/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include "common/common.h"
#include "common/msg.h"
#include "csputils.h"
#include "options/m_config.h"
#include "options/m_option.h"
#include "video/fmt-conversion.h"
#include "video/img_format.h"
#include "zimg.h"
static_assert(MP_IMAGE_BYTE_ALIGN >= ZIMG_ALIGN, "");
#define HAVE_ZIMG_ALPHA (ZIMG_API_VERSION >= ZIMG_MAKE_API_VERSION(2, 4))
static const struct m_opt_choice_alternatives mp_zimg_scalers[] = {
{"point", ZIMG_RESIZE_POINT},
{"bilinear", ZIMG_RESIZE_BILINEAR},
{"bicubic", ZIMG_RESIZE_BICUBIC},
{"spline16", ZIMG_RESIZE_SPLINE16},
{"spline36", ZIMG_RESIZE_SPLINE36},
{"lanczos", ZIMG_RESIZE_LANCZOS},
{0}
};
#define OPT_PARAM(var) OPT_DOUBLE(var), .flags = M_OPT_DEFAULT_NAN
#define OPT_BASE_STRUCT struct zimg_opts
const struct m_sub_options zimg_conf = {
.opts = (struct m_option[]) {
{"scaler", OPT_CHOICE_C(scaler, mp_zimg_scalers)},
{"scaler-param-a", OPT_PARAM(scaler_params[0])},
{"scaler-param-b", OPT_PARAM(scaler_params[1])},
{"scaler-chroma", OPT_CHOICE_C(scaler_chroma, mp_zimg_scalers)},
{"scaler-chroma-param-a", OPT_PARAM(scaler_chroma_params[0])},
{"scaler-chroma-param-b", OPT_PARAM(scaler_chroma_params[1])},
{"dither", OPT_CHOICE(dither,
{"no", ZIMG_DITHER_NONE},
{"ordered", ZIMG_DITHER_ORDERED},
{"random", ZIMG_DITHER_RANDOM},
{"error-diffusion", ZIMG_DITHER_ERROR_DIFFUSION})},
{"fast", OPT_FLAG(fast)},
{0}
},
.size = sizeof(struct zimg_opts),
.defaults = &(const struct zimg_opts){
.scaler = ZIMG_RESIZE_LANCZOS,
.scaler_params = {NAN, NAN},
.scaler_chroma_params = {NAN, NAN},
.scaler_chroma = ZIMG_RESIZE_BILINEAR,
.dither = ZIMG_DITHER_RANDOM,
.fast = 1,
},
};
struct mp_zimg_repack {
bool pack; // if false, this is for unpacking
struct mp_image_params fmt; // original mp format (possibly packed format,
// swapped endian)
int zimgfmt; // zimg equivalent unpacked format
int num_planes; // number of planes involved
unsigned zmask[4]; // zmask[mp_index] = zimg mask (using mp index!)
int z_planes[4]; // z_planes[zimg_index] = mp_index (or -1)
bool pass_through_y; // luma plane optimization for e.g. nv12
// If set, the pack/unpack callback to pass to zimg.
// Called with user==mp_zimg_repack.
zimg_filter_graph_callback repack;
// Output bit depth. If 0, use format defaults. (Used by some packets. This
// is simpler than defining fringe planar RGB formats for each depth.)
int override_depth;
// Hammer it into using ZIMG_COLOR_GREY.
bool override_gray;
// Endian-swap (done before/after actual repacker).
int endian_size; // 0=no swapping, 2/4=word byte size to swap
int endian_items[4]; // number of words per pixel/plane
// For packed_repack.
int components[4]; // p2[n] = mp_image.planes[components[n]]
// pack: p1 is dst, p2 is src
// unpack: p1 is src, p2 is dst
void (*packed_repack_scanline)(void *p1, void *p2[], int x0, int x1);
// Fringe RGB/YUV.
uint8_t comp_size;
uint8_t *comp_map;
uint8_t comp_shifts[3];
uint8_t *comp_lut; // 256 * 3
// Temporary memory for slice-wise repacking. This may be set even if repack
// is not set (then it may be used to avoid alignment issues). This has
// about one slice worth of data.
struct mp_image *tmp;
// Temporary memory for endian swapping. This has about one slice worth
// of data; set and used only if endian swapping is used (endian_size>0).
// It's also used only for pack==false; packers do this in-place.
struct mp_image *tmp_endian;
// Temporary, per-call source/target frame.
struct mp_image *mpi;
// Y coordinate of first line in mpi; usually 0 if mpi==user_mpi, or the
// start of the current slice (in the current repack cb).
// repackers should use: mpi->data[p] + mpi->stride[p] * (i - mpi_y0)
int mpi_y0;
struct mp_image *user_mpi;
// Also temporary, per-call. use_buf[n] == plane n uses tmp (and not mpi).
bool use_buf[4];
int real_w, real_h; // aligned size
};
static void mp_zimg_update_from_cmdline(struct mp_zimg_context *ctx)
{
m_config_cache_update(ctx->opts_cache);
struct zimg_opts *opts = ctx->opts_cache->opts;
ctx->opts = *opts;
}
static zimg_chroma_location_e mp_to_z_chroma(enum mp_chroma_location cl)
{
switch (cl) {
case MP_CHROMA_LEFT: return ZIMG_CHROMA_LEFT;
case MP_CHROMA_CENTER: return ZIMG_CHROMA_CENTER;
default: return ZIMG_CHROMA_LEFT;
}
}
static zimg_matrix_coefficients_e mp_to_z_matrix(enum mp_csp csp)
{
switch (csp) {
case MP_CSP_BT_601: return ZIMG_MATRIX_BT470_BG;
case MP_CSP_BT_709: return ZIMG_MATRIX_BT709;
case MP_CSP_SMPTE_240M: return ZIMG_MATRIX_ST240_M;
case MP_CSP_BT_2020_NC: return ZIMG_MATRIX_BT2020_NCL;
case MP_CSP_BT_2020_C: return ZIMG_MATRIX_BT2020_CL;
case MP_CSP_RGB: return ZIMG_MATRIX_RGB;
case MP_CSP_XYZ: return ZIMG_MATRIX_RGB;
case MP_CSP_YCGCO: return ZIMG_MATRIX_YCGCO;
default: return ZIMG_MATRIX_BT709;
}
}
static zimg_transfer_characteristics_e mp_to_z_trc(enum mp_csp_trc trc)
{
switch (trc) {
case MP_CSP_TRC_BT_1886: return ZIMG_TRANSFER_BT709;
case MP_CSP_TRC_SRGB: return ZIMG_TRANSFER_IEC_61966_2_1;
case MP_CSP_TRC_LINEAR: return ZIMG_TRANSFER_LINEAR;
case MP_CSP_TRC_GAMMA22: return ZIMG_TRANSFER_BT470_M;
case MP_CSP_TRC_GAMMA28: return ZIMG_TRANSFER_BT470_BG;
case MP_CSP_TRC_PQ: return ZIMG_TRANSFER_ST2084;
case MP_CSP_TRC_HLG: return ZIMG_TRANSFER_ARIB_B67;
case MP_CSP_TRC_GAMMA18: // ?
case MP_CSP_TRC_GAMMA20:
case MP_CSP_TRC_GAMMA24:
case MP_CSP_TRC_GAMMA26:
case MP_CSP_TRC_PRO_PHOTO:
case MP_CSP_TRC_V_LOG:
case MP_CSP_TRC_S_LOG1:
case MP_CSP_TRC_S_LOG2: // ?
default: return ZIMG_TRANSFER_BT709;
}
}
static zimg_color_primaries_e mp_to_z_prim(enum mp_csp_prim prim)
{
switch (prim) {
case MP_CSP_PRIM_BT_601_525:return ZIMG_PRIMARIES_ST170_M;
case MP_CSP_PRIM_BT_601_625:return ZIMG_PRIMARIES_BT470_BG;
case MP_CSP_PRIM_BT_709: return ZIMG_PRIMARIES_BT709;
case MP_CSP_PRIM_BT_2020: return ZIMG_PRIMARIES_BT2020;
case MP_CSP_PRIM_BT_470M: return ZIMG_PRIMARIES_BT470_M;
case MP_CSP_PRIM_CIE_1931: return ZIMG_PRIMARIES_ST428;
case MP_CSP_PRIM_DCI_P3: return ZIMG_PRIMARIES_ST431_2;
case MP_CSP_PRIM_DISPLAY_P3:return ZIMG_PRIMARIES_ST432_1;
case MP_CSP_PRIM_APPLE: // ?
case MP_CSP_PRIM_ADOBE:
case MP_CSP_PRIM_PRO_PHOTO:
case MP_CSP_PRIM_V_GAMUT:
case MP_CSP_PRIM_S_GAMUT: // ?
default: return ZIMG_PRIMARIES_BT709;
}
}
static void destroy_zimg(struct mp_zimg_context *ctx)
{
free(ctx->zimg_tmp);
ctx->zimg_tmp = NULL;
zimg_filter_graph_free(ctx->zimg_graph);
ctx->zimg_graph = NULL;
TA_FREEP(&ctx->zimg_src);
TA_FREEP(&ctx->zimg_dst);
}
static void free_mp_zimg(void *p)
{
struct mp_zimg_context *ctx = p;
destroy_zimg(ctx);
}
struct mp_zimg_context *mp_zimg_alloc(void)
{
struct mp_zimg_context *ctx = talloc_ptrtype(NULL, ctx);
*ctx = (struct mp_zimg_context) {
.log = mp_null_log,
};
ctx->opts = *(struct zimg_opts *)zimg_conf.defaults;
talloc_set_destructor(ctx, free_mp_zimg);
return ctx;
}
void mp_zimg_enable_cmdline_opts(struct mp_zimg_context *ctx,
struct mpv_global *g)
{
if (ctx->opts_cache)
return;
ctx->opts_cache = m_config_cache_alloc(ctx, g, &zimg_conf);
destroy_zimg(ctx); // force update
mp_zimg_update_from_cmdline(ctx); // first update
}
static int repack_align(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
for (int p = 0; p < r->mpi->fmt.num_planes; p++) {
if (!r->use_buf[p])
continue;
int bpp = r->mpi->fmt.bytes[p];
int xs = r->mpi->fmt.xs[p];
int ys = r->mpi->fmt.ys[p];
// Number of lines on this plane.
int h = (1 << r->mpi->fmt.chroma_ys) - (1 << ys) + 1;
for (int y = i; y < i + h; y++) {
void *a = r->mpi->planes[p] +
r->mpi->stride[p] * (ptrdiff_t)((y - r->mpi_y0) >> ys) +
bpp * (x0 >> xs);
void *b = r->tmp->planes[p] +
r->tmp->stride[p] * (ptrdiff_t)((y >> ys) & r->zmask[p]) +
bpp * (x0 >> xs);
size_t size = ((x1 - x0) >> xs) * bpp;
if (r->pack) {
memcpy(a, b, size);
} else {
memcpy(b, a, size);
}
}
}
return 0;
}
// Swap endian for one line.
static void swap_endian(struct mp_zimg_repack *r, struct mp_image *dst, int dst_y,
struct mp_image *src, int src_y, int x0, int x1)
{
for (int p = 0; p < dst->fmt.num_planes; p++) {
int xs = dst->fmt.xs[p];
int ys = dst->fmt.ys[p];
int words_per_pixel = r->endian_items[p];
int bpp = words_per_pixel * r->endian_size;
// Number of lines on this plane.
int h = (1 << dst->fmt.chroma_ys) - (1 << ys) + 1;
int num_words = ((x1 - x0) >> xs) * words_per_pixel;
for (int y = 0; y < h; y++) {
void *s = src->planes[p] +
src->stride[p] * (ptrdiff_t)((y + src_y) >> ys) +
bpp * (x0 >> xs);
void *d = dst->planes[p] +
dst->stride[p] * (ptrdiff_t)((y + dst_y) >> ys) +
bpp * (x0 >> xs);
switch (r->endian_size) {
case 2:
for (int w = 0; w < num_words; w++)
((uint16_t *)d)[w] = av_bswap16(((uint16_t *)s)[w]);
break;
case 4:
for (int w = 0; w < num_words; w++)
((uint32_t *)d)[w] = av_bswap32(((uint32_t *)s)[w]);
break;
default:
assert(0);
}
}
}
}
// PA = PAck, copy planar input to single packed array
// UN = UNpack, copy packed input to planar output
// Naming convention:
// pa_/un_ prefix to identify conversion direction.
// Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
// (This is unusual; MSB to LSB is more commonly used to describe formats,
// but our convention makes more sense for byte access in little endian.)
// "c" identifies a color component.
// "z" identifies known zero padding.
// "x" identifies uninitialized padding.
// A component is followed by its size in bits.
// Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
// Unpackers will often use "x" for padding, because they ignore it, while
// packers will use "z" because they write zero.
#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \
static void name(void *dst, void *src[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
((packed_t *)dst)[x] = \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \
((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \
} \
}
#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
static void name(void *src, void *dst[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \
} \
}
#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \
static void name(void *dst, void *src[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
((packed_t *)dst)[x] = (pad) | \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \
} \
}
UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu)
PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24)
// Not sure if this is a good idea; there may be no alignment guarantee.
UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu)
PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48)
#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \
static void name(void *src, void *dst[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
} \
}
UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu)
PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0)
UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu)
PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0)
UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 20, 10, 0, 0)
#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \
static void name(void *dst, void *src[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
((packed_t *)dst)[x] = (pad) | \
((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \
} \
}
#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \
static void name(void *src, void *dst[], int x0, int x1) { \
for (int x = x0; x < x1; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
} \
}
UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu)
PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0)
UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)
#define PA_SEQ_3(name, comp_t) \
static void name(void *dst, void *src[], int x0, int x1) { \
comp_t *r = dst; \
for (int x = x0; x < x1; x++) { \
*r++ = ((comp_t *)src[0])[x]; \
*r++ = ((comp_t *)src[1])[x]; \
*r++ = ((comp_t *)src[2])[x]; \
} \
}
#define UN_SEQ_3(name, comp_t) \
static void name(void *src, void *dst[], int x0, int x1) { \
comp_t *r = src; \
for (int x = x0; x < x1; x++) { \
((comp_t *)dst[0])[x] = *r++; \
((comp_t *)dst[1])[x] = *r++; \
((comp_t *)dst[2])[x] = *r++; \
} \
}
UN_SEQ_3(un_ccc8, uint8_t)
PA_SEQ_3(pa_ccc8, uint8_t)
UN_SEQ_3(un_ccc16, uint16_t)
PA_SEQ_3(pa_ccc16, uint16_t)
// "regular": single packed plane, all components have same width (except padding)
struct regular_repacker {
int packed_width; // number of bits of the packed pixel
int component_width; // number of bits for a single component
int prepadding; // number of bits of LSB padding
int num_components; // number of components that can be accessed
void (*pa_scanline)(void *p1, void *p2[], int x0, int x1);
void (*un_scanline)(void *p1, void *p2[], int x0, int x1);
};
static const struct regular_repacker regular_repackers[] = {
{32, 8, 0, 3, pa_ccc8z8, un_ccc8x8},
{32, 8, 8, 3, pa_z8ccc8, un_x8ccc8},
{32, 8, 0, 4, pa_cccc8, un_cccc8},
{64, 16, 0, 4, pa_cccc16, un_cccc16},
{24, 8, 0, 3, pa_ccc8, un_ccc8},
{48, 16, 0, 3, pa_ccc16, un_ccc16},
{16, 8, 0, 2, pa_cc8, un_cc8},
{32, 16, 0, 2, pa_cc16, un_cc16},
{32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
};
static int packed_repack(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
uint32_t *p1 = (void *)(r->mpi->planes[0] +
r->mpi->stride[0] * (ptrdiff_t)(i - r->mpi_y0));
void *p2[4] = {0};
for (int p = 0; p < r->num_planes; p++) {
int s = r->components[p];
p2[p] = r->tmp->planes[s] +
r->tmp->stride[s] * (ptrdiff_t)(i & r->zmask[s]);
}
r->packed_repack_scanline(p1, p2, x0, x1);
return 0;
}
struct fringe_rgb_repacker {
// To avoid making a mess of IMGFMT_*, we use av formats directly.
enum AVPixelFormat avfmt;
// If true, use BGR instead of RGB.
// False: LSB - R - G - B - pad - MSB
// True: LSB - B - G - R - pad - MSB
bool rev_order;
// Size in bit for each component, strictly from LSB to MSB.
int bits[3];
bool be;
};
static const struct fringe_rgb_repacker fringe_rgb_repackers[] = {
{AV_PIX_FMT_BGR4_BYTE, false, {1, 2, 1}},
{AV_PIX_FMT_RGB4_BYTE, true, {1, 2, 1}},
{AV_PIX_FMT_BGR8, false, {3, 3, 2}},
{AV_PIX_FMT_RGB8, true, {2, 3, 3}}, // pixdesc desc. and doc. bug?
{AV_PIX_FMT_RGB444LE, true, {4, 4, 4}},
{AV_PIX_FMT_RGB444BE, true, {4, 4, 4}, .be = true},
{AV_PIX_FMT_BGR444LE, false, {4, 4, 4}},
{AV_PIX_FMT_BGR444BE, false, {4, 4, 4}, .be = true},
{AV_PIX_FMT_BGR565LE, false, {5, 6, 5}},
{AV_PIX_FMT_BGR565BE, false, {5, 6, 5}, .be = true},
{AV_PIX_FMT_RGB565LE, true, {5, 6, 5}},
{AV_PIX_FMT_RGB565BE, true, {5, 6, 5}, .be = true},
{AV_PIX_FMT_BGR555LE, false, {5, 5, 5}},
{AV_PIX_FMT_BGR555BE, false, {5, 5, 5}, .be = true},
{AV_PIX_FMT_RGB555LE, true, {5, 5, 5}},
{AV_PIX_FMT_RGB555BE, true, {5, 5, 5}, .be = true},
};
#define PA_SHIFT_LUT8(name, packed_t) \
static void name(void *dst, void *src[], int x0, int x1, uint8_t *lut, \
uint8_t s0, uint8_t s1, uint8_t s2) { \
for (int x = x0; x < x1; x++) { \
((packed_t *)dst)[x] = \
(lut[((uint8_t *)src[0])[x] + 256 * 0] << s0) | \
(lut[((uint8_t *)src[1])[x] + 256 * 1] << s1) | \
(lut[((uint8_t *)src[2])[x] + 256 * 2] << s2); \
} \
}
#define UN_SHIFT_LUT8(name, packed_t) \
static void name(void *src, void *dst[], int x0, int x1, uint8_t *lut, \
uint8_t s0, uint8_t s1, uint8_t s2) { \
for (int x = x0; x < x1; x++) { \
packed_t c = ((packed_t *)src)[x]; \
((uint8_t *)dst[0])[x] = lut[((c >> s0) & 0xFF) + 256 * 0]; \
((uint8_t *)dst[1])[x] = lut[((c >> s1) & 0xFF) + 256 * 1]; \
((uint8_t *)dst[2])[x] = lut[((c >> s2) & 0xFF) + 256 * 2]; \
} \
}
PA_SHIFT_LUT8(pa_shift_lut8_8, uint8_t)
PA_SHIFT_LUT8(pa_shift_lut8_16, uint16_t)
UN_SHIFT_LUT8(un_shift_lut8_8, uint8_t)
UN_SHIFT_LUT8(un_shift_lut8_16, uint16_t)
static int fringe_rgb_repack(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
void *p1 = r->mpi->planes[0] + r->mpi->stride[0] * (ptrdiff_t)(i - r->mpi_y0);
void *p2[4] = {0};
for (int p = 0; p < r->num_planes; p++) {
int s = r->components[p];
p2[p] = r->tmp->planes[s] +
r->tmp->stride[s] * (ptrdiff_t)(i & r->zmask[s]);
}
assert(r->comp_size == 1 || r->comp_size == 2);
void (*repack)(void *p1, void *p2[], int x0, int x1, uint8_t *lut,
uint8_t s0, uint8_t s1, uint8_t s2) = NULL;
if (r->pack) {
repack = r->comp_size == 1 ? pa_shift_lut8_8 : pa_shift_lut8_16;
} else {
repack = r->comp_size == 1 ? un_shift_lut8_8 : un_shift_lut8_16;
}
repack(p1, p2, x0, x1, r->comp_lut,
r->comp_shifts[0], r->comp_shifts[1], r->comp_shifts[2]);
return 0;
}
static int bitmap_repack(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
// Supposedly zimg aligns this at least on 64 byte boundaries. Simplifies a
// lot for us.
assert(!(x0 & 7));
uint8_t *p1 =
r->mpi->planes[0] + r->mpi->stride[0] * (ptrdiff_t)(i - r->mpi_y0);
uint8_t *p2 =
r->tmp->planes[0] + r->tmp->stride[0] * (ptrdiff_t)(i & r->zmask[0]);
uint8_t swap = r->comp_size ? 0xFF : 0;
if (r->pack) {
for (int x = x0; x < x1; x += 8) {
uint8_t d = 0;
int max_b = MPMIN(8, x1 - x);
for (int b = 0; b < max_b; b++)
d |= (!!p2[x + b]) << (7 - b);
p1[x / 8] = d ^ swap;
}
} else {
for (int x = x0; x < x1; x += 8) {
uint8_t d = p1[x / 8] ^ swap;
int max_b = MPMIN(8, x1 - x);
for (int b = 0; b < max_b; b++)
p2[x + b] = !!(d & (1 << (7 - b)));
}
}
return 0;
}
static int unpack_pal(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
uint8_t *src = (void *)(r->mpi->planes[0] +
r->mpi->stride[0] * (ptrdiff_t)(i - r->mpi_y0));
uint32_t *pal = (void *)r->mpi->planes[1];
uint8_t *dst[4] = {0};
for (int p = 0; p < r->num_planes; p++) {
dst[p] = r->tmp->planes[p] +
r->tmp->stride[p] * (ptrdiff_t)(i & r->zmask[p]);
}
for (int x = x0; x < x1; x++) {
uint32_t c = pal[src[x]];
dst[0][x] = (c >> 8) & 0xFF; // G
dst[1][x] = (c >> 0) & 0xFF; // B
dst[2][x] = (c >> 16) & 0xFF; // R
dst[3][x] = (c >> 24) & 0xFF; // A
}
return 0;
}
struct fringe_yuv422_repacker {
// To avoid making a mess of IMGFMT_*, we use av formats directly.
enum AVPixelFormat avfmt;
// In bits (depth/8 rounded up gives byte size)
int8_t depth;
// Word index of each sample: {y0, y1, cb, cr}
uint8_t comp[4];
bool be;
};
static const struct fringe_yuv422_repacker fringe_yuv422_repackers[] = {
{AV_PIX_FMT_YUYV422, 8, {0, 2, 1, 3}},
{AV_PIX_FMT_UYVY422, 8, {1, 3, 0, 2}},
{AV_PIX_FMT_YVYU422, 8, {0, 2, 3, 1}},
#ifdef AV_PIX_FMT_Y210
{AV_PIX_FMT_Y210LE, 10, {0, 2, 1, 3}},
{AV_PIX_FMT_Y210BE, 10, {0, 2, 1, 3}, .be = true},
#endif
};
#define PA_P422(name, comp_t) \
static void name(void *dst, void *src[], int x0, int x1, uint8_t *c) { \
for (int x = x0; x < x1; x += 2) { \
((comp_t *)dst)[x * 2 + c[0]] = ((comp_t *)src[0])[x + 0]; \
((comp_t *)dst)[x * 2 + c[1]] = ((comp_t *)src[0])[x + 1]; \
((comp_t *)dst)[x * 2 + c[2]] = ((comp_t *)src[1])[x >> 1]; \
((comp_t *)dst)[x * 2 + c[3]] = ((comp_t *)src[2])[x >> 1]; \
} \
}
#define UN_P422(name, comp_t) \
static void name(void *src, void *dst[], int x0, int x1, uint8_t *c) { \
for (int x = x0; x < x1; x += 2) { \
((comp_t *)dst[0])[x + 0] = ((comp_t *)src)[x * 2 + c[0]]; \
((comp_t *)dst[0])[x + 1] = ((comp_t *)src)[x * 2 + c[1]]; \
((comp_t *)dst[1])[x >> 1] = ((comp_t *)src)[x * 2 + c[2]]; \
((comp_t *)dst[2])[x >> 1] = ((comp_t *)src)[x * 2 + c[3]]; \
} \
}
PA_P422(pa_p422_8, uint8_t)
PA_P422(pa_p422_16, uint16_t)
UN_P422(un_p422_8, uint8_t)
UN_P422(un_p422_16, uint16_t)
static int fringe_yuv422_repack(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
void *p1 = r->mpi->planes[0] + r->mpi->stride[0] * (ptrdiff_t)(i - r->mpi_y0);
void *p2[4] = {0};
for (int p = 0; p < r->num_planes; p++) {
p2[p] = r->tmp->planes[p] +
r->tmp->stride[p] * (ptrdiff_t)(i & r->zmask[p]);
}
assert(r->comp_size == 1 || r->comp_size == 2);
void (*repack)(void *p1, void *p2[], int x0, int x1, uint8_t *c) = NULL;
if (r->pack) {
repack = r->comp_size == 1 ? pa_p422_8 : pa_p422_16;
} else {
repack = r->comp_size == 1 ? un_p422_8 : un_p422_16;
}
repack(p1, p2, x0, x1, r->comp_map);
return 0;
}
static int repack_nv(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
int xs = r->mpi->fmt.chroma_xs;
int ys = r->mpi->fmt.chroma_ys;
if (r->use_buf[0]) {
// Copy Y.
int l_h = 1 << ys;
for (int y = i; y < i + l_h; y++) {
ptrdiff_t bpp = r->mpi->fmt.bytes[0];
void *a = r->mpi->planes[0] +
r->mpi->stride[0] * (ptrdiff_t)(y - r->mpi_y0) + bpp * x0;
void *b = r->tmp->planes[0] +
r->tmp->stride[0] * (ptrdiff_t)(y & r->zmask[0]) + bpp * x0;
size_t size = (x1 - x0) * bpp;
if (r->pack) {
memcpy(a, b, size);
} else {
memcpy(b, a, size);
}
}
}
uint32_t *p1 = (void *)(r->mpi->planes[1] +
r->mpi->stride[1] * (ptrdiff_t)((i - r->mpi_y0) >> ys));
void *p2[2];
for (int p = 0; p < 2; p++) {
int s = r->components[p];
p2[p] = r->tmp->planes[s] +
r->tmp->stride[s] * (ptrdiff_t)((i >> ys) & r->zmask[s]);
}
r->packed_repack_scanline(p1, p2, x0 >> xs, x1 >> xs);
return 0;
}
static int repack_entrypoint(void *user, unsigned i, unsigned x0, unsigned x1)
{
struct mp_zimg_repack *r = user;
if (r->endian_size && !r->pack) {
r->mpi = r->tmp_endian;
r->mpi_y0 = i;
swap_endian(r, r->mpi, 0, r->user_mpi, i, x0, x1);
} else {
r->mpi = r->user_mpi;
r->mpi_y0 = 0;
}
if (r->repack) {
r->repack(r, i, x0, x1);
} else {
repack_align(r, i, x0, x1);
}
if (r->endian_size && r->pack)
swap_endian(r, r->user_mpi, i, r->mpi, i - r->mpi_y0, x0, x1);
r->mpi = NULL;
return 0;
}
static void wrap_buffer(struct mp_zimg_repack *r,
zimg_image_buffer *buf,
struct mp_image *mpi)
{
*buf = (zimg_image_buffer){ZIMG_API_VERSION};
bool plane_aligned[4] = {0};
for (int n = 0; n < r->num_planes; n++) {
plane_aligned[n] = !((uintptr_t)mpi->planes[n] % ZIMG_ALIGN) &&
!(mpi->stride[n] % ZIMG_ALIGN);
}
for (int n = 0; n < MP_ARRAY_SIZE(buf->plane); n++) {
// Note: this is really the only place we have to care about plane
// permutation (zimg_image_buffer may have a different plane order
// than the shadow mpi like r->tmp). We never use the zimg indexes
// in other places.
int mplane = r->z_planes[n];
if (mplane < 0)
continue;
r->use_buf[mplane] = !plane_aligned[mplane] || r->endian_size;
if (!(r->pass_through_y && mplane == 0))
r->use_buf[mplane] |= !!r->repack;
struct mp_image *tmpi = r->use_buf[mplane] ? r->tmp : mpi;
buf->plane[n].data = tmpi->planes[mplane];
buf->plane[n].stride = tmpi->stride[mplane];
buf->plane[n].mask = r->use_buf[mplane] ? r->zmask[mplane]
: ZIMG_BUFFER_MAX;
}
r->user_mpi = mpi;
}
static void setup_fringe_rgb_packer(struct mp_zimg_repack *r,
struct mp_zimg_context *ctx)
{
enum AVPixelFormat avfmt = imgfmt2pixfmt(r->zimgfmt);
const struct fringe_rgb_repacker *fmt = NULL;
for (int n = 0; n < MP_ARRAY_SIZE(fringe_rgb_repackers); n++) {
if (fringe_rgb_repackers[n].avfmt == avfmt) {
fmt = &fringe_rgb_repackers[n];
break;
}
}
if (!fmt)
return;
struct mp_regular_imgfmt gbrp = {
.component_type = MP_COMPONENT_TYPE_UINT,
.forced_csp = MP_CSP_RGB,
.component_size = 1,
.num_planes = 3,
.planes = { {1, {2}}, {1, {3}}, {1, {1}} },
.chroma_w = 1,
.chroma_h = 1,
};
r->zimgfmt = mp_find_regular_imgfmt(&gbrp);
if (!r->zimgfmt)
return;
if (ctx)
r->comp_lut = talloc_array(ctx, uint8_t, 256 * 3);
r->repack = fringe_rgb_repack;
static const int c_order_rgb[] = {3, 1, 2};
static const int c_order_bgr[] = {2, 1, 3};
for (int n = 0; n < 3; n++)
r->components[n] = (fmt->rev_order ? c_order_bgr : c_order_rgb)[n] - 1;
if (r->pack) {
// Dither to lowest depth - loses some precision, but result is saner.
r->override_depth = fmt->bits[0];
for (int n = 0; n < 3; n++)
r->override_depth = MPMIN(r->override_depth, fmt->bits[n]);
}
int bitpos = 0;
for (int n = 0; n < 3; n++) {
int bits = fmt->bits[n];
r->comp_shifts[n] = bitpos;
if (r->comp_lut) {
uint8_t *lut = r->comp_lut + 256 * n;
uint8_t zmax = r->pack ? (1 << r->override_depth) - 1 : 255;
uint8_t cmax = (1 << bits) - 1;
for (int v = 0; v < 256; v++) {
if (r->pack) {
lut[v] = (v * cmax + zmax / 2) / zmax;
} else {
lut[v] = (v & cmax) * zmax / cmax;
}
}
}
bitpos += bits;
}
r->comp_size = (bitpos + 7) / 8;
assert(r->comp_size == 1 || r->comp_size == 2);
if (fmt->be) {
assert(r->comp_size == 2);
r->endian_size = 2;
r->endian_items[0] = 1;
}
}
static void setup_fringe_yuv422_packer(struct mp_zimg_repack *r)
{
enum AVPixelFormat avfmt = imgfmt2pixfmt(r->zimgfmt);
const struct fringe_yuv422_repacker *fmt = NULL;
for (int n = 0; n < MP_ARRAY_SIZE(fringe_yuv422_repackers); n++) {
if (fringe_yuv422_repackers[n].avfmt == avfmt) {
fmt = &fringe_yuv422_repackers[n];
break;
}
}
if (!fmt)
return;
r->comp_size = (fmt->depth + 7) / 8;
assert(r->comp_size == 1 || r->comp_size == 2);
struct mp_regular_imgfmt yuvfmt = {
.component_type = MP_COMPONENT_TYPE_UINT,
// NB: same problem with P010 and not clearing padding.
.component_size = r->comp_size,
.num_planes = 3,
.planes = { {1, {1}}, {1, {2}}, {1, {3}} },
.chroma_w = 2,
.chroma_h = 1,
};
r->zimgfmt = mp_find_regular_imgfmt(&yuvfmt);
r->repack = fringe_yuv422_repack;
r->comp_map = (uint8_t *)fmt->comp;
if (fmt->be) {
assert(r->comp_size == 2);
r->endian_size = 2;
r->endian_items[0] = 4;
}
}
static void setup_nv_packer(struct mp_zimg_repack *r)
{
struct mp_regular_imgfmt desc;
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
return;
// Check for NV.
if (desc.num_planes != 2)
return;
if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
return;
if (desc.planes[1].num_components != 2)
return;
int cr0 = desc.planes[1].components[0];
int cr1 = desc.planes[1].components[1];
if (cr0 > cr1)
MPSWAP(int, cr0, cr1);
if (cr0 != 2 || cr1 != 3)
return;
// Construct equivalent planar format.
struct mp_regular_imgfmt desc2 = desc;
desc2.num_planes = 3;
desc2.planes[1].num_components = 1;
desc2.planes[1].components[0] = 2;
desc2.planes[2].num_components = 1;
desc2.planes[2].components[0] = 3;
// For P010. Strangely this concept exists only for the NV format.
if (desc2.component_pad > 0)
desc2.component_pad = 0;
int planar_fmt = mp_find_regular_imgfmt(&desc2);
if (!planar_fmt)
return;
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
const struct regular_repacker *pa = ®ular_repackers[i];
void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
r->pack ? pa->pa_scanline : pa->un_scanline;
if (pa->packed_width != desc.component_size * 2 * 8 ||
pa->component_width != desc.component_size * 8 ||
pa->num_components != 2 ||
pa->prepadding != 0 ||
!repack_cb)
continue;
r->repack = repack_nv;
r->pass_through_y = true;
r->packed_repack_scanline = repack_cb;
r->zimgfmt = planar_fmt;
r->components[0] = desc.planes[1].components[0] - 1;
r->components[1] = desc.planes[1].components[1] - 1;
return;
}
}
static void setup_misc_packer(struct mp_zimg_repack *r)
{
// Although it's in regular_repackers[], the generic mpv imgfmt metadata
// can't handle it yet.
if (r->zimgfmt == IMGFMT_RGB30) {
struct mp_regular_imgfmt planar10 = {
.component_type = MP_COMPONENT_TYPE_UINT,
.component_size = 2,
.component_pad = -6,
.num_planes = 3,
.planes = {
{1, {1}},
{1, {2}},
{1, {3}},
},
.chroma_w = 1,
.chroma_h = 1,
};
int planar_fmt = mp_find_regular_imgfmt(&planar10);
if (!planar_fmt)
return;
r->zimgfmt = planar_fmt;
r->repack = packed_repack;
r->packed_repack_scanline = r->pack ? pa_ccc10z2 : un_ccc10x2;
static int c_order[] = {3, 2, 1};
for (int n = 0; n < 3; n++)
r->components[n] = c_order[n] - 1;
} else if (r->zimgfmt == IMGFMT_PAL8 && !r->pack) {
struct mp_regular_imgfmt gbrap = {
.component_type = MP_COMPONENT_TYPE_UINT,
.forced_csp = MP_CSP_RGB,
.component_size = 1,
.num_planes = 4,
.planes = { {1, {2}}, {1, {3}}, {1, {1}}, {1, {4}}, },
.chroma_w = 1,
.chroma_h = 1,
};
int grap_fmt = mp_find_regular_imgfmt(&gbrap);
if (!grap_fmt)
return;
r->zimgfmt = grap_fmt;
r->repack = unpack_pal;
} else {
enum AVPixelFormat avfmt = imgfmt2pixfmt(r->zimgfmt);
if (avfmt == AV_PIX_FMT_MONOWHITE || avfmt == AV_PIX_FMT_MONOBLACK) {
r->zimgfmt = IMGFMT_Y8;
r->repack = bitmap_repack;
r->override_depth = 1;
r->override_gray = true;
r->comp_size = avfmt == AV_PIX_FMT_MONOWHITE; // abuse to pass a flag
return;
}
}
}
// Tries to set a packer/unpacker for component-wise byte aligned RGB formats.
static void setup_regular_rgb_packer(struct mp_zimg_repack *r)
{
struct mp_regular_imgfmt desc;
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
return;
if (desc.num_planes != 1 || desc.planes[0].num_components < 2)
return;
struct mp_regular_imgfmt_plane *p = &desc.planes[0];
int num_real_components = 0;
bool has_alpha = false;
for (int n = 0; n < p->num_components; n++) {
if (p->components[n]) {
has_alpha |= p->components[n] == 4;
num_real_components += 1;
} else {
// padding must be in MSB or LSB
if (n != 0 && n != p->num_components - 1)
return;
}
}
int depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);
// Find a physically compatible planar format (typically IMGFMT_420P).
struct mp_regular_imgfmt desc2 = desc;
desc2.forced_csp = 0;
if (desc2.component_pad > 0)
desc2.component_pad = 0;
desc2.num_planes = num_real_components;
for (int n = 0; n < desc2.num_planes; n++) {
desc2.planes[n].num_components = 1;
desc2.planes[n].components[0] = n + 1;
}
if (has_alpha)
desc2.planes[desc2.num_planes - 1].components[0] = 4;
int planar_fmt = mp_find_regular_imgfmt(&desc2);
if (!planar_fmt)
return;
for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
const struct regular_repacker *pa = ®ular_repackers[i];
// The following may assume little endian (because some repack backends
// use word access, while the metadata here uses byte access).
int prepad = p->components[0] ? 0 : 8;
int first_comp = p->components[0] ? 0 : 1;
void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
r->pack ? pa->pa_scanline : pa->un_scanline;
if (pa->packed_width != desc.component_size * p->num_components * 8 ||
pa->component_width != depth ||
pa->num_components != num_real_components ||
pa->prepadding != prepad ||
!repack_cb)
continue;
r->repack = packed_repack;
r->packed_repack_scanline = repack_cb;
r->zimgfmt = planar_fmt;
for (int n = 0; n < num_real_components; n++) {
// Determine permutation that maps component order between the two
// formats, with has_alpha special case (see above).
int c = p->components[first_comp + n];
r->components[n] = c == 4 ? num_real_components - 1 : c - 1;
}
return;
}
}
// (If native_fmt!=r->fmt.imgfmt, this is the swap-endian case; native_fmt is NE.)
// (ctx can be NULL for the sake of probing.)
static bool setup_format_ne(zimg_image_format *zfmt, struct mp_zimg_repack *r,
int native_fmt, struct mp_zimg_context *ctx)
{
zimg_image_format_default(zfmt, ZIMG_API_VERSION);
struct mp_image_params fmt = r->fmt;
mp_image_params_guess_csp(&fmt);
r->zimgfmt = native_fmt;
if (!r->repack)
setup_nv_packer(r);
if (!r->repack)
setup_misc_packer(r);
if (!r->repack)
setup_regular_rgb_packer(r);
if (!r->repack)
setup_fringe_rgb_packer(r, ctx);
if (!r->repack)
setup_fringe_yuv422_packer(r);
struct mp_regular_imgfmt desc;
if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
return false;
// no weird stuff
if (desc.num_planes > 4 || !MP_IS_POWER_OF_2(desc.chroma_w) ||
!MP_IS_POWER_OF_2(desc.chroma_h))
return false;
// Endian swapping.
if (native_fmt != fmt.imgfmt) {
struct mp_regular_imgfmt ndesc;
if (!mp_get_regular_imgfmt(&ndesc, native_fmt) || ndesc.num_planes > 4)
return false;
r->endian_size = ndesc.component_size;
if (r->endian_size != 2 && r->endian_size != 4)
return false;
for (int n = 0; n < ndesc.num_planes; n++)
r->endian_items[n] = ndesc.planes[n].num_components;
}
for (int n = 0; n < 4; n++)
r->z_planes[n] = -1;
// Accept only true planar formats.
for (int n = 0; n < desc.num_planes; n++) {
if (desc.planes[n].num_components != 1)
return false;
int c = desc.planes[n].components[0];
if (c < 1 || c > 4)
return false;
if (c < 4) {
// Unfortunately, ffmpeg prefers GBR order for planar RGB, while zimg
// is sane. This makes it necessary to determine and fix the order.
r->z_planes[c - 1] = n;
} else {
r->z_planes[3] = n; // alpha, always plane 4 in zimg
#if HAVE_ZIMG_ALPHA
zfmt->alpha = ZIMG_ALPHA_STRAIGHT;
#else
return false;
#endif
}
}
r->num_planes = desc.num_planes;
// Note: formats with subsampled chroma may have odd width or height in
// mpv and FFmpeg. This is because the width/height is actually a cropping
// rectangle. Reconstruct the image allocation size and set the cropping.
zfmt->width = r->real_w = MP_ALIGN_UP(fmt.w, desc.chroma_w);
zfmt->height = r->real_h = MP_ALIGN_UP(fmt.h, desc.chroma_h);
if (!r->pack && ctx) {
// Relies on ctx->zimg_dst being initialized first.
struct mp_zimg_repack *dst = ctx->zimg_dst;
zfmt->active_region.width = dst->real_w * (double)fmt.w / dst->fmt.w;
zfmt->active_region.height = dst->real_h * (double)fmt.h / dst->fmt.h;
}
zfmt->subsample_w = mp_log2(desc.chroma_w);
zfmt->subsample_h = mp_log2(desc.chroma_h);
zfmt->color_family = ZIMG_COLOR_YUV;
if (desc.num_planes <= 2) {
zfmt->color_family = ZIMG_COLOR_GREY;
} else if (fmt.color.space == MP_CSP_RGB || fmt.color.space == MP_CSP_XYZ) {
zfmt->color_family = ZIMG_COLOR_RGB;
}
if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
desc.component_size == 1)
{
zfmt->pixel_type = ZIMG_PIXEL_BYTE;
} else if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
desc.component_size == 2)
{
zfmt->pixel_type = ZIMG_PIXEL_WORD;
} else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
desc.component_size == 2)
{
zfmt->pixel_type = ZIMG_PIXEL_HALF;
} else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
desc.component_size == 4)
{
zfmt->pixel_type = ZIMG_PIXEL_FLOAT;
} else {
return false;
}
// (Formats like P010 are basically reported as P016.)
zfmt->depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);
if (r->override_depth)
zfmt->depth = r->override_depth;
zfmt->pixel_range = fmt.color.levels == MP_CSP_LEVELS_PC ?
ZIMG_RANGE_FULL : ZIMG_RANGE_LIMITED;
zfmt->matrix_coefficients = mp_to_z_matrix(fmt.color.space);
zfmt->transfer_characteristics = mp_to_z_trc(fmt.color.gamma);
zfmt->color_primaries = mp_to_z_prim(fmt.color.primaries);
zfmt->chroma_location = mp_to_z_chroma(fmt.chroma_location);
if (r->override_gray) {
zfmt->color_family = ZIMG_COLOR_GREY;
zfmt->pixel_range = ZIMG_RANGE_FULL;
zfmt->matrix_coefficients = ZIMG_MATRIX_BT470_BG;
}
if (ctx && ctx->opts.fast) {
// mpv's default for RGB output slows down zimg significantly.
if (zfmt->transfer_characteristics == ZIMG_TRANSFER_IEC_61966_2_1 &&
zfmt->color_family == ZIMG_COLOR_RGB)
zfmt->transfer_characteristics = ZIMG_TRANSFER_BT709;
}
return true;
}
static bool setup_format(zimg_image_format *zfmt, struct mp_zimg_repack *r,
bool pack, struct mp_image_params *fmt,
struct mp_zimg_context *ctx)
{
struct mp_zimg_repack repack_init = {
.pack = pack,
.fmt = *fmt,
};
*r = repack_init;
if (setup_format_ne(zfmt, r, fmt->imgfmt, ctx))
return true;
// Try reverse endian.
int nimgfmt = mp_find_other_endian(fmt->imgfmt);
if (!nimgfmt)
return false;
*r = repack_init;
return setup_format_ne(zfmt, r, nimgfmt, ctx);
}
static bool allocate_buffer(struct mp_zimg_context *ctx,
struct mp_zimg_repack *r)
{
unsigned lines = 0;
int err;
if (r->pack) {
err = zimg_filter_graph_get_output_buffering(ctx->zimg_graph, &lines);
} else {
err = zimg_filter_graph_get_input_buffering(ctx->zimg_graph, &lines);
}
if (err)
return false;
r->zmask[0] = zimg_select_buffer_mask(lines);
// Either ZIMG_BUFFER_MAX, or a power-of-2 slice buffer.
assert(r->zmask[0] == ZIMG_BUFFER_MAX || MP_IS_POWER_OF_2(r->zmask[0] + 1));
int h = r->zmask[0] == ZIMG_BUFFER_MAX ? r->fmt.h : r->zmask[0] + 1;
if (h >= r->fmt.h) {
h = r->fmt.h;
r->zmask[0] = ZIMG_BUFFER_MAX;
}
r->tmp = mp_image_alloc(r->zimgfmt, r->fmt.w, h);
talloc_steal(r, r->tmp);
if (!r->tmp)
return false;
for (int n = 1; n < r->tmp->fmt.num_planes; n++) {
r->zmask[n] = r->zmask[0];
if (r->zmask[0] != ZIMG_BUFFER_MAX)
r->zmask[n] = r->zmask[n] >> r->tmp->fmt.ys[n];
}
if (r->endian_size && !r->pack) {
r->tmp_endian = mp_image_alloc(r->fmt.imgfmt, r->fmt.w, h);
talloc_steal(r, r->tmp_endian);
if (!r->tmp_endian)
return false;
}
return true;
}
bool mp_zimg_config(struct mp_zimg_context *ctx)
{
struct zimg_opts *opts = &ctx->opts;
destroy_zimg(ctx);
if (ctx->opts_cache)
mp_zimg_update_from_cmdline(ctx);
ctx->zimg_src = talloc_zero(NULL, struct mp_zimg_repack);
ctx->zimg_dst = talloc_zero(NULL, struct mp_zimg_repack);
zimg_image_format src_fmt, dst_fmt;
// Note: do zimg_dst first, because zimg_src uses fields from zimg_dst.
if (!setup_format(&dst_fmt, ctx->zimg_dst, true, &ctx->dst, ctx) ||
!setup_format(&src_fmt, ctx->zimg_src, false, &ctx->src, ctx))
goto fail;
zimg_graph_builder_params params;
zimg_graph_builder_params_default(¶ms, ZIMG_API_VERSION);
params.resample_filter = opts->scaler;
params.filter_param_a = opts->scaler_params[0];
params.filter_param_b = opts->scaler_params[1];
params.resample_filter_uv = opts->scaler_chroma;
params.filter_param_a_uv = opts->scaler_chroma_params[0];
params.filter_param_b_uv = opts->scaler_chroma_params[1];
params.dither_type = opts->dither;
params.cpu_type = ZIMG_CPU_AUTO_64B;
if (opts->fast)
params.allow_approximate_gamma = 1;
if (ctx->src.color.sig_peak > 0)
params.nominal_peak_luminance = ctx->src.color.sig_peak;
ctx->zimg_graph = zimg_filter_graph_build(&src_fmt, &dst_fmt, ¶ms);
if (!ctx->zimg_graph) {
char err[128] = {0};
zimg_get_last_error(err, sizeof(err) - 1);
MP_ERR(ctx, "zimg_filter_graph_build: %s \n", err);
goto fail;
}
size_t tmp_size;
if (!zimg_filter_graph_get_tmp_size(ctx->zimg_graph, &tmp_size)) {
tmp_size = MP_ALIGN_UP(tmp_size, ZIMG_ALIGN);
ctx->zimg_tmp = aligned_alloc(ZIMG_ALIGN, tmp_size);
}
if (!ctx->zimg_tmp)
goto fail;
if (!allocate_buffer(ctx, ctx->zimg_src) ||
!allocate_buffer(ctx, ctx->zimg_dst))
goto fail;
return true;
fail:
destroy_zimg(ctx);
return false;
}
bool mp_zimg_config_image_params(struct mp_zimg_context *ctx)
{
if (ctx->zimg_src && mp_image_params_equal(&ctx->src, &ctx->zimg_src->fmt) &&
ctx->zimg_dst && mp_image_params_equal(&ctx->dst, &ctx->zimg_dst->fmt) &&
(!ctx->opts_cache || !m_config_cache_update(ctx->opts_cache)) &&
ctx->zimg_graph)
return true;
return mp_zimg_config(ctx);
}
bool mp_zimg_convert(struct mp_zimg_context *ctx, struct mp_image *dst,
struct mp_image *src)
{
ctx->src = src->params;
ctx->dst = dst->params;
if (!mp_zimg_config_image_params(ctx)) {
MP_ERR(ctx, "zimg initialization failed.\n");
return false;
}
assert(ctx->zimg_graph);
zimg_image_buffer zsrc, zdst;
wrap_buffer(ctx->zimg_src, &zsrc, src);
wrap_buffer(ctx->zimg_dst, &zdst, dst);
// An annoyance.
zimg_image_buffer_const zsrc_c = {ZIMG_API_VERSION};
for (int n = 0; n < MP_ARRAY_SIZE(zsrc_c.plane); n++) {
zsrc_c.plane[n].data = zsrc.plane[n].data;
zsrc_c.plane[n].stride = zsrc.plane[n].stride;
zsrc_c.plane[n].mask = zsrc.plane[n].mask;
}
// (The API promises to succeed if no user callbacks fail, so no need
// to check the return value.)
zimg_filter_graph_process(ctx->zimg_graph, &zsrc_c, &zdst,
ctx->zimg_tmp,
repack_entrypoint, ctx->zimg_src,
repack_entrypoint, ctx->zimg_dst);
ctx->zimg_src->user_mpi = NULL;
ctx->zimg_dst->user_mpi = NULL;
return true;
}
static bool supports_format(int imgfmt, bool out)
{
struct mp_image_params fmt = {.imgfmt = imgfmt};
struct mp_zimg_repack t;
zimg_image_format zfmt;
return setup_format(&zfmt, &t, out, &fmt, NULL);
}
bool mp_zimg_supports_in_format(int imgfmt)
{
return supports_format(imgfmt, false);
}
bool mp_zimg_supports_out_format(int imgfmt)
{
return supports_format(imgfmt, true);
}