/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*
* The shader portions may have been derived from existing LGPLv3 shaders
* (see below), possibly making this file effectively LGPLv3.
*/
#include "nnedi3.h"
#if HAVE_NNEDI
#include
#include
#include
#include
#include "video.h"
/*
* NNEDI3, an intra-field deinterlacer
*
* The original filter was authored by Kevin Stone (aka. tritical) and is
* licensed under GPL2 terms:
* http://bengal.missouri.edu/~kes25c/
*
* A LGPLv3 licensed OpenCL kernel was created by SEt:
* http://forum.doom9.org/showthread.php?t=169766
*
* A HLSL port further modified by madshi, Shiandow and Zach Saw could be
* found at (also LGPLv3 licensed):
* https://github.com/zachsaw/MPDN_Extensions
*
*/
#define GLSL(x) gl_sc_add(sc, #x "\n");
#define GLSLF(...) gl_sc_addf(sc, __VA_ARGS__)
#define GLSLH(x) gl_sc_hadd(sc, #x "\n");
#define GLSLHF(...) gl_sc_haddf(sc, __VA_ARGS__)
const struct nnedi3_opts nnedi3_opts_def = {
.neurons = 1,
.window = 0,
.upload = NNEDI3_UPLOAD_UBO,
};
#define OPT_BASE_STRUCT struct nnedi3_opts
const struct m_sub_options nnedi3_conf = {
.opts = (const m_option_t[]) {
OPT_CHOICE("neurons", neurons, 0,
({"16", 0},
{"32", 1},
{"64", 2},
{"128", 3})),
OPT_CHOICE("window", window, 0,
({"8x4", 0},
{"8x6", 1})),
OPT_CHOICE("upload", upload, 0,
({"ubo", NNEDI3_UPLOAD_UBO},
{"shader", NNEDI3_UPLOAD_SHADER})),
{0}
},
.size = sizeof(struct nnedi3_opts),
.defaults = &nnedi3_opts_def,
};
const static char nnedi3_weights[40320 * 4 + 1] =
#include "video/out/opengl/nnedi3_weights.inc"
;
const int nnedi3_weight_offsets[9] =
{0, 1088, 3264, 7616, 16320, 17920, 21120, 27520, 40320};
const int nnedi3_neurons[4] = {16, 32, 64, 128};
const int nnedi3_window_width[2] = {8, 8};
const int nnedi3_window_height[2] = {4, 6};
const float* get_nnedi3_weights(const struct nnedi3_opts *conf, int *size)
{
int idx = conf->window * 4 + conf->neurons;
const int offset = nnedi3_weight_offsets[idx];
*size = (nnedi3_weight_offsets[idx + 1] - offset) * 4;
return (const float*)(nnedi3_weights + offset * 4);
}
void pass_nnedi3(GL *gl, struct gl_shader_cache *sc, int planes, int tex_num,
int step, float tex_mul, const struct nnedi3_opts *conf,
struct gl_transform *transform)
{
assert(0 <= step && step < 2);
if (!conf)
conf = &nnedi3_opts_def;
const int neurons = nnedi3_neurons[conf->neurons];
const int width = nnedi3_window_width[conf->window];
const int height = nnedi3_window_height[conf->window];
const int offset = nnedi3_weight_offsets[conf->window * 4 + conf->neurons];
const uint32_t *weights = (const int*)(nnedi3_weights + offset * 4);
GLSLF("// nnedi3 (tex %d, step %d, neurons %d, window %dx%d, mode %d)\n",
tex_num, step + 1, neurons, width, height, conf->upload);
// This is required since each row will be encoded into vec4s
assert(width % 4 == 0);
const int sample_count = width * height / 4;
if (conf->upload == NNEDI3_UPLOAD_UBO) {
char buf[32];
snprintf(buf, sizeof(buf), "vec4 weights[%d];",
neurons * (sample_count * 2 + 1));
gl_sc_uniform_buffer(sc, "NNEDI3_WEIGHTS", buf, 0);
if (!gl->es && gl->glsl_version < 140)
gl_sc_enable_extension(sc, "GL_ARB_uniform_buffer_object");
} else if (conf->upload == NNEDI3_UPLOAD_SHADER) {
// Somehow necessary for hard coding approach.
GLSLH(#pragma optionNV(fastprecision on))
}
GLSLHF("float nnedi3(sampler2D tex, vec2 pos, vec2 tex_size, int plane, float tex_mul) {\n");
if (step == 0) {
*transform = (struct gl_transform){{{1.0,0.0}, {0.0,2.0}}, {0.0,-0.5}};
GLSLH(if (fract(pos.y * tex_size.y) < 0.5)
return texture(tex, pos + vec2(0, 0.25) / tex_size)[plane] * tex_mul;)
GLSLHF("#define GET(i, j) "
"(texture(tex, pos+vec2((i)-(%f),(j)-(%f)+0.25)/tex_size)[plane]*tex_mul)\n",
width / 2.0 - 1, (height - 1) / 2.0);
} else {
*transform = (struct gl_transform){{{2.0,0.0}, {0.0,1.0}}, {-0.5,0.0}};
GLSLH(if (fract(pos.x * tex_size.x) < 0.5)
return texture(tex, pos + vec2(0.25, 0) / tex_size)[plane] * tex_mul;)
GLSLHF("#define GET(i, j) "
"(texture(tex, pos+vec2((j)-(%f)+0.25,(i)-(%f))/tex_size)[plane]*tex_mul)\n",
(height - 1) / 2.0, width / 2.0 - 1);
}
GLSLHF("vec4 samples[%d];\n", sample_count);
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x += 4) {
GLSLHF("samples[%d] = vec4(GET(%d.0, %d.0), GET(%d.0, %d.0),"
"GET(%d.0, %d.0), GET(%d.0, %d.0));\n",
(y * width + x) / 4, x, y, x+1, y, x+2, y, x+3, y);
}
GLSLHF("float sum = 0.0, sumsq = 0.0;"
"for (int i = 0; i < %d; i++) {"
"sum += dot(samples[i], vec4(1.0));"
"sumsq += dot(samples[i], samples[i]);"
"}\n", sample_count);
GLSLHF("float mstd0 = sum / %d.0;\n"
"float mstd1 = sumsq / %d.0 - mstd0 * mstd0;\n"
"float mstd2 = mix(0.0, inversesqrt(mstd1), mstd1 >= %.12e);\n"
"mstd1 *= mstd2;\n",
width * height, width * height, FLT_EPSILON);
GLSLHF("float vsum = 0.0, wsum = 0.0, sum1, sum2;\n");
if (conf->upload == NNEDI3_UPLOAD_SHADER) {
GLSLH(#define T(x) intBitsToFloat(x))
GLSLH(#define W(i,w0,w1,w2,w3) dot(samples[i],vec4(T(w0),T(w1),T(w2),T(w3))))
GLSLHF("#define WS(w0,w1) "
"sum1 = exp(sum1 * mstd2 + T(w0));"
"sum2 = sum2 * mstd2 + T(w1);"
"wsum += sum1;"
"vsum += sum1*(sum2/(1.0+abs(sum2)));\n");
for (int n = 0; n < neurons; n++) {
const uint32_t *weights_ptr = weights + (sample_count * 2 + 1) * 4 * n;
for (int s = 0; s < 2; s++) {
GLSLHF("sum%d", s + 1);
for (int i = 0; i < sample_count; i++) {
GLSLHF("%cW(%d,%d,%d,%d,%d)", i == 0 ? '=' : '+', i,
(int)av_le2ne32(weights_ptr[0]),
(int)av_le2ne32(weights_ptr[1]),
(int)av_le2ne32(weights_ptr[2]),
(int)av_le2ne32(weights_ptr[3]));
weights_ptr += 4;
}
GLSLHF(";");
}
GLSLHF("WS(%d,%d);\n", (int)av_le2ne32(weights_ptr[0]),
(int)av_le2ne32(weights_ptr[1]));
}
} else if (conf->upload == NNEDI3_UPLOAD_UBO) {
GLSLH(int idx = 0;)
GLSLHF("for (int n = 0; n < %d; n++) {\n", neurons);
for (int s = 0; s < 2; s++) {
GLSLHF("sum%d = 0.0;\n"
"for (int i = 0; i < %d; i++) {"
"sum%d += dot(samples[i], weights[idx++]);"
"}\n",
s + 1, sample_count, s + 1);
}
GLSLH(sum1 = exp(sum1 * mstd2 + weights[idx][0]);
sum2 = sum2 * mstd2 + weights[idx++][1];
wsum += sum1;
vsum += sum1*(sum2/(1.0+abs(sum2)));)
GLSLHF("}\n");
}
GLSLH(return clamp(mstd0 + 5.0 * vsum / wsum * mstd1, 0.0, 1.0);)
GLSLHF("}\n"); // nnedi3
GLSL(color = vec4(1.0);)
for (int i = 0; i < planes; i++) {
GLSLF("color[%d] = nnedi3(texture%d, texcoord%d, texture_size%d, %d, %f);\n",
i, tex_num, tex_num, tex_num, i, tex_mul);
}
}
#else
const struct m_sub_options nnedi3_conf = {0};
const float* get_nnedi3_weights(const struct nnedi3_opts *conf, int *size)
{
return NULL;
}
void pass_nnedi3(GL *gl, struct gl_shader_cache *sc, int planes, int tex_num,
int step, float tex_mul, const struct nnedi3_opts *conf,
struct gl_transform *transform)
{
}
#endif