/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with mpv. If not, see . */ #include #include #include "common/common.h" #include "common/msg.h" #include "csputils.h" #include "misc/thread_pool.h" #include "misc/thread_tools.h" #include "options/m_config.h" #include "options/m_option.h" #include "repack.h" #include "video/fmt-conversion.h" #include "video/img_format.h" #include "zimg.h" #include "config.h" static_assert(MP_IMAGE_BYTE_ALIGN >= ZIMG_ALIGN, ""); #define HAVE_ZIMG_ALPHA (ZIMG_API_VERSION >= ZIMG_MAKE_API_VERSION(2, 4)) static const struct m_opt_choice_alternatives mp_zimg_scalers[] = { {"point", ZIMG_RESIZE_POINT}, {"bilinear", ZIMG_RESIZE_BILINEAR}, {"bicubic", ZIMG_RESIZE_BICUBIC}, {"spline16", ZIMG_RESIZE_SPLINE16}, {"spline36", ZIMG_RESIZE_SPLINE36}, {"lanczos", ZIMG_RESIZE_LANCZOS}, {0} }; const struct zimg_opts zimg_opts_defaults = { .scaler = ZIMG_RESIZE_LANCZOS, .scaler_params = {NAN, NAN}, .scaler_chroma_params = {NAN, NAN}, .scaler_chroma = ZIMG_RESIZE_BILINEAR, .dither = ZIMG_DITHER_RANDOM, .fast = true, }; #define OPT_PARAM(var) OPT_DOUBLE(var), .flags = M_OPT_DEFAULT_NAN #define OPT_BASE_STRUCT struct zimg_opts const struct m_sub_options zimg_conf = { .opts = (struct m_option[]) { {"scaler", OPT_CHOICE_C(scaler, mp_zimg_scalers)}, {"scaler-param-a", OPT_PARAM(scaler_params[0])}, {"scaler-param-b", OPT_PARAM(scaler_params[1])}, {"scaler-chroma", OPT_CHOICE_C(scaler_chroma, mp_zimg_scalers)}, {"scaler-chroma-param-a", OPT_PARAM(scaler_chroma_params[0])}, {"scaler-chroma-param-b", OPT_PARAM(scaler_chroma_params[1])}, {"dither", OPT_CHOICE(dither, {"no", ZIMG_DITHER_NONE}, {"ordered", ZIMG_DITHER_ORDERED}, {"random", ZIMG_DITHER_RANDOM}, {"error-diffusion", ZIMG_DITHER_ERROR_DIFFUSION})}, {"fast", OPT_BOOL(fast)}, {"threads", OPT_CHOICE(threads, {"auto", 0}), M_RANGE(1, 64)}, {0} }, .size = sizeof(struct zimg_opts), .defaults = &zimg_opts_defaults, }; struct mp_zimg_state { zimg_filter_graph *graph; void *tmp; void *tmp_alloc; struct mp_zimg_repack *src; struct mp_zimg_repack *dst; int slice_y, slice_h; // y start position, height of target slice double scale_y; struct mp_waiter thread_waiter; }; struct mp_zimg_repack { bool pack; // if false, this is for unpacking struct mp_image_params fmt; // original mp format (possibly packed format, // swapped endian) int zimgfmt; // zimg equivalent unpacked format int num_planes; // number of planes involved unsigned zmask[4]; // zmask[mp_index] = zimg mask (using mp index!) int z_planes[4]; // z_planes[zimg_index] = mp_index (or -1) struct mp_repack *repack; // converting to/from planar // Temporary memory for slice-wise repacking. This may be set even if repack // is not set (then it may be used to avoid alignment issues). This has // about one slice worth of data. struct mp_image *tmp; // Temporary memory for zimg buffer. zimg_image_buffer zbuf; struct mp_image cropped_tmp; int real_w, real_h; // aligned size }; static void mp_zimg_update_from_cmdline(struct mp_zimg_context *ctx) { m_config_cache_update(ctx->opts_cache); struct zimg_opts *opts = ctx->opts_cache->opts; ctx->opts = *opts; } static zimg_chroma_location_e mp_to_z_chroma(enum mp_chroma_location cl) { switch (cl) { case MP_CHROMA_TOPLEFT: return ZIMG_CHROMA_TOP_LEFT; case MP_CHROMA_LEFT: return ZIMG_CHROMA_LEFT; case MP_CHROMA_CENTER: return ZIMG_CHROMA_CENTER; default: return ZIMG_CHROMA_LEFT; } } static zimg_matrix_coefficients_e mp_to_z_matrix(enum mp_csp csp) { switch (csp) { case MP_CSP_BT_601: return ZIMG_MATRIX_BT470_BG; case MP_CSP_BT_709: return ZIMG_MATRIX_BT709; case MP_CSP_SMPTE_240M: return ZIMG_MATRIX_ST240_M; case MP_CSP_BT_2020_NC: return ZIMG_MATRIX_BT2020_NCL; case MP_CSP_BT_2020_C: return ZIMG_MATRIX_BT2020_CL; case MP_CSP_RGB: return ZIMG_MATRIX_RGB; case MP_CSP_XYZ: return ZIMG_MATRIX_RGB; case MP_CSP_YCGCO: return ZIMG_MATRIX_YCGCO; default: return ZIMG_MATRIX_BT709; } } static zimg_transfer_characteristics_e mp_to_z_trc(enum mp_csp_trc trc) { switch (trc) { case MP_CSP_TRC_BT_1886: return ZIMG_TRANSFER_BT709; case MP_CSP_TRC_SRGB: return ZIMG_TRANSFER_IEC_61966_2_1; case MP_CSP_TRC_LINEAR: return ZIMG_TRANSFER_LINEAR; case MP_CSP_TRC_GAMMA22: return ZIMG_TRANSFER_BT470_M; case MP_CSP_TRC_GAMMA28: return ZIMG_TRANSFER_BT470_BG; case MP_CSP_TRC_PQ: return ZIMG_TRANSFER_ST2084; case MP_CSP_TRC_HLG: return ZIMG_TRANSFER_ARIB_B67; #if HAVE_ZIMG_ST428 case MP_CSP_TRC_ST428: return ZIMG_TRANSFER_ST428; #endif case MP_CSP_TRC_GAMMA18: // ? case MP_CSP_TRC_GAMMA20: case MP_CSP_TRC_GAMMA24: case MP_CSP_TRC_GAMMA26: case MP_CSP_TRC_PRO_PHOTO: case MP_CSP_TRC_V_LOG: case MP_CSP_TRC_S_LOG1: case MP_CSP_TRC_S_LOG2: // ? default: return ZIMG_TRANSFER_BT709; } } static zimg_color_primaries_e mp_to_z_prim(enum mp_csp_prim prim) { switch (prim) { case MP_CSP_PRIM_BT_601_525:return ZIMG_PRIMARIES_ST170_M; case MP_CSP_PRIM_BT_601_625:return ZIMG_PRIMARIES_BT470_BG; case MP_CSP_PRIM_BT_709: return ZIMG_PRIMARIES_BT709; case MP_CSP_PRIM_BT_2020: return ZIMG_PRIMARIES_BT2020; case MP_CSP_PRIM_BT_470M: return ZIMG_PRIMARIES_BT470_M; case MP_CSP_PRIM_DCI_P3: return ZIMG_PRIMARIES_ST431_2; case MP_CSP_PRIM_DISPLAY_P3:return ZIMG_PRIMARIES_ST432_1; case MP_CSP_PRIM_CIE_1931: case MP_CSP_PRIM_APPLE: // ? case MP_CSP_PRIM_ADOBE: case MP_CSP_PRIM_PRO_PHOTO: case MP_CSP_PRIM_V_GAMUT: case MP_CSP_PRIM_S_GAMUT: // ? default: return ZIMG_PRIMARIES_BT709; } } static void destroy_zimg(struct mp_zimg_context *ctx) { for (int n = 0; n < ctx->num_states; n++) { struct mp_zimg_state *st = ctx->states[n]; talloc_free(st->tmp_alloc); zimg_filter_graph_free(st->graph); TA_FREEP(&st->src); TA_FREEP(&st->dst); talloc_free(st); } ctx->num_states = 0; } static void free_mp_zimg(void *p) { struct mp_zimg_context *ctx = p; destroy_zimg(ctx); TA_FREEP(&ctx->tp); } struct mp_zimg_context *mp_zimg_alloc(void) { struct mp_zimg_context *ctx = talloc_ptrtype(NULL, ctx); *ctx = (struct mp_zimg_context) { .log = mp_null_log, }; ctx->opts = *(struct zimg_opts *)zimg_conf.defaults; talloc_set_destructor(ctx, free_mp_zimg); return ctx; } void mp_zimg_enable_cmdline_opts(struct mp_zimg_context *ctx, struct mpv_global *g) { if (ctx->opts_cache) return; ctx->opts_cache = m_config_cache_alloc(ctx, g, &zimg_conf); destroy_zimg(ctx); // force update mp_zimg_update_from_cmdline(ctx); // first update } static int repack_entrypoint(void *user, unsigned i, unsigned x0, unsigned x1) { struct mp_zimg_repack *r = user; // If reading is not aligned, just read slightly more data. if (!r->pack) x0 &= ~(unsigned)(mp_repack_get_align_x(r->repack) - 1); // mp_repack requirements and zimg guarantees. assert(!(i & (mp_repack_get_align_y(r->repack) - 1))); assert(!(x0 & (mp_repack_get_align_x(r->repack) - 1))); unsigned i_src = i & (r->pack ? r->zmask[0] : ZIMG_BUFFER_MAX); unsigned i_dst = i & (r->pack ? ZIMG_BUFFER_MAX : r->zmask[0]); repack_line(r->repack, x0, i_dst, x0, i_src, x1 - x0); return 0; } static bool wrap_buffer(struct mp_zimg_state *st, struct mp_zimg_repack *r, struct mp_image *a_mpi) { zimg_image_buffer *buf = &r->zbuf; *buf = (zimg_image_buffer){ZIMG_API_VERSION}; struct mp_image *mpi = a_mpi; if (r->pack) { mpi = &r->cropped_tmp; *mpi = *a_mpi; mp_image_crop(mpi, 0, st->slice_y, mpi->w, st->slice_y + st->slice_h); } bool direct[MP_MAX_PLANES] = {0}; for (int p = 0; p < mpi->num_planes; p++) { // If alignment is good, try to avoid copy. direct[p] = !((uintptr_t)mpi->planes[p] % ZIMG_ALIGN) && !(mpi->stride[p] % ZIMG_ALIGN); } if (!repack_config_buffers(r->repack, 0, r->pack ? mpi : r->tmp, 0, r->pack ? r->tmp : mpi, direct)) return false; for (int n = 0; n < MP_ARRAY_SIZE(buf->plane); n++) { // Note: this is really the only place we have to care about plane // permutation (zimg_image_buffer may have a different plane order // than the shadow mpi like r->tmp). We never use the zimg indexes // in other places. int mplane = r->z_planes[n]; if (mplane < 0) continue; struct mp_image *tmpi = direct[mplane] ? mpi : r->tmp; buf->plane[n].data = tmpi->planes[mplane]; buf->plane[n].stride = tmpi->stride[mplane]; buf->plane[n].mask = direct[mplane] ? ZIMG_BUFFER_MAX : r->zmask[mplane]; } return true; } // (ctx and st can be NULL for probing.) static bool setup_format(zimg_image_format *zfmt, struct mp_zimg_repack *r, bool pack, struct mp_image_params *user_fmt, struct mp_zimg_context *ctx, struct mp_zimg_state *st) { r->fmt = *user_fmt; r->pack = pack; zimg_image_format_default(zfmt, ZIMG_API_VERSION); int rp_flags = 0; // For e.g. RGB565, go to lowest depth on pack for less weird dithering. if (r->pack) { rp_flags |= REPACK_CREATE_ROUND_DOWN; } else { rp_flags |= REPACK_CREATE_EXPAND_8BIT; } r->repack = mp_repack_create_planar(r->fmt.imgfmt, r->pack, rp_flags); if (!r->repack) return false; int align_x = mp_repack_get_align_x(r->repack); r->zimgfmt = r->pack ? mp_repack_get_format_src(r->repack) : mp_repack_get_format_dst(r->repack); if (ctx) { talloc_steal(r, r->repack); } else { TA_FREEP(&r->repack); } struct mp_image_params fmt = r->fmt; mp_image_params_guess_csp(&fmt); struct mp_regular_imgfmt desc; if (!mp_get_regular_imgfmt(&desc, r->zimgfmt)) return false; // Relies on zimg callbacks reading on 64 byte alignment. if (!MP_IS_POWER_OF_2(align_x) || align_x > 64 / desc.component_size) return false; // no weird stuff if (desc.num_planes > 4) return false; for (int n = 0; n < 4; n++) r->z_planes[n] = -1; for (int n = 0; n < desc.num_planes; n++) { if (desc.planes[n].num_components != 1) return false; int c = desc.planes[n].components[0]; if (c < 1 || c > 4) return false; if (c < 4) { // Unfortunately, ffmpeg prefers GBR order for planar RGB, while zimg // is sane. This makes it necessary to determine and fix the order. r->z_planes[c - 1] = n; } else { r->z_planes[3] = n; // alpha, always plane 4 in zimg #if HAVE_ZIMG_ALPHA zfmt->alpha = fmt.alpha == MP_ALPHA_PREMUL ? ZIMG_ALPHA_PREMULTIPLIED : ZIMG_ALPHA_STRAIGHT; #else return false; #endif } } r->num_planes = desc.num_planes; // Take care of input/output size, including slicing. // Note: formats with subsampled chroma may have odd width or height in // mpv and FFmpeg. This is because the width/height is actually a cropping // rectangle. Reconstruct the image allocation size and set the cropping. zfmt->width = r->real_w = MP_ALIGN_UP(fmt.w, 1 << desc.chroma_xs); zfmt->height = r->real_h = MP_ALIGN_UP(fmt.h, 1 << desc.chroma_ys); if (st) { if (r->pack) { zfmt->height = r->real_h = st->slice_h = MPMIN(st->slice_y + st->slice_h, r->real_h) - st->slice_y; assert(MP_IS_ALIGNED(r->real_h, 1 << desc.chroma_ys)); } else { // Relies on st->dst being initialized first. struct mp_zimg_repack *dst = st->dst; zfmt->active_region.width = dst->real_w * (double)fmt.w / dst->fmt.w; zfmt->active_region.height = dst->real_h * st->scale_y; zfmt->active_region.top = st->slice_y * st->scale_y; } } zfmt->subsample_w = desc.chroma_xs; zfmt->subsample_h = desc.chroma_ys; zfmt->color_family = ZIMG_COLOR_YUV; if (desc.num_planes <= 2) { zfmt->color_family = ZIMG_COLOR_GREY; } else if (fmt.color.space == MP_CSP_RGB || fmt.color.space == MP_CSP_XYZ) { zfmt->color_family = ZIMG_COLOR_RGB; } if (desc.component_type == MP_COMPONENT_TYPE_UINT && desc.component_size == 1) { zfmt->pixel_type = ZIMG_PIXEL_BYTE; } else if (desc.component_type == MP_COMPONENT_TYPE_UINT && desc.component_size == 2) { zfmt->pixel_type = ZIMG_PIXEL_WORD; } else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT && desc.component_size == 2) { zfmt->pixel_type = ZIMG_PIXEL_HALF; } else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT && desc.component_size == 4) { zfmt->pixel_type = ZIMG_PIXEL_FLOAT; } else { return false; } // (Formats like P010 are basically reported as P016.) zfmt->depth = desc.component_size * 8 + MPMIN(0, desc.component_pad); zfmt->pixel_range = fmt.color.levels == MP_CSP_LEVELS_PC ? ZIMG_RANGE_FULL : ZIMG_RANGE_LIMITED; zfmt->matrix_coefficients = mp_to_z_matrix(fmt.color.space); zfmt->transfer_characteristics = mp_to_z_trc(fmt.color.gamma); // For MP_CSP_XYZ only valid primaries are defined in ST 428-1 zfmt->color_primaries = fmt.color.space == MP_CSP_XYZ ? ZIMG_PRIMARIES_ST428 : mp_to_z_prim(fmt.color.primaries); zfmt->chroma_location = mp_to_z_chroma(fmt.chroma_location); if (ctx && ctx->opts.fast) { // mpv's default for RGB output slows down zimg significantly. if (zfmt->transfer_characteristics == ZIMG_TRANSFER_IEC_61966_2_1 && zfmt->color_family == ZIMG_COLOR_RGB) zfmt->transfer_characteristics = ZIMG_TRANSFER_BT709; } // mpv treats _some_ gray formats as RGB; zimg doesn't like this. if (zfmt->color_family == ZIMG_COLOR_GREY && zfmt->matrix_coefficients == ZIMG_MATRIX_RGB) zfmt->matrix_coefficients = ZIMG_MATRIX_BT470_BG; return true; } static bool allocate_buffer(struct mp_zimg_state *st, struct mp_zimg_repack *r) { unsigned lines = 0; int err; if (r->pack) { err = zimg_filter_graph_get_output_buffering(st->graph, &lines); } else { err = zimg_filter_graph_get_input_buffering(st->graph, &lines); } if (err) return false; r->zmask[0] = zimg_select_buffer_mask(lines); // Either ZIMG_BUFFER_MAX, or a power-of-2 slice buffer. assert(r->zmask[0] == ZIMG_BUFFER_MAX || MP_IS_POWER_OF_2(r->zmask[0] + 1)); int h = r->zmask[0] == ZIMG_BUFFER_MAX ? r->real_h : r->zmask[0] + 1; if (h >= r->real_h) { h = r->real_h; r->zmask[0] = ZIMG_BUFFER_MAX; } r->tmp = mp_image_alloc(r->zimgfmt, r->real_w, h); talloc_steal(r, r->tmp); if (!r->tmp) return false; // Note: although zimg doesn't require that the chroma plane's zmask is // divided by the full size zmask, the repack callback requires it, // since mp_repack can handle only proper slices. for (int n = 1; n < r->tmp->fmt.num_planes; n++) { r->zmask[n] = r->zmask[0]; if (r->zmask[0] != ZIMG_BUFFER_MAX) r->zmask[n] = r->zmask[n] >> r->tmp->fmt.ys[n]; } return true; } static bool mp_zimg_state_init(struct mp_zimg_context *ctx, struct mp_zimg_state *st, int slice_y, int slice_h) { struct zimg_opts *opts = &ctx->opts; st->src = talloc_zero(NULL, struct mp_zimg_repack); st->dst = talloc_zero(NULL, struct mp_zimg_repack); st->scale_y = ctx->src.h / (double)ctx->dst.h; st->slice_y = slice_y; st->slice_h = slice_h; zimg_image_format src_fmt, dst_fmt; // Note: do dst first, because src uses fields from dst. if (!setup_format(&dst_fmt, st->dst, true, &ctx->dst, ctx, st) || !setup_format(&src_fmt, st->src, false, &ctx->src, ctx, st)) return false; zimg_graph_builder_params params; zimg_graph_builder_params_default(¶ms, ZIMG_API_VERSION); params.resample_filter = opts->scaler; params.filter_param_a = opts->scaler_params[0]; params.filter_param_b = opts->scaler_params[1]; params.resample_filter_uv = opts->scaler_chroma; params.filter_param_a_uv = opts->scaler_chroma_params[0]; params.filter_param_b_uv = opts->scaler_chroma_params[1]; params.dither_type = opts->dither; params.cpu_type = ZIMG_CPU_AUTO_64B; if (opts->fast) params.allow_approximate_gamma = 1; if (ctx->src.color.sig_peak > 0) params.nominal_peak_luminance = ctx->src.color.sig_peak; st->graph = zimg_filter_graph_build(&src_fmt, &dst_fmt, ¶ms); if (!st->graph) { char err[128] = {0}; zimg_get_last_error(err, sizeof(err) - 1); MP_ERR(ctx, "zimg_filter_graph_build: %s \n", err); return false; } size_t tmp_size; if (!zimg_filter_graph_get_tmp_size(st->graph, &tmp_size)) { tmp_size = MP_ALIGN_UP(tmp_size, ZIMG_ALIGN) + ZIMG_ALIGN; st->tmp_alloc = ta_alloc_size(NULL, tmp_size); if (st->tmp_alloc) st->tmp = (void *)MP_ALIGN_UP((uintptr_t)st->tmp_alloc, ZIMG_ALIGN); } if (!st->tmp_alloc) return false; if (!allocate_buffer(st, st->src) || !allocate_buffer(st, st->dst)) return false; return true; } bool mp_zimg_config(struct mp_zimg_context *ctx) { destroy_zimg(ctx); if (ctx->opts_cache) mp_zimg_update_from_cmdline(ctx); int slices = ctx->opts.threads; if (slices < 1) slices = av_cpu_count(); slices = MPCLAMP(slices, 1, 64); struct mp_imgfmt_desc dstfmt = mp_imgfmt_get_desc(ctx->dst.imgfmt); if (!dstfmt.align_y) goto fail; int full_h = MP_ALIGN_UP(ctx->dst.h, dstfmt.align_y); int slice_h = (full_h + slices - 1) / slices; slice_h = MP_ALIGN_UP(slice_h, dstfmt.align_y); slice_h = MP_ALIGN_UP(slice_h, 64); // for dithering and minimum slice size slices = (full_h + slice_h - 1) / slice_h; int threads = slices - 1; if (threads != ctx->current_thread_count) { // Just destroy and recreate all - dumb and costly, but rarely happens. TA_FREEP(&ctx->tp); ctx->current_thread_count = 0; if (threads) { MP_VERBOSE(ctx, "using %d threads for scaling\n", threads); ctx->tp = mp_thread_pool_create(NULL, threads, threads, threads); if (!ctx->tp) goto fail; ctx->current_thread_count = threads; } } for (int n = 0; n < slices; n++) { struct mp_zimg_state *st = talloc_zero(NULL, struct mp_zimg_state); MP_TARRAY_APPEND(ctx, ctx->states, ctx->num_states, st); if (!mp_zimg_state_init(ctx, st, n * slice_h, slice_h)) goto fail; } assert(ctx->num_states == slices); return true; fail: destroy_zimg(ctx); return false; } bool mp_zimg_config_image_params(struct mp_zimg_context *ctx) { if (ctx->num_states) { // All states are the same, so checking only one of them is sufficient. struct mp_zimg_state *st = ctx->states[0]; if (st->src && mp_image_params_equal(&ctx->src, &st->src->fmt) && st->dst && mp_image_params_equal(&ctx->dst, &st->dst->fmt) && (!ctx->opts_cache || !m_config_cache_update(ctx->opts_cache)) && st->graph) return true; } return mp_zimg_config(ctx); } static void do_convert(struct mp_zimg_state *st) { assert(st->graph); // An annoyance. zimg_image_buffer *zsrc = &st->src->zbuf; zimg_image_buffer_const zsrc_c = {ZIMG_API_VERSION}; for (int n = 0; n < MP_ARRAY_SIZE(zsrc_c.plane); n++) { zsrc_c.plane[n].data = zsrc->plane[n].data; zsrc_c.plane[n].stride = zsrc->plane[n].stride; zsrc_c.plane[n].mask = zsrc->plane[n].mask; } // (The API promises to succeed if no user callbacks fail, so no need // to check the return value.) zimg_filter_graph_process(st->graph, &zsrc_c, &st->dst->zbuf, st->tmp, repack_entrypoint, st->src, repack_entrypoint, st->dst); } static void do_convert_thread(void *ptr) { struct mp_zimg_state *st = ptr; do_convert(st); mp_waiter_wakeup(&st->thread_waiter, 0); } bool mp_zimg_convert(struct mp_zimg_context *ctx, struct mp_image *dst, struct mp_image *src) { ctx->src = src->params; ctx->dst = dst->params; if (!mp_zimg_config_image_params(ctx)) { MP_ERR(ctx, "zimg initialization failed.\n"); return false; } for (int n = 0; n < ctx->num_states; n++) { struct mp_zimg_state *st = ctx->states[n]; if (!wrap_buffer(st, st->src, src) || !wrap_buffer(st, st->dst, dst)) { MP_ERR(ctx, "zimg repacker initialization failed.\n"); return false; } } for (int n = 1; n < ctx->num_states; n++) { struct mp_zimg_state *st = ctx->states[n]; st->thread_waiter = (struct mp_waiter)MP_WAITER_INITIALIZER; bool r = mp_thread_pool_run(ctx->tp, do_convert_thread, st); // This is guaranteed by the API; and unrolling would be inconvenient. assert(r); } do_convert(ctx->states[0]); for (int n = 1; n < ctx->num_states; n++) { struct mp_zimg_state *st = ctx->states[n]; mp_waiter_wait(&st->thread_waiter); } return true; } static bool supports_format(int imgfmt, bool out) { struct mp_image_params fmt = {.imgfmt = imgfmt}; struct mp_zimg_repack t; zimg_image_format zfmt; return setup_format(&zfmt, &t, out, &fmt, NULL, NULL); } bool mp_zimg_supports_in_format(int imgfmt) { return supports_format(imgfmt, false); } bool mp_zimg_supports_out_format(int imgfmt) { return supports_format(imgfmt, true); }