For testing in VMs I guess?
This features a very broken hack that probably works. Though I didn't
test the packed format case. Again, the mismatch is essentially due to
big endian byte addresses decreasing as bit addresses increase, so you
can't represent a bit position in a byte stream with a single address,
which the mpv metadata does.
OSD is broken because repack.c doesn't support big endian. You'll have
to live with it.
I'm not sure why it only rendered OSD inside the video. Since OSD
rendering was always done on the X image (after software scaling and
color conversion), there was no technical reason for this. Maybe it was
because the code started out this way, and it was annoying to change it.
Possibly, one reason was that it didn't normally have to clear the black
bars in every frame (if video didn't cover the entire window).
Anyway, simply render OSD to the full window. This gets rid of some
rather weird stuff. It seems to look mostly like vo_wlshm now. The
uncovered regions are cleared every frame, which could probably be
avoided by being clever with the OSD renderer code, but this is where
I'm decidedly losing interest.
There was some mysterious code for aligning the image width to 8 pixels.
Replace that by attempting to align it to SIMD alignment (might matter
for libswscale, or if repack.c gets SIMD). Why are there apparently 4
different ways representing a pixel format (depth, VisualID, Visual,
XVisualInfo), but none of them seem to provide the XImage.bits_per_pixel
value (the actual size of a pixel, including padding)? Even after 33
years, X11 still seems overengineered, confusing, and inconvenient. So
just call X11 a heap of shit, and assume the worst case for alignment.
Make sure to accept only native endian mpv formats. Previously, it
didn't check, and simply matched LE, because these are usually defined
before the BE formats.
red_mask etc. are defined as unsigned long, so use that instead of
hardcoding a 32 bit limit.
Useless, but super generic! Actually may add support for other fringe
formats, however vo_x11 in itself is useless, so nothing won here. Also
I didn't bother with big endian support.
X11 is in fact beautiful and superior to Wayland. Instead, just state
what the problem is in most cases: software scaling. (We have
accelerated X11 rendering in vo_gpu and others.)
This is slightly helpful for testing, and otherwise useless and without
consequence.
I'm not using the correct output format and using IMGFMT_RGB0 as
placeholder. This doesn't matter currently, as both sws and zimg support
this as output (and support any input for it). I'm doing this because
it's surprisingly tricky to get the correct output format at this point,
without digging deeper into x11 shit or refactoring parts of the VO. I
don't care enough about this.
Purpose uncertain. I guess it's slightly better, maybe.
The move of the sws/zimg options from VO opts (vo_opt_list) to the
top-level option list is tricky. VO opts have some helper code in vo.c,
that sends VOCTRL_SET_PANSCAN to the VO on every VO opts change. That's
because updating certain VO options used to be this way (and not just
the panscan option). This isn't needed anymore for sws/zimg options, so
explicitly move them away.
This will perform conversion and scaling of video with zimg, if
--sws-allow-zimg is used.
The performance probably depends on how well the compiler optimizes the
RGB pack code in zimg.c, which is written in C.
Returning -1 in a function with return type bool is the same as
returning true. In the error paths, false should be returned to
indicate that something went wrong.
mp_sws_set_from_cmdline() has the only purpose to respect the --sws-
command line options. Instead of forcing callers to get the option
struct containing these, let callers pass mpv_global, and get it from
the option core code directly. This avoids minor annoyances later on.
vo_x11 and vo_xv need this. According to the Linux manpage, all involved
functions are POSIX-2001 anyway. (I just assumed they were not, because
they're mostly System V UNIX legacy garbage.)
Reduces the ifdeffery, which is good and will avoid silent breakages, or
weird behavior if a lib is omitted.
Also reorder the x11_common.c include statements.
The delay between call to .resize, which cleared the buffer, and
actually rendering the first video frame, was significant, resulting in
short flicker on navigation and resizing. This was especially visible
when zooming and navigating between images.
Now the clearing is scheduled to happen just before the rendering, which
looks to be good enough even without double buffering.
It was used to determine whether the VO supports VOCTRL_SET_PANSCAN.
With all those changes to property semantics this became unnecessary,
and its only use was dropped at some point.
MPlayer traditionally always used the display aspect ratio, e.g. 16:9,
while FFmpeg uses the sample (aka pixel) aspect ratio.
Both have a bunch of advantages and disadvantages. Actually, it seems
using sample aspect ratio is generally nicer. The main reason for the
change is making mpv closer to how FFmpeg works in order to make life
easier. It's also nice that everything uses integer fractions instead
of floats now (except --video-aspect option/property).
Note that there is at least 1 user-visible change: vf_dsize now does
not set the display size, only the display aspect ratio. This is
because the image_params d_w/d_h fields did not just set the display
aspect, but also the size (except in encoding mode).
This parameter has been unused for years (the last flag was removed in
commit d658b115). Get rid of it.
This affects the general VO API, as well as the vo_opengl backend API,
so it touches a lot of files.
The VOFLAGs are still used to control OpenGL context creation, so move
them to the OpenGL backend code.
This gets rid of an old hack, VOFLAG_HIDDEN. Although handling of it has
been sane for a while, it used to cause much pain, and is still
unintuitive and weird even today.
The main reason for this hack is that OpenGL selects a X11 Visual for
you, and you're supposed to use this Visual when creating the X window
for the OpenGL context. Which means the X window can't be created early
in the common X11 init code, but the OpenGL code needs to do something
before that. API-wise you need separate functions for X11 init and X11
window creation. The VOFLAG_HIDDEN hack conflated window creation and
the entrypoint for resizing on video resolution change into one
function, vo_x11_config_vo_window(). This required all platform backends
to handle this flag, even if they didn't need this mechanism.
Wayland still uses this for minor reasons (alpha support?), so the
wayland backend must be changed before the flag can be entirely removed.
This reverts commit d11184a256.
Unfortunately, there was a lot of unexpected resistance.
Do note that this is still extremely slow, crappy, etc.
Note that vo_x11.c was further edited. Compared to the removed vo_x11.c,
an additional ~200 lines of code was removed in order to simplify it. I
tried to strip it down as much as possible. In particular, support for
odd non-32 bit formats (24, 16, 15, 8 bit) is dropped.
Closes#2300.
At the time screenshot support was added, images weren't refcounted yet,
so screenshots required specialized implementations in the VOs. But now
we can handle these things much simpler. Also see commit 5bb24980.
If there are VOs in the future which can't do this (e.g. they need to
write to the image passed to vo_driver->draw_image), this still could be
disabled on a per-VO basis etc., so we lose no potential performance
advantages.
Use different VOCTRLs for "window" and normal screenshot modes. The
normal one will probably be removed, and replaced by generic code in
vo.c, and this commit is preparation for this. (Doing it the other way
around would be slightly simpler, but I haven't decided yet about the
second one, and touching every VO is needed anyway in order to remove
the unneeded crap. E.g. has_osd has been unused for a long time.)
And remove all uses of the VFCAP_CSP_SUPPORTED* constants. This is
supposed to reduce conversions if many filters are used (with many
incompatible pixel formats), and also for preferring the VO's natively
supported pixel formats (as opposed to conversion).
This is worthless by now. Not only do the main VOs not use software
conversion, but also the way vf_lavfi and libavfilter work mostly break
the way the old MPlayer mechanism worked. Other important filters like
vf_vapoursynth do not support "proper" format negotation either.
Part of this was already removed with the vf_scale cleanup from today.
While I'm touching every single VO, also fix the query_format argument
(it's not a FourCC anymore).
...because everything is terrible.
strerror() is not documented as having to be thread-safe by POSIX and
C11. (Which is pretty much bullshit, because both mandate threads and
some form of thread-local storage - so there's no excuse why
implementation couldn't implement this in a thread-safe way. Especially
with C11 this is ridiculous, because there is no way to use threads and
convert error numbers to strings at the same time!)
Since we heavily use threads now, we should avoid unsafe functions like
strerror().
strerror_r() is in POSIX, but GNU/glibc deliberately fucks it up and
gives the function different semantics than the POSIX one. It's a bit of
work to convince this piece of shit to expose the POSIX standard
function, and not the messed up GNU one.
strerror_l() is also in POSIX, but only since the 2008 standard, and
thus is not widespread.
The solution is using avlibc (libavutil, by its official name), which
handles the unportable details for us, mostly. We avoid some pain.
Add a generic mechanism to the VO to relay "extra" events from VO to
player. Use it to notify the core of window resizes, which in turn will
be used to mark all affected properties ("window-scale" in this case) as
changed.
(I refrained from hacking this as internal command into input_ctx, or to
poll the state change, etc. - but in the end, maybe it would be best to
actually pass the client API context directly to the places where events
can happen.)
Follow up on commit 760548da. Mouse handling is a bit confusing, because
there are at least 3 coordinate systems associated with it, and it
should be cleaned up. But that is hard, so just apply a hack which gets
the currently-annoying issue (VO backends needing access to the VO) out
of the way.
VO backends which are or will run in their own thread have a problem
with vo_mouse_movement() calling vo_control(). Restrict this to VOs
which actually need this.
With the change to merge osd drawing into video frame drawing, some
bogus logic got in: they skipped drawing the OSD if no video frame is
available. This broke --no-video --force-window mode.
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
Let the VOs draw the OSD on their own, instead of making OSD drawing a
separate VO driver call. Further, let it be the VOs responsibility to
request subtitles with the correct PTS. We also basically allow the VO
to request OSD/subtitles at any time.
OSX changes untested.
This affects packed RGB formats up to 16 bits per pixel. The old mplayer
names used LSB-to-MSB order, while FFmpeg (and some other libraries) use
MSB-to-LSB.
Nothing should change with this commit, i.e. no bit order or endian bugs
should be added or fixed. In some cases, the name stays the same, even
though the byte order changes, e.g. RGB8->BGR8 and BGR8->RGB8, and this
affects the user-visible names too; this might cause confusion.
Additionally to removing the global variables, this makes the options
more uniform. --ssf-... becomes --sws-..., and --sws becomes --sws-
scaler. For --sws-scaler, use choices instead of magic integer values.
Do two things:
1. add locking to struct osd_state
2. make struct osd_state opaque
While 1. is somewhat simple, 2. is quite horrible. Lots of code accesses
lots of osd_state (and osd_object) members. To make sure everything is
accessed synchronously, I prefer making osd_state opaque, even if it
means adding pretty dumb accessors.
All of this is meant to allow running VO in their own threads.
Eventually, VOs will request OSD on their own, which means osd_state
will be accessed from foreign threads.