
// This function needs to go through (0,0) and (1,1) so we compute the
// values at 1 and 0, and then scale/shift them, respectively.
sig_offset = 1.0/(1+expf(sig_slope * sig_center));
sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset;
GLSLF("color.rgb = %f - log(1.0/(color.rgb * %f + %f) - 1.0) * 1.0/%f;\n",
sig_center, sig_scale, sig_offset, sig_slope);
pass_opt_hook_point(p, "SIGMOID", NULL);
}
pass_opt_hook_point(p, "PREKERNEL", NULL);
int vp_w = p->dst_rect.x1 - p->dst_rect.x0;
int vp_h = p->dst_rect.y1 - p->dst_rect.y0;
struct gl_transform transform;
compute_src_transform(p, &transform);
GLSLF("// main scaling\n");
finish_pass_fbo(p, &p->indirect_fbo, p->texture_w, p->texture_h, 0);
struct img_tex src = img_tex_fbo(&p->indirect_fbo, PLANE_RGB, p->components);
gl_transform_trans(transform, &src.transform);
pass_sample(p, src, scaler, &scaler_conf, scale_factor, vp_w, vp_h);
// Changes the texture size to display size after main scaler.
p->texture_w = vp_w;
p->texture_h = vp_h;
pass_opt_hook_point(p, "POSTKERNEL", NULL);
GLSLF("// scaler post-conversion\n");
if (use_sigmoid) {
// Inverse of the transformation above
GLSLF("color.rgb = (1.0/(1.0 + exp(%f * (%f - color.rgb))) - %f) * 1.0/%f;\n",
sig_slope, sig_center, sig_offset, sig_scale);
}
}
// Adapts the colors to the right output color space. (Final pass during
// rendering)
// If OSD is true, ignore any changes that may have been made to the video
// by previous passes (i.e. linear scaling)
static void pass_colormanage(struct gl_video *p, struct mp_colorspace src, bool osd)
{
GL *gl = p->gl;
// Figure out the target color space from the options, or auto-guess if
// none were set
struct mp_colorspace dst = {
.gamma = p->opts.target_trc,
.primaries = p->opts.target_prim,
.light = MP_CSP_LIGHT_DISPLAY,
};
if (p->use_lut_3d) {
// The 3DLUT is always generated against the video's original source
// space, *not* the reference space. (To avoid having to regenerate
// the 3DLUT for the OSD on every frame)
enum mp_csp_prim prim_orig = p->image_params.color.primaries;
enum mp_csp_trc trc_orig = p->image_params.color.gamma;
// One exception: HDR is not implemented by LittleCMS for technical
// limitation reasons, so we use a gamma 2.2 input curve here instead.
// We could pick any value we want here, the difference is just coding
// efficiency.
if (mp_trc_is_hdr(trc_orig))
trc_orig = MP_CSP_TRC_GAMMA22;
if (gl_video_get_lut3d(p, prim_orig, trc_orig)) {
dst.primaries = prim_orig;
dst.gamma = trc_orig;
}
}
if (dst.primaries == MP_CSP_PRIM_AUTO) {
// The vast majority of people are on sRGB or BT.709 displays, so pick
// this as the default output color space.
dst.primaries = MP_CSP_PRIM_BT_709;
if (src.primaries == MP_CSP_PRIM_BT_601_525 ||
src.primaries == MP_CSP_PRIM_BT_601_625)
{
// Since we auto-pick BT.601 and BT.709 based on the dimensions,
// combined with the fact that they're very similar to begin with,
// and to avoid confusing the average user, just don't adapt BT.601
// content automatically at all.
dst.primaries = src.primaries;
}
}
if (dst.gamma == MP_CSP_TRC_AUTO) {
// Most people seem to complain when the image is darker or brighter
// than what they're "used to", so just avoid changing the gamma
// altogether by default. The only exceptions to this rule apply to
// very unusual TRCs, which even hardcode technoluddites would probably
// not enjoy viewing unaltered.
dst.gamma = src.gamma;
// Avoid outputting linear light or HDR content "by default". For these
// just pick gamma 2.2 as a default, since it's a good estimate for
// the response of typical displays
if (dst.gamma == MP_CSP_TRC_LINEAR || mp_trc_is_hdr(dst.gamma))
dst.gamma = MP_CSP_TRC_GAMMA22;
}
bool detect_peak = p->opts.compute_hdr_peak && mp_trc_is_hdr(src.gamma);
if (detect_peak) {
pass_describe(p, "detect HDR peak");
pass_is_compute(p, 8, 8); // 8x8 is good for performance
if (!p->hdr_peak_ssbo) {
struct {
GLuint sig_peak_raw;
GLuint index;
GLuint frame_max[PEAK_DETECT_FRAMES+1];
} peak_ssbo = {0};
// Prefill with safe values
int safe = MP_REF_WHITE * mp_trc_nom_peak(p->image_params.color.gamma);
peak_ssbo.sig_peak_raw = PEAK_DETECT_FRAMES * safe;
for (int i = 0; i < PEAK_DETECT_FRAMES+1; i++)
peak_ssbo.frame_max[i] = safe;
gl->GenBuffers(1, &p->hdr_peak_ssbo);
gl->BindBuffer(GL_SHADER_STORAGE_BUFFER, p->hdr_peak_ssbo);
gl->BufferData(GL_SHADER_STORAGE_BUFFER, sizeof(peak_ssbo),
&peak_ssbo, GL_STREAM_COPY);
gl->BindBuffer(GL_SHADER_STORAGE_BUFFER, 0);
}
gl->MemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT);
gl_sc_ssbo(p->sc, "PeakDetect", p->hdr_peak_ssbo,
"uint sig_peak_raw;"
"uint index;"
"uint frame_max[%d];", PEAK_DETECT_FRAMES + 1
);
}
// Adapt from src to dst as necessary
pass_color_map(p->sc, src, dst, p->opts.tone_mapping,
p->opts.tone_mapping_param, p->opts.tone_mapping_desat,
detect_peak, p->use_linear && !osd);
if (p->use_lut_3d) {
gl_sc_uniform_texture(p->sc, "lut_3d", p->lut_3d_texture);
GLSL(vec3 cpos;)
for (int i = 0; i < 3; i++)
GLSLF("cpos[%d] = LUT_POS(color[%d], %d.0);\n", i, i, p->lut_3d_size[i]);
GLSL(color.rgb = texture3D(lut_3d, cpos).rgb;)
}
}
static void pass_dither(struct gl_video *p)
{
// Assume 8 bits per component if unknown.
int dst_depth = p->fb_depth;
if (p->opts.dither_depth > 0)
dst_depth = p->opts.dither_depth;
if (p->opts.dither_depth < 0 || p->opts.dither_algo == DITHER_NONE)
return;
if (!p->dither_texture) {
MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
int tex_size = 0;
void *tex_data = NULL;
const struct ra_format *fmt = NULL;
void *temp = NULL;
if (p->opts.dither_algo == DITHER_FRUIT) {
int sizeb = p->opts.dither_size;
int size = 1 << sizeb;
if (p->last_dither_matrix_size != size) {
p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
float, size * size);
mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
p->last_dither_matrix_size = size;
}
// Prefer R16 texture since they provide higher precision.
fmt = ra_find_unorm_format(p->ra, 2, 1);
if (!fmt)
fmt = ra_find_float16_format(p->ra, 1);
if (fmt) {
tex_size = size;
tex_data = p->last_dither_matrix;
if (fmt->ctype == RA_CTYPE_UNORM) {
uint16_t *t = temp = talloc_array(NULL, uint16_t, size * size);
for (int n = 0; n < size * size; n++)
t[n] = p->last_dither_matrix[n] * UINT16_MAX;
tex_data = t;
}
} else {
MP_VERBOSE(p, "GL too old. Falling back to ordered dither.\n");
p->opts.dither_algo = DITHER_ORDERED;
}
}
if (p->opts.dither_algo == DITHER_ORDERED) {
temp = talloc_array(NULL, char, 8 * 8);
mp_make_ordered_dither_matrix(temp, 8);
fmt = ra_find_unorm_format(p->ra, 1, 1);
tex_size = 8;
tex_data = temp;
}
struct ra_tex_params params = {
.dimensions = 2,
.w = tex_size,
.h = tex_size,
.d = 1,
.format = fmt,
.render_src = true,
.src_repeat = true,
.initial_data = tex_data,
};
p->dither_texture = ra_tex_create(p->ra, ¶ms);
debug_check_gl(p, "dither setup");
talloc_free(temp);
}
GLSLF("// dithering\n");
// This defines how many bits are considered significant for output on
// screen. The superfluous bits will be used for rounding according to the
// dither matrix. The precision of the source implicitly decides how many
// dither patterns can be visible.
int dither_quantization = (1 << dst_depth) - 1;
int dither_size = p->dither_texture->params.w;
gl_sc_uniform_texture(p->sc, "dither", p->dither_texture);
GLSLF("vec2 dither_pos = gl_FragCoord.xy * 1.0/%d.0;\n", dither_size);
if (p->opts.temporal_dither) {
int phase = (p->frames_rendered / p->opts.temporal_dither_period) % 8u;
float r = phase * (M_PI / 2); // rotate
float m = phase < 4 ? 1 : -1; // mirror
float matrix[2][2] = {{cos(r), -sin(r) },
{sin(r) * m, cos(r) * m}};
gl_sc_uniform_mat2(p->sc, "dither_trafo", true, &matrix[0][0]);
GLSL(dither_pos = dither_trafo * dither_pos;)
}
GLSL(float dither_value = texture(dither, dither_pos).r;)
GLSLF("color = floor(color * %d.0 + dither_value + 0.5 / %d.0) * 1.0/%d.0;\n",
dither_quantization, dither_size * dither_size, dither_quantization);
}
// Draws the OSD, in scene-referred colors.. If cms is true, subtitles are
// instead adapted to the display's gamut.
static void pass_draw_osd(struct gl_video *p, int draw_flags, double pts,
struct mp_osd_res rect, int vp_w, int vp_h,
struct ra_tex *target, bool cms)
{
struct ra_tex_gl *tex_gl = target->priv;
mpgl_osd_generate(p->osd, rect, pts, p->image_params.stereo_out, draw_flags);
p->gl->BindFramebuffer(GL_FRAMEBUFFER, tex_gl->fbo);
for (int n = 0; n < MAX_OSD_PARTS; n++) {
// (This returns false if this part is empty with nothing to draw.)
if (!mpgl_osd_draw_prepare(p->osd, n, p->sc))
continue;
pass_describe(p, "drawing osd");
// When subtitles need to be color managed, assume they're in sRGB
// (for lack of anything saner to do)
if (cms) {
static const struct mp_colorspace csp_srgb = {
.primaries = MP_CSP_PRIM_BT_709,
.gamma = MP_CSP_TRC_SRGB,
.light = MP_CSP_LIGHT_DISPLAY,
};
pass_colormanage(p, csp_srgb, true);
}
pass_record(p, gl_sc_generate(p->sc, GL_FRAGMENT_SHADER));
mpgl_osd_draw_finish(p->osd, vp_w, vp_h, n, p->sc);
gl_sc_reset(p->sc);
}
}
static float chroma_realign(int size, int pixel)
{
return size / (float)chroma_upsize(size, pixel);
}
// Minimal rendering code path, for GLES or OpenGL 2.1 without proper FBOs.
static void pass_render_frame_dumb(struct gl_video *p)
{
struct img_tex tex[4];
struct gl_transform off[4];
pass_get_img_tex(p, &p->image, tex, off);
struct gl_transform transform;
compute_src_transform(p, &transform);
int index = 0;
for (int i = 0; i < p->plane_count; i++) {
int cw = tex[i].type == PLANE_CHROMA ? p->ra_format.chroma_w : 1;
int ch = tex[i].type == PLANE_CHROMA ? p->ra_format.chroma_h : 1;
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, cw, ch);
struct gl_transform t = transform;
t.m[0][0] *= chroma_realign(p->texture_w, cw);
t.m[1][1] *= chroma_realign(p->texture_h, ch);
t.t[0] /= cw;
t.t[1] /= ch;
t.t[0] += off[i].t[0];
t.t[1] += off[i].t[1];
gl_transform_trans(tex[i].transform, &t);
tex[i].transform = t;
copy_img_tex(p, &index, tex[i]);
}
pass_convert_yuv(p);
}
// The main rendering function, takes care of everything up to and including
// upscaling. p->image is rendered.
static bool pass_render_frame(struct gl_video *p, struct mp_image *mpi, uint64_t id)
{
// initialize the texture parameters and temporary variables
p->texture_w = p->image_params.w;
p->texture_h = p->image_params.h;
p->texture_offset = identity_trans;
p->components = 0;
p->saved_tex_num = 0;
p->hook_fbo_num = 0;
p->use_linear = false;
// try uploading the frame
if (!pass_upload_image(p, mpi, id))
return false;
if (p->image_params.rotate % 180 == 90)
MPSWAP(int, p->texture_w, p->texture_h);
if (p->dumb_mode)
return true;
pass_read_video(p);
pass_opt_hook_point(p, "NATIVE", &p->texture_offset);
pass_convert_yuv(p);
pass_opt_hook_point(p, "MAINPRESUB", &p->texture_offset);
// For subtitles
double vpts = p->image.mpi->pts;
if (vpts == MP_NOPTS_VALUE)
vpts = p->osd_pts;
if (p->osd && p->opts.blend_subs == BLEND_SUBS_VIDEO) {
double scale[2];
get_scale_factors(p, false, scale);
struct mp_osd_res rect = {
.w = p->texture_w, .h = p->texture_h,
.display_par = scale[1] / scale[0], // counter compensate scaling
};
finish_pass_fbo(p, &p->blend_subs_fbo, rect.w, rect.h, 0);
pass_draw_osd(p, OSD_DRAW_SUB_ONLY, vpts, rect,
rect.w, rect.h, p->blend_subs_fbo.tex, false);
pass_read_fbo(p, &p->blend_subs_fbo);
pass_describe(p, "blend subs video");
}
pass_opt_hook_point(p, "MAIN", &p->texture_offset);
pass_scale_main(p);
int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
vp_h = p->dst_rect.y1 - p->dst_rect.y0;
if (p->osd && p->opts.blend_subs == BLEND_SUBS_YES) {
// Recreate the real video size from the src/dst rects
struct mp_osd_res rect = {
.w = vp_w, .h = vp_h,
.ml = -p->src_rect.x0, .mr = p->src_rect.x1 - p->image_params.w,
.mt = -p->src_rect.y0, .mb = p->src_rect.y1 - p->image_params.h,
.display_par = 1.0,
};
// Adjust margins for scale
double scale[2];
get_scale_factors(p, true, scale);
rect.ml *= scale[0]; rect.mr *= scale[0];
rect.mt *= scale[1]; rect.mb *= scale[1];
// We should always blend subtitles in non-linear light
if (p->use_linear) {
pass_delinearize(p->sc, p->image_params.color.gamma);
p->use_linear = false;
}
finish_pass_fbo(p, &p->blend_subs_fbo, p->texture_w, p->texture_h, 0);
pass_draw_osd(p, OSD_DRAW_SUB_ONLY, vpts, rect,
p->texture_w, p->texture_h, p->blend_subs_fbo.tex,
false);
pass_read_fbo(p, &p->blend_subs_fbo);
pass_describe(p, "blend subs");
}
pass_opt_hook_point(p, "SCALED", NULL);
return true;
}
static void pass_draw_to_screen(struct gl_video *p, struct ra_tex *fbo)
{
if (p->dumb_mode)
pass_render_frame_dumb(p);
// Adjust the overall gamma before drawing to screen
if (p->user_gamma != 1) {
gl_sc_uniform_f(p->sc, "user_gamma", p->user_gamma);
GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
GLSL(color.rgb = pow(color.rgb, vec3(user_gamma));)
}
pass_colormanage(p, p->image_params.color, false);
// Since finish_pass_direct doesn't work with compute shaders, and neither
// does the checkerboard/dither code, we may need an indirection via
// p->screen_fbo here.
if (p->pass_compute.active) {
int o_w = p->dst_rect.x1 - p->dst_rect.x0,
o_h = p->dst_rect.y1 - p->dst_rect.y0;
finish_pass_fbo(p, &p->screen_fbo, o_w, o_h, FBOTEX_FUZZY);
struct img_tex tmp = img_tex_fbo(&p->screen_fbo, PLANE_RGB, p->components);
copy_img_tex(p, &(int){0}, tmp);
}
if (p->has_alpha){
if (p->opts.alpha_mode == ALPHA_BLEND_TILES) {
// Draw checkerboard pattern to indicate transparency
GLSLF("// transparency checkerboard\n");
GLSL(bvec2 tile = lessThan(fract(gl_FragCoord.xy * 1.0/32.0), vec2(0.5));)
GLSL(vec3 background = vec3(tile.x == tile.y ? 1.0 : 0.75);)
GLSL(color.rgb = mix(background, color.rgb, color.a);)
} else if (p->opts.alpha_mode == ALPHA_BLEND) {
// Blend into background color (usually black)
struct m_color c = p->opts.background;
GLSLF("vec4 background = vec4(%f, %f, %f, %f);\n",
c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0);
GLSL(color = mix(background, vec4(color.rgb, 1.0), color.a);)
}
}
pass_opt_hook_point(p, "OUTPUT", NULL);
pass_dither(p);
pass_describe(p, "output to screen");
finish_pass_direct(p, fbo, p->vp_w, p->vp_h, &p->dst_rect);
}
static bool update_fbosurface(struct gl_video *p, struct mp_image *mpi,
uint64_t id, struct fbosurface *surf)
{
int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
vp_h = p->dst_rect.y1 - p->dst_rect.y0;
pass_info_reset(p, false);
if (!pass_render_frame(p, mpi, id))
return false;
// Frame blending should always be done in linear light to preserve the
// overall brightness, otherwise this will result in flashing dark frames
// because mixing in compressed light artificially darkens the results
if (!p->use_linear) {
p->use_linear = true;
pass_linearize(p->sc, p->image_params.color.gamma);
}
finish_pass_fbo(p, &surf->fbotex, vp_w, vp_h, FBOTEX_FUZZY);
surf->id = id;
surf->pts = mpi->pts;
return true;
}
// Draws an interpolate frame to fbo, based on the frame timing in t
static void gl_video_interpolate_frame(struct gl_video *p, struct vo_frame *t,
struct ra_tex *fbo)
{
bool is_new = false;
// Reset the queue completely if this is a still image, to avoid any
// interpolation artifacts from surrounding frames when unpausing or
// framestepping
if (t->still)
gl_video_reset_surfaces(p);
// First of all, figure out if we have a frame available at all, and draw
// it manually + reset the queue if not
if (p->surfaces[p->surface_now].id == 0) {
struct fbosurface *now = &p->surfaces[p->surface_now];
if (!update_fbosurface(p, t->current, t->frame_id, now))
return;
p->surface_idx = p->surface_now;
is_new = true;
}
// Find the right frame for this instant
if (t->current) {
int next = fbosurface_wrap(p->surface_now + 1);
while (p->surfaces[next].id &&
p->surfaces[next].id > p->surfaces[p->surface_now].id &&
p->surfaces[p->surface_now].id < t->frame_id)
{
p->surface_now = next;
next = fbosurface_wrap(next + 1);
}
}
// Figure out the queue size. For illustration, a filter radius of 2 would
// look like this: _ A [B] C D _
// A is surface_bse, B is surface_now, C is surface_now+1 and D is
// surface_end.
struct scaler *tscale = &p->scaler[SCALER_TSCALE];
reinit_scaler(p, tscale, &p->opts.scaler[SCALER_TSCALE], 1, tscale_sizes);
bool oversample = strcmp(tscale->conf.kernel.name, "oversample") == 0;
bool linear = strcmp(tscale->conf.kernel.name, "linear") == 0;
int size;
if (oversample || linear) {
size = 2;
} else {
assert(tscale->kernel && !tscale->kernel->polar);
size = ceil(tscale->kernel->size);
assert(size <= TEXUNIT_VIDEO_NUM);
}
int radius = size/2;
int surface_now = p->surface_now;
int surface_bse = fbosurface_wrap(surface_now - (radius-1));
int surface_end = fbosurface_wrap(surface_now + radius);
assert(fbosurface_wrap(surface_bse + size-1) == surface_end);
// Render new frames while there's room in the queue. Note that technically,
// this should be done before the step where we find the right frame, but
// it only barely matters at the very beginning of playback, and this way
// makes the code much more linear.
int surface_dst = fbosurface_wrap(p->surface_idx + 1);
for (int i = 0; i < t->num_frames; i++) {
// Avoid overwriting data we might still need
if (surface_dst == surface_bse - 1)
break;
struct mp_image *f = t->frames[i];
uint64_t f_id = t->frame_id + i;
if (!mp_image_params_equal(&f->params, &p->real_image_params))
continue;
if (f_id > p->surfaces[p->surface_idx].id) {
struct fbosurface *dst = &p->surfaces[surface_dst];
if (!update_fbosurface(p, f, f_id, dst))
return;
p->surface_idx = surface_dst;
surface_dst = fbosurface_wrap(surface_dst + 1);
is_new = true;
}
}
// Figure out whether the queue is "valid". A queue is invalid if the
// frames' PTS is not monotonically increasing. Anything else is invalid,
// so avoid blending incorrect data and just draw the latest frame as-is.
// Possible causes for failure of this condition include seeks, pausing,
// end of playback or start of playback.
bool valid = true;
for (int i = surface_bse, ii; valid && i != surface_end; i = ii) {
ii = fbosurface_wrap(i + 1);
if (p->surfaces[i].id == 0 || p->surfaces[ii].id == 0) {
valid = false;
} else if (p->surfaces[ii].id < p->surfaces[i].id) {
valid = false;
MP_DBG(p, "interpolation queue underrun\n");
}
}
// Update OSD PTS to synchronize subtitles with the displayed frame
p->osd_pts = p->surfaces[surface_now].pts;
// Finally, draw the right mix of frames to the screen.
if (!is_new)
pass_info_reset(p, true);
pass_describe(p, "interpolation");
if (!valid || t->still) {
// surface_now is guaranteed to be valid, so we can safely use it.
pass_read_fbo(p, &p->surfaces[surface_now].fbotex);
p->is_interpolated = false;
} else {
double mix = t->vsync_offset / t->ideal_frame_duration;
// The scaler code always wants the fcoord to be between 0 and 1,
// so we try to adjust by using the previous set of N frames instead
// (which requires some extra checking to make sure it's valid)
if (mix < 0.0) {
int prev = fbosurface_wrap(surface_bse - 1);
if (p->surfaces[prev].id != 0 &&
p->surfaces[prev].id < p->surfaces[surface_bse].id)
{
mix += 1.0;
surface_bse = prev;
} else {
mix = 0.0; // at least don't blow up, this should only
// ever happen at the start of playback
}
}
if (oversample) {
// Oversample uses the frame area as mix ratio, not the the vsync
// position itself
double vsync_dist = t->vsync_interval / t->ideal_frame_duration,
threshold = tscale->conf.kernel.params[0];
threshold = isnan(threshold) ? 0.0 : threshold;
mix = (1 - mix) / vsync_dist;
mix = mix <= 0 + threshold ? 0 : mix;
mix = mix >= 1 - threshold ? 1 : mix;
mix = 1 - mix;
}
// Blend the frames together
if (oversample || linear) {
gl_sc_uniform_f(p->sc, "inter_coeff", mix);
GLSL(color = mix(texture(texture0, texcoord0),
texture(texture1, texcoord1),
inter_coeff);)
} else {
gl_sc_uniform_f(p->sc, "fcoord", mix);
pass_sample_separated_gen(p->sc, tscale, 0, 0);
}
// Load all the required frames
for (int i = 0; i < size; i++) {
struct img_tex img =
img_tex_fbo(&p->surfaces[fbosurface_wrap(surface_bse+i)].fbotex,
PLANE_RGB, p->components);
// Since the code in pass_sample_separated currently assumes
// the textures are bound in-order and starting at 0, we just
// assert to make sure this is the case (which it should always be)
int id = pass_bind(p, img);
assert(id == i);
}
MP_DBG(p, "inter frame dur: %f vsync: %f, mix: %f\n",
t->ideal_frame_duration, t->vsync_interval, mix);
p->is_interpolated = true;
}
pass_draw_to_screen(p, fbo);
p->frames_drawn += 1;
}
// (fbo==0 makes BindFramebuffer select the screen backbuffer)
void gl_video_render_frame(struct gl_video *p, struct vo_frame *frame, int fbo)
{
GL *gl = p->gl;
if (fbo && !(gl->mpgl_caps & MPGL_CAP_FB)) {
MP_FATAL(p, "Rendering to FBO requested, but no FBO extension found!\n");
return;
}
if (p->fb_depth == 0) {
debug_check_gl(p, "before retrieving framebuffer depth");
p->fb_depth = gl_get_fb_depth(gl, fbo);
debug_check_gl(p, "retrieving framebuffer depth");
if (p->fb_depth > 0) {
MP_VERBOSE(p, "Reported display depth: %d\n", p->fb_depth);
} else {
p->fb_depth = 8;
}
}
struct ra_tex *target =
ra_create_wrapped_fb(p->ra, fbo, p->vp_w, abs(p->vp_h));
struct mp_rect target_rc = {0, 0, p->vp_w, abs(p->vp_h)};
p->broken_frame = false;
bool has_frame = !!frame->current;
if (!has_frame || p->dst_rect.x0 > 0 || p->dst_rect.y0 > 0 ||
p->dst_rect.x1 < p->vp_w || p->dst_rect.y1 < abs(p->vp_h))
{
struct m_color c = p->opts.background;
float color[4] = {c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0};
p->ra->fns->clear(p->ra, target, color, &target_rc);
}
if (p->hwdec_active && p->hwdec->driver->overlay_frame) {
if (has_frame) {
float *color = p->hwdec->overlay_colorkey;
p->ra->fns->clear(p->ra, target, color, &p->dst_rect);
}
if (frame->frame_id != p->image.id || !frame->current)
p->hwdec->driver->overlay_frame(p->hwdec, frame->current);
if (frame->current)
p->osd_pts = frame->current->pts;
// Disable GL rendering
has_frame = false;
}
if (has_frame) {
bool interpolate = p->opts.interpolation && frame->display_synced &&
(p->frames_drawn || !frame->still);
if (interpolate) {
double ratio = frame->ideal_frame_duration / frame->vsync_interval;
if (fabs(ratio - 1.0) < p->opts.interpolation_threshold)
interpolate = false;
}
if (interpolate) {
gl_video_interpolate_frame(p, frame, target);
} else {
bool is_new = frame->frame_id != p->image.id;
// Redrawing a frame might update subtitles.
if (frame->still && p->opts.blend_subs)
is_new = true;
if (is_new || !p->output_fbo_valid) {
p->output_fbo_valid = false;
pass_info_reset(p, false);
if (!pass_render_frame(p, frame->current, frame->frame_id))
goto done;
// For the non-interpolation case, we draw to a single "cache"
// FBO to speed up subsequent re-draws (if any exist)
struct ra_tex *dest_fbo = target;
if (frame->num_vsyncs > 1 && frame->display_synced &&
!p->dumb_mode && (p->ra->caps & RA_CAP_BLIT))
{
fbotex_change(&p->output_fbo, p->ra, p->log,
p->vp_w, abs(p->vp_h),
p->fbo_format, FBOTEX_FUZZY);
dest_fbo = p->output_fbo.tex;
p->output_fbo_valid = true;
}
pass_draw_to_screen(p, dest_fbo);
}
// "output fbo valid" and "output fbo needed" are equivalent
if (p->output_fbo_valid) {
pass_info_reset(p, true);
pass_describe(p, "redraw cached frame");
struct mp_rect rc = p->dst_rect;
if (p->vp_h < 0) {
rc.y1 = -p->vp_h - p->dst_rect.y0;
rc.y0 = -p->vp_h - p->dst_rect.y1;
}
gl_timer_start(p->blit_timer);
p->ra->fns->blit(p->ra, target, p->output_fbo.tex,
rc.x0, rc.y0, &rc);
gl_timer_stop(gl);
pass_record(p, gl_timer_measure(p->blit_timer));
}
}
}
done:
unmap_current_image(p);
debug_check_gl(p, "after video rendering");
if (p->osd) {
// If we haven't actually drawn anything so far, then we technically
// need to consider this the start of a new pass. Let's call it a
// redraw just because, since it's basically a blank frame anyway
if (!has_frame)
pass_info_reset(p, true);
pass_draw_osd(p, p->opts.blend_subs ? OSD_DRAW_OSD_ONLY : 0,
p->osd_pts, p->osd_rect, p->vp_w, p->vp_h, target, true);
debug_check_gl(p, "after OSD rendering");
}
if (gl_sc_error_state(p->sc) || p->broken_frame) {
// Make the screen solid blue to make it visually clear that an
// error has occurred
float color[4] = {0.0, 0.05, 0.5, 1.0};
p->ra->fns->clear(p->ra, target, color, &target_rc);
}
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
ra_tex_free(p->ra, &target);
// The playloop calls this last before waiting some time until it decides
// to call flip_page(). Tell OpenGL to start execution of the GPU commands
// while we sleep (this happens asynchronously).
if ((p->opts.early_flush == -1 && !frame->display_synced) ||
p->opts.early_flush == 1)
{
gl->Flush();
}
p->frames_rendered++;
pass_report_performance(p);
}
// vp_w/vp_h is the implicit size of the target framebuffer.
// vp_h can be negative to flip the screen.
void gl_video_resize(struct gl_video *p, int vp_w, int vp_h,
struct mp_rect *src, struct mp_rect *dst,
struct mp_osd_res *osd)
{
p->src_rect = *src;
p->dst_rect = *dst;
p->osd_rect = *osd;
p->vp_w = vp_w;
p->vp_h = vp_h;
gl_video_reset_surfaces(p);
if (p->osd)
mpgl_osd_resize(p->osd, p->osd_rect, p->image_params.stereo_out);
if (p->hwdec && p->hwdec->driver->overlay_adjust)
p->hwdec->driver->overlay_adjust(p->hwdec, vp_w, abs(vp_h), src, dst);
}
static void frame_perf_data(struct pass_info pass[], struct mp_frame_perf *out)
{
for (int i = 0; i < PASS_INFO_MAX; i++) {
if (!pass[i].desc.len)
break;
out->perf[out->count] = pass[i].perf;
out->desc[out->count] = pass[i].desc.start;
out->count++;
}
}
void gl_video_perfdata(struct gl_video *p, struct voctrl_performance_data *out)
{
*out = (struct voctrl_performance_data){0};
frame_perf_data(p->pass_fresh, &out->fresh);
frame_perf_data(p->pass_redraw, &out->redraw);
}
// This assumes nv12, with textures set to GL_NEAREST filtering.
static void reinterleave_vdpau(struct gl_video *p, struct gl_hwdec_frame *frame,
struct ra_tex *output[4])
{
struct gl_hwdec_frame res = {0};
for (int n = 0; n < 2; n++) {
struct fbotex *fbo = &p->vdpau_deinterleave_fbo[n];
// This is an array of the 2 to-merge planes.
struct gl_hwdec_plane *src = &frame->planes[n * 2];
int w = src[0].tex_w;
int h = src[0].tex_h;
int ids[2];
struct ra_tex *tmp[2];
for (int t = 0; t < 2; t++) {
tmp[t] = ra_create_wrapped_texture(p->ra, src[t].gl_texture,
GL_TEXTURE_2D, 0, 0, 0, w, h);
ids[t] = pass_bind(p, (struct img_tex){
.tex = tmp[t],
.multiplier = 1.0,
.transform = identity_trans,
.w = w,
.h = h,
});
}
GLSLF("color = fract(gl_FragCoord.y * 0.5) < 0.5\n");
GLSLF(" ? texture(texture%d, texcoord%d)\n", ids[0], ids[0]);
GLSLF(" : texture(texture%d, texcoord%d);", ids[1], ids[1]);
const struct ra_format *fmt =
ra_find_unorm_format(p->ra, 1, n == 0 ? 1 : 2);
fbotex_change(fbo, p->ra, p->log, w, h * 2, fmt, 0);
pass_describe(p, "vdpau reinterleaving");
finish_pass_direct(p, fbo->tex, fbo->rw, fbo->rh,
&(struct mp_rect){0, 0, w, h * 2});
for (int t = 0; t < 2; t++)
ra_tex_free(p->ra, &tmp[t]);
output[n] = fbo->tex;
}
*frame = res;
}
// Returns false on failure.
static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id)
{
GL *gl = p->gl;
struct video_image *vimg = &p->image;
if (vimg->id == id)
return true;
unref_current_image(p);
mpi = mp_image_new_ref(mpi);
if (!mpi)
goto error;
vimg->mpi = mpi;
vimg->id = id;
p->osd_pts = mpi->pts;
p->frames_uploaded++;
if (p->hwdec_active) {
// Hardware decoding
struct gl_hwdec_frame gl_frame = {0};
pass_describe(p, "map frame (hwdec)");
gl_timer_start(p->upload_timer);
bool ok = p->hwdec->driver->map_frame(p->hwdec, vimg->mpi, &gl_frame) >= 0;
gl_timer_stop(gl);
pass_record(p, gl_timer_measure(p->upload_timer));
vimg->hwdec_mapped = true;
if (ok) {
struct mp_image layout = {0};
mp_image_set_params(&layout, &p->image_params);
struct ra_tex *tex[4] = {0};
if (gl_frame.vdpau_fields)
reinterleave_vdpau(p, &gl_frame, tex);
for (int n = 0; n < p->plane_count; n++) {
struct gl_hwdec_plane *plane = &gl_frame.planes[n];
if (!tex[n]) {
vimg->hwdec_tex[n] = ra_create_wrapped_texture(p->ra,
plane->gl_texture, plane->gl_target, 0,
plane->gl_format, 0, plane->tex_w, plane->tex_h);
}
vimg->planes[n] = (struct texplane){
.w = mp_image_plane_w(&layout, n),
.h = mp_image_plane_h(&layout, n),
.tex = tex[n] ? tex[n] : vimg->hwdec_tex[n],
};
}
} else {
MP_FATAL(p, "Mapping hardware decoded surface failed.\n");
goto error;
}
return true;
}
// Software decoding
assert(mpi->num_planes == p->plane_count);
gl_timer_start(p->upload_timer);
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
plane->flipped = mpi->stride[0] < 0;
// (It's unclear whether this should be changeable on the fly.)
plane->tex->use_pbo = p->opts.pbo;
struct dr_buffer *mapped = gl_find_dr_buffer(p, mpi->planes[n]);
p->ra->fns->tex_upload(p->ra, plane->tex, mpi->planes[n],
mpi->stride[n], mapped ? mapped->buffer : NULL);
if (mapped && !mapped->mpi)
mapped->mpi = mp_image_new_ref(mpi);
if (p->using_dr_path != !!mapped) {
p->using_dr_path = !!mapped;
MP_VERBOSE(p, "DR enabled: %s\n", p->using_dr_path ? "yes" : "no");
}
}
gl_timer_stop(gl);
const char *mode = p->using_dr_path ? "DR" : p->opts.pbo ? "PBO" : "naive";
pass_describe(p, "upload frame (%s)", mode);
pass_record(p, gl_timer_measure(p->upload_timer));
return true;
error:
unref_current_image(p);
p->broken_frame = true;
return false;
}
static bool test_fbo(struct gl_video *p, const struct ra_format *fmt)
{
MP_VERBOSE(p, "Testing FBO format %s\n", fmt->name);
struct fbotex fbo = {0};
bool success = fbotex_init(&fbo, p->ra, p->log, 16, 16, fmt);
fbotex_uninit(&fbo);
return success;
}
// Return whether dumb-mode can be used without disabling any features.
// Essentially, vo_opengl with mostly default settings will return true.
static bool check_dumb_mode(struct gl_video *p)
{
struct gl_video_opts *o = &p->opts;
if (p->use_integer_conversion)
return false;
if (o->dumb_mode > 0) // requested by user
return true;
if (o->dumb_mode < 0) // disabled by user
return false;
// otherwise, use auto-detection
if (o->target_prim || o->target_trc || o->linear_scaling ||
o->correct_downscaling || o->sigmoid_upscaling || o->interpolation ||
o->blend_subs || o->deband || o->unsharp)
return false;
// check remaining scalers (tscale is already implicitly excluded above)
for (int i = 0; i < SCALER_COUNT; i++) {
if (i != SCALER_TSCALE) {
const char *name = o->scaler[i].kernel.name;
if (name && strcmp(name, "bilinear") != 0)
return false;
}
}
if (o->user_shaders && o->user_shaders[0])
return false;
if (p->use_lut_3d)
return false;
return true;
}
// Disable features that are not supported with the current OpenGL version.
static void check_gl_features(struct gl_video *p)
{
GL *gl = p->gl;
bool have_float_tex = !!gl_find_float16_format(gl, 1);
bool have_mglsl = gl->glsl_version >= 130; // modern GLSL (1st class arrays etc.)
bool have_texrg = gl->mpgl_caps & MPGL_CAP_TEX_RG;
bool have_compute = gl->mpgl_caps & MPGL_CAP_COMPUTE_SHADER;
bool have_ssbo = gl->mpgl_caps & MPGL_CAP_SSBO;
const char *auto_fbo_fmts[] = {"rgba16", "rgba16f", "rgb10_a2", "rgba8", 0};
const char *user_fbo_fmts[] = {p->opts.fbo_format, 0};
const char **fbo_fmts = user_fbo_fmts[0] && strcmp(user_fbo_fmts[0], "auto")
? user_fbo_fmts : auto_fbo_fmts;
bool have_fbo = false;
p->fbo_format = NULL;
for (int n = 0; fbo_fmts[n]; n++) {
const char *fmt = fbo_fmts[n];
const struct ra_format *f = ra_find_named_format(p->ra, fmt);
if (!f && fbo_fmts == user_fbo_fmts)
MP_WARN(p, "FBO format '%s' not found!\n", fmt);
if (f && f->renderable && f->linear_filter && test_fbo(p, f)) {
MP_VERBOSE(p, "Using FBO format %s.\n", f->name);
have_fbo = true;
p->fbo_format = f;
break;
}
}
if (!gl->MapBufferRange && p->opts.pbo) {
p->opts.pbo = 0;
MP_WARN(p, "Disabling PBOs (GL2.1/GLES2 unsupported).\n");
}
p->forced_dumb_mode = p->opts.dumb_mode > 0 || !have_fbo || !have_texrg;
bool voluntarily_dumb = check_dumb_mode(p);
if (p->forced_dumb_mode || voluntarily_dumb) {
if (voluntarily_dumb) {
MP_VERBOSE(p, "No advanced processing required. Enabling dumb mode.\n");
} else if (p->opts.dumb_mode <= 0) {
MP_WARN(p, "High bit depth FBOs unsupported. Enabling dumb mode.\n"
"Most extended features will be disabled.\n");
}
p->dumb_mode = true;
p->use_lut_3d = false;
// Most things don't work, so whitelist all options that still work.
p->opts = (struct gl_video_opts){
.gamma = p->opts.gamma,
.gamma_auto = p->opts.gamma_auto,
.pbo = p->opts.pbo,
.fbo_format = p->opts.fbo_format,
.alpha_mode = p->opts.alpha_mode,
.use_rectangle = p->opts.use_rectangle,
.background = p->opts.background,
.dither_algo = p->opts.dither_algo,
.dither_depth = p->opts.dither_depth,
.dither_size = p->opts.dither_size,
.temporal_dither = p->opts.temporal_dither,
.temporal_dither_period = p->opts.temporal_dither_period,
.tex_pad_x = p->opts.tex_pad_x,
.tex_pad_y = p->opts.tex_pad_y,
.tone_mapping = p->opts.tone_mapping,
.tone_mapping_param = p->opts.tone_mapping_param,
.tone_mapping_desat = p->opts.tone_mapping_desat,
.early_flush = p->opts.early_flush,
};
for (int n = 0; n < SCALER_COUNT; n++)
p->opts.scaler[n] = gl_video_opts_def.scaler[n];
return;
}
p->dumb_mode = false;
// Normally, we want to disable them by default if FBOs are unavailable,
// because they will be slow (not critically slow, but still slower).
// Without FP textures, we must always disable them.
// I don't know if luminance alpha float textures exist, so disregard them.
for (int n = 0; n < SCALER_COUNT; n++) {
const struct filter_kernel *kernel =
mp_find_filter_kernel(p->opts.scaler[n].kernel.name);
if (kernel) {
char *reason = NULL;
if (!have_float_tex)
reason = "(float tex. missing)";
if (!have_mglsl)
reason = "(GLSL version too old)";
if (reason) {
MP_WARN(p, "Disabling scaler #%d %s %s.\n", n,
p->opts.scaler[n].kernel.name, reason);
// p->opts is a copy => we can just mess with it.
p->opts.scaler[n].kernel.name = "bilinear";
if (n == SCALER_TSCALE)
p->opts.interpolation = 0;
}
}
}
int use_cms = p->opts.target_prim != MP_CSP_PRIM_AUTO ||
p->opts.target_trc != MP_CSP_TRC_AUTO || p->use_lut_3d;
// mix() is needed for some gamma functions
if (!have_mglsl && (p->opts.linear_scaling || p->opts.sigmoid_upscaling)) {
p->opts.linear_scaling = false;
p->opts.sigmoid_upscaling = false;
MP_WARN(p, "Disabling linear/sigmoid scaling (GLSL version too old).\n");
}
if (!have_mglsl && use_cms) {
p->opts.target_prim = MP_CSP_PRIM_AUTO;
p->opts.target_trc = MP_CSP_TRC_AUTO;
p->use_lut_3d = false;
MP_WARN(p, "Disabling color management (GLSL version too old).\n");
}
if (!have_mglsl && p->opts.deband) {
p->opts.deband = 0;
MP_WARN(p, "Disabling debanding (GLSL version too old).\n");
}
if ((!have_compute || !have_ssbo) && p->opts.compute_hdr_peak) {
p->opts.compute_hdr_peak = 0;
MP_WARN(p, "Disabling HDR peak computation (no compute shaders).\n");
}
}
static void init_gl(struct gl_video *p)
{
GL *gl = p->gl;
debug_check_gl(p, "before init_gl");
gl_video_set_gl_state(p);
p->upload_timer = gl_timer_create(gl);
p->blit_timer = gl_timer_create(gl);
debug_check_gl(p, "after init_gl");
ra_dump_tex_formats(p->ra, MSGL_DEBUG);
ra_dump_img_formats(p->ra, MSGL_DEBUG);
}
void gl_video_uninit(struct gl_video *p)
{
if (!p)
return;
GL *gl = p->gl;
uninit_video(p);
gl_sc_destroy(p->sc);
ra_tex_free(p->ra, &p->lut_3d_texture);
gl->DeleteBuffers(1, &p->hdr_peak_ssbo);
gl_timer_free(p->upload_timer);
gl_timer_free(p->blit_timer);
for (int i = 0; i < PASS_INFO_MAX; i++) {
talloc_free(p->pass_fresh[i].desc.start);
talloc_free(p->pass_redraw[i].desc.start);
}
mpgl_osd_destroy(p->osd);
gl_set_debug_logger(gl, NULL);
// Forcibly destroy possibly remaining image references. This should also
// cause gl_video_dr_free_buffer() to be called for the remaining buffers.
gc_pending_dr_fences(p, true);
// Should all have been unreffed already.
assert(!p->num_dr_buffers);
p->ra->fns->destroy(p->ra);
talloc_free(p->ra);
talloc_free(p);
}
void gl_video_set_gl_state(struct gl_video *p)
{
// This resets certain important state to defaults.
gl_video_unset_gl_state(p);
}
void gl_video_unset_gl_state(struct gl_video *p)
{
GL *gl = p->gl;
gl->ActiveTexture(GL_TEXTURE0);
if (gl->mpgl_caps & MPGL_CAP_ROW_LENGTH)
gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0);
gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
}
void gl_video_reset(struct gl_video *p)
{
gl_video_reset_surfaces(p);
}
bool gl_video_showing_interpolated_frame(struct gl_video *p)
{
return p->is_interpolated;
}
static bool is_imgfmt_desc_supported(struct gl_video *p,
const struct ra_imgfmt_desc *desc)
{
if (!desc->num_planes)
return false;
if (desc->planes[0]->ctype == RA_CTYPE_UINT && p->forced_dumb_mode)
return false;
return true;
}
bool gl_video_check_format(struct gl_video *p, int mp_format)
{
struct ra_imgfmt_desc desc;
if (ra_get_imgfmt_desc(p->ra, mp_format, &desc) &&
is_imgfmt_desc_supported(p, &desc))
return true;
if (p->hwdec && gl_hwdec_test_format(p->hwdec, mp_format))
return true;
return false;
}
void gl_video_config(struct gl_video *p, struct mp_image_params *params)
{
unmap_overlay(p);
unref_current_image(p);
if (!mp_image_params_equal(&p->real_image_params, params)) {
uninit_video(p);
p->real_image_params = *params;
p->image_params = *params;
if (params->imgfmt)
init_video(p);
}
gl_video_reset_surfaces(p);
}
void gl_video_set_osd_source(struct gl_video *p, struct osd_state *osd)
{
mpgl_osd_destroy(p->osd);
p->osd = NULL;
p->osd_state = osd;
reinit_osd(p);
}
struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct mpv_global *g)
{
struct ra *ra = talloc_zero(NULL, struct ra);
ra->log = log;
if (ra_init_gl(ra, gl) < 0) {
talloc_free(ra);
return NULL;
}
struct gl_video *p = talloc_ptrtype(NULL, p);
*p = (struct gl_video) {
.gl = gl,
.ra = ra,
.global = g,
.log = log,
.sc = gl_sc_create(gl, log),
.opts_cache = m_config_cache_alloc(p, g, &gl_video_conf),
};
// make sure this variable is initialized to *something*
p->pass = p->pass_fresh;
struct gl_video_opts *opts = p->opts_cache->opts;
p->cms = gl_lcms_init(p, log, g, opts->icc_opts),
p->opts = *opts;
for (int n = 0; n < SCALER_COUNT; n++)
p->scaler[n] = (struct scaler){.index = n};
gl_video_set_debug(p, true);
init_gl(p);
reinit_from_options(p);
return p;
}
// Get static string for scaler shader. If "tscale" is set to true, the
// scaler must be a separable convolution filter.
static const char *handle_scaler_opt(const char *name, bool tscale)
{
if (name && name[0]) {
const struct filter_kernel *kernel = mp_find_filter_kernel(name);
if (kernel && (!tscale || !kernel->polar))
return kernel->f.name;
for (const char *const *filter = tscale ? fixed_tscale_filters
: fixed_scale_filters;
*filter; filter++) {
if (strcmp(*filter, name) == 0)
return *filter;
}
}
return NULL;
}
void gl_video_update_options(struct gl_video *p)
{
if (m_config_cache_update(p->opts_cache)) {
gl_lcms_update_options(p->cms);
reinit_from_options(p);
}
}
static void reinit_from_options(struct gl_video *p)
{
p->use_lut_3d = gl_lcms_has_profile(p->cms);
// Copy the option fields, so that check_gl_features() can mutate them.
// This works only for the fields themselves of course, not for any memory
// referenced by them.
p->opts = *(struct gl_video_opts *)p->opts_cache->opts;
check_gl_features(p);
uninit_rendering(p);
gl_sc_set_cache_dir(p->sc, p->global, p->opts.shader_cache_dir);
gl_video_setup_hooks(p);
reinit_osd(p);
if (p->opts.interpolation && !p->global->opts->video_sync && !p->dsi_warned) {
MP_WARN(p, "Interpolation now requires enabling display-sync mode.\n"
"E.g.: --video-sync=display-resample\n");
p->dsi_warned = true;
}
}
void gl_video_configure_queue(struct gl_video *p, struct vo *vo)
{
int queue_size = 1;
// Figure out an adequate size for the interpolation queue. The larger
// the radius, the earlier we need to queue frames.
if (p->opts.interpolation) {
const struct filter_kernel *kernel =
mp_find_filter_kernel(p->opts.scaler[SCALER_TSCALE].kernel.name);
if (kernel) {
// filter_scale wouldn't be correctly initialized were we to use it here.
// This is fine since we're always upsampling, but beware if downsampling
// is added!
double radius = kernel->f.radius;
radius = radius > 0 ? radius : p->opts.scaler[SCALER_TSCALE].radius;
queue_size += 1 + ceil(radius);
} else {
// Oversample/linear case
queue_size += 2;
}
}
vo_set_queue_params(vo, 0, queue_size);
}
struct mp_csp_equalizer *gl_video_eq_ptr(struct gl_video *p)
{
return &p->video_eq;
}
// Call when the mp_csp_equalizer returned by gl_video_eq_ptr() was changed.
void gl_video_eq_update(struct gl_video *p)
{
}
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
bool tscale = bstr_equals0(name, "tscale");
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT;
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
if (!handle_scaler_opt(s, tscale))
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available scalers:\n");
for (const char *const *filter = tscale ? fixed_tscale_filters
: fixed_scale_filters;
*filter; filter++) {
mp_info(log, " %s\n", *filter);
}
for (int n = 0; mp_filter_kernels[n].f.name; n++) {
if (!tscale || !mp_filter_kernels[n].polar)
mp_info(log, " %s\n", mp_filter_kernels[n].f.name);
}
if (s[0])
mp_fatal(log, "No scaler named '%s' found!\n", s);
}
return r;
}
static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
struct bstr name, struct bstr param)
{
char s[20] = {0};
int r = 1;
if (bstr_equals0(param, "help")) {
r = M_OPT_EXIT;
} else {
snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
const struct filter_window *window = mp_find_filter_window(s);
if (!window)
r = M_OPT_INVALID;
}
if (r < 1) {
mp_info(log, "Available windows:\n");
for (int n = 0; mp_filter_windows[n].name; n++)
mp_info(log, " %s\n", mp_filter_windows[n].name);
if (s[0])
mp_fatal(log, "No window named '%s' found!\n", s);
}
return r;
}
float gl_video_scale_ambient_lux(float lmin, float lmax,
float rmin, float rmax, float lux)
{
assert(lmax > lmin);
float num = (rmax - rmin) * (log10(lux) - log10(lmin));
float den = log10(lmax) - log10(lmin);
float result = num / den + rmin;
// clamp the result
float max = MPMAX(rmax, rmin);
float min = MPMIN(rmax, rmin);
return MPMAX(MPMIN(result, max), min);
}
void gl_video_set_ambient_lux(struct gl_video *p, int lux)
{
if (p->opts.gamma_auto) {
float gamma = gl_video_scale_ambient_lux(16.0, 64.0, 2.40, 1.961, lux);
MP_VERBOSE(p, "ambient light changed: %dlux (gamma: %f)\n", lux, gamma);
p->opts.gamma = MPMIN(1.0, 1.961 / gamma);
gl_video_eq_update(p);
}
}
void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec)
{
p->hwdec = hwdec;
unref_current_image(p);
}
void *gl_video_dr_alloc_buffer(struct gl_video *p, size_t size)
{
if (!p->ra->fns->create_mapped_buffer)
return NULL;
MP_TARRAY_GROW(p, p->dr_buffers, p->num_dr_buffers);
int index = p->num_dr_buffers++;
struct dr_buffer *buffer = &p->dr_buffers[index];
*buffer = (struct dr_buffer){
.buffer = p->ra->fns->create_mapped_buffer(p->ra, size),
};
if (!buffer->buffer) {
MP_TARRAY_REMOVE_AT(p->dr_buffers, p->num_dr_buffers, index);
return NULL;
}
return buffer->buffer->data;
};
void gl_video_dr_free_buffer(struct gl_video *p, void *ptr)
{
for (int n = 0; n < p->num_dr_buffers; n++) {
struct dr_buffer *buffer = &p->dr_buffers[n];
if (buffer->buffer->data == ptr) {
assert(!buffer->mpi); // can't be freed while it has a ref
p->ra->fns->destroy_mapped_buffer(p->ra, buffer->buffer);
MP_TARRAY_REMOVE_AT(p->dr_buffers, p->num_dr_buffers, n);
return;
}
}
// not found - must not happen
assert(0);
}