Can be enabled via --vd-lavc-dr=yes. See manpage additions for what it
does.
This reminds of the MPlayer -dr flag, but the implementation is
completely different. It's the same basic concept: letting the decoder
render into a GPU buffer to avoid a copy. Unlike MPlayer, this doesn't
try to go through filters (libavfilter doesn't support this anyway).
Unless a filter can work in-place, DR will be silently disabled. MPlayer
had very complex semantics about buffer types and management (which
apparently nobody ever understood) and weird restrictions that mostly
limited it to mpeg2 style codecs. The mpv code does not do any of this,
and just lets the decoder allocate an arbitrary number of untyped
images. (No MPlayer code was used.)
Parts of the code based on work by atomnuker (starting point for the
generic code) and haasn (some GL definitions, some basic PBO code, and
correct fencing).
MaxCLL is the more authoritative source for the metadata we are
interested in. The use of mastering metadata is sort of a hack anyway,
since there's no clearly-defined relationship between the mastering peak
brightness and the actual content. (Unlike MaxCLL, which is an explicit
relationship)
Also move the parameter fixing to `fix_image_params`
I don't know if the avutil check is strictly necessary but I've included
it anyway to be on the safe side.
Unfortunately quite a mess, in particular due to the need to have some
compatibility with the old API. (The old API will be supported only in
short term.)
These decoders can select the decoding device with hw_device_ctx, but
don't use hw_frames_ctx (at least not in a meaningful way).
Currently unused, but intended to be used for cuvid, as soon as it hits
ffmpeg git master.
Also make the vdpau and vaapi hwaccel definition structs static, as we
have removed the old code which would have had clashing external
declarations.
FFmpeg could crash with vaapi (new) and --vo=opengl + interpolation.
It seems the actual surface count the old vaapi code uses (and which
usually never exceeded the preallocated amount) was higher than what
was used for the new vaapi code, so just correct that. The d3d helpers
also had weird code that bumped the real pool size, fix them as well.
Why this would result in an assertion failure instead of a proper error,
who knows.
hw_vaapi.c didn't do much interesting anymore. Other than the function
to create a device for decoding with vaapi-copy, everything can be done
by generic code. Other libavcodec hwaccels are planned to provide the
same API as vaapi. It will be possible to drop the other hw_ files in
the future. They will use this generic code instead.
In a way it can be reused. For now, sw_format and initial_pool_size
determination are still vaapi-specific. I'm hoping this can be eventally
moved to libavcodec in some way. Checking the supported_formats array is
not really vaapi-specific, and could be moved to the generic code path
too, but for now it would make things more complex.
hw_cuda.c can't use this, but hw_vdpau.c will in the following commit.
Other hwdecs will also be able to use this (as soon as they are switched
to use AVHWFramesContext).
As an additional feature, failing to copy back the frame counts as
hardware decoding failure and can trigger fallback. This can be done
easily now, because it needs no way to communicate this from the hwaccel
glue code to the common code.
The old code is still required for the old decode API, until we either
drop or rewrite it. vo_vaapi.c's OSD code (fuck...) also uses these
surface functions to a higher degree.
The old API is deprecated, and libavcodec prints a warning at runtime.
The new API is a bit nicer and does many things for you, such as
managing the underlying hwaccel decoder. libavutil also provides code
for managing surfaces (we use their surface pool).
The new code does not contain any code from the original MPlayer VAAPI
patch (that was used as base for some of the vaapi code in mpv). Thus
the new code is LGPL.
The new API actually does not add any visible symbols, so the only way
to detect it is a version check. Of course, the versions overlap
between FFmpeg and Libav, which requires additional care. The new
API did not get merged into FFmpeg yet, so there's no check for
FFmpeg.
The ffmpeg cuda wrappers need more than 1 packet for determining whether
hw decoding will work. So do something complicated and keep up to 32
packets when trying to do hw decoding, and replay the packets on the
software decoder if it doesn't work.
This code was written in a delirious state, testing for regressions and
determining whether this is worth the trouble will follow later. All mpv
git users are alpha testers as of this moment.
Fixes#3914.
This greatly improves the result when decoding typical (ST.2084) HDR
content, since the job of tone mapping gets significantly easier when
you're only mapping from 1000 to 250, rather than 10000 to 250.
The difference is so drastic that we can now even reasonably use
`hdr-tone-mapping=linear` and get a very perceptually uniform result
that is only slightly darker than normal. (To compensate for the extra
dynamic range)
Due to weird implementation details, this only seems to be present on
keyframes (or something like that), so we have to cache the last seen
value for the frames in between.
Also, in some files the metadata is just completely broken /
nonsensical, so I decided to apply a simple heuristic to detect
completely broken metadata.
This involves multiple changes:
1. Brightness metadata is split into nominal peak and signal peak.
For a quick and dirty explanation: nominal peak is the brightest value
that your color space can represent (i.e. the brightness of an encoded
1.0), and signal peak is the brightest value that actually occurs in
the video (i.e. the brightest thing that's displayed).
2. vo_opengl uses a new decision logic to figure out the right nom_peak
and sig_peak for all situations. It also does a better job of picking
the right target gamut/colorspace to use for the OSD. (Which still is
and still should be treated as sRGB). This change in logic also
fixes#3293 en passant.
3. Since it was growing rapidly, the logic for auto-guessing / inferring
the right colorimetry configuration (in pass_colormanage) was split from
the logic for actually performing the adaptation (now pass_color_map).
Right now, the new logic doesn't do a whole lot since HDR metadata is
still ignored (but not for long).
This uses the normal autoprobing rules like "auto", but rejects anything
that isn't flagged as copying data back to system memory.
The chunk in command.c was dead code, so remove it instead of updating
it.
The main change is with video/hwdec.h. mp_hwdec_info is made opaque (and
renamed to mp_hwdec_devices). Its accessors are mainly thread-safe (or
documented where not), which makes the whole thing saner and cleaner. In
particular, thread-safety rules become less subtle and more obvious.
The new internal API makes it easier to support multiple OpenGL interop
backends. (Although this is not done yet, and it's not clear whether it
ever will.)
This also removes all the API-specific fields from mp_hwdec_ctx and
replaces them with a "ctx" field. For d3d in particular, we drop the
mp_d3d_ctx struct completely, and pass the interfaces directly.
Remove the emulation checks from vaapi.c and vdpau.c; they are
pointless, and the checks that matter are done on the VO layer.
The d3d hardware decoders might slightly change behavior: dxva2-copy
will not use the VO device anymore if the VO supports proper interop.
This pretty much assumes that any in such cases the VO will not use any
form of exclusive mode, which makes using the VO device in copy mode
unnecessary.
This is a big refactor. Some things may be untested and could be broken.
This is intended for cases when --hwdec needs to override the decoder
implementation in use, like for example on the RPI.
It does two things:
1. Allow the hwdec to indicate a decoder suffix. libavcodec by
convention adds a suffix to all wrapper decoders, and here we start
relying on it. While not necessarily the best idea, it's the only
thing we got. libavcodec's hwaccel list is useless, because it only
has the codec ID, not the associated decoder's name.
2. Make --hwdec=auto work properly. It shouldn't fail anymore, and hwdec
probing should reliably work, even if a different decoder is selected
with --vd. The semantics of --hwdec should dictate that it overrides
the default decoder.
Until now, the presence of the process_image() callback was used to set
a delay queue with a hardcoded size. Change this to a vd_lavc_hwdec
field instead, so the decoder can explicitly set this if it's really
needed.
Do this so process_image() can be used in the VideoToolbox glue code for
something entirely unrelated.
Some functions which expected a codec name (i.e. the name of the video
format itself) were passed a decoder name. Most "native" libavcodec
decoders have the same name as the codec, so this was never an issue.
This should mean that e.g. using "--vd=lavc:h264_mmal --hwdec=mmal"
should now actually enable native surface mode (instead of doing copy-
back).
Avoids "problems". In particular, it makes MMAL output a NOPTS timestamp
if the input timestamp was NOPTS.
Don't do it for other decoders. Ideally, we will at some point in the
future switch to integer fractions for timestamps at least up until the
filter layer. But this would be a larger change, and for now I'd prefer
keeping the not-rounded demuxer timestamps (if we have them).
Don't give the "software_fallback_decoder" field special meaning. Alwass
set it, and rename it to "decoder". Whether hw decoding is used is
determined by the "hwdec" field already.
Until now, we've relied on the following things:
- you can send flush packets to the decoder even if it's fully flushed,
- you can send new packets to a flushed decoder,
- you can send new packers to a partially flushed decoder.
("flushing" refers to sending flush packets to the decoder until the
decoder does not return new pictures, not avcodec_flush_buffers().)
All of these are questionable. The libavcodec API probably doesn't
guarantee that these work well or at all, even though most decoders have
no issue with these. But especially with hardware decoding wrappers
(like MMAL), real problems can be expected. Isolate us from these corner
cases by handling them explicitly.
A hw decoder might fail to decode a frame for multiple reasons, and not
always just because decoding is impossible. We can't generally
distinguish these reasons well. Make it more tolerant by accepting
failures of 3 frames, but not more. The threshold can be adjusted by the
repurposed --vd-lavc-software-fallback option.
(This behavior was suggested much earlier in some PR, but at the time
the "proper" hwdec fallback was indistinguishable from decoding error.
With the current situation, "proper" fallback is still instantious.)
Often, we don't know whether hardware decoding will work until we've
tried. (This used to be different, but API changes and improvements in
libavcodec led to this situation.) We will often output that we're going
to use hardware decoding, and then print a fallback warning.
Instead, print the status once we have decoded a frame.
Some of the old messages are turned into verbose messages, which should
be helpful for debugging. Also add some new ones.
Yet another of these dozens of hwaccel changes. This time, libavcodec
provides utility functions, which initialize the vdpau decoder and map
codec profiles. So a lot of work the API user had to do falls away.
This also will give us support for high bit depth profiles, and possibly
HEVC once libavcodec supports it.
Most of hardware decoding is initialized lazily. When the first packet
is parsed, libavcodec will call get_format() to check whether hw or sw
decoding is wanted. Until now, we've returned AV_PIX_FMT_NONE from
get_format() if hw decoder initialization failed. This caused the
avcodec_decode_video2() call to fail, which in turn let us trigger the
fallback. We didn't return a sw format from get_format(), because we
didn't want to continue decoding at all. (The reason being that full
reinitialization is more robust when continuing sw decoding.)
This has some disadvantages. libavcodec vomited some unwanted error
messages. Sometimes the failures are more severe, like it happened with
HEVC. In this case, the error code path simply acted up in a way that
was extremely inconvenient (and had to be fixed by myself). In general,
libavcodec is not designed to fallback this way.
Make it a bit less violent from the API usage point of view. Return a sw
format if hw decoder initialization fails. In this case, we let
get_buffer2() call avcodec_default_get_buffer2() as well. libavcodec is
allowed to perform its own sw fallback. But once the decode function
returns, we do the full reinitialization we wanted to do.
The result is that the fallback is more robust, and doesn't trigger any
decoder error codepaths or messages either. Change our own fallback
message to a warning, since there are no other messages with error
severity anymore.
This requires FFmpeg git master for accelerated hardware decoding.
Keep in mind that FFmpeg must be compiled with --enable-mmal. Libav
will also work.
Most things work. Screenshots don't work with accelerated/opaque
decoding (except using full window screenshot mode). Subtitles are
very slow - even simple but huge overlays can cause frame drops.
This always uses fullscreen mode. It uses dispmanx and mmal directly,
and there are no window managers or anything on this level.
vo_opengl also kind of works, but is pretty useless and slow. It can't
use opaque hardware decoding (copy back can be used by forcing the
option --vd=lavc:h264_mmal). Keep in mind that the dispmanx backend
is preferred over the X11 ones in case you're trying on X11; but X11
is even more useless on RPI.
This doesn't correctly reject extended h264 profiles and thus doesn't
fallback to software decoding. The hw supports only up to the high
profile, and will e.g. return garbage for Hi10P video.
This sets a precedent of enabling hw decoding by default, but only
if RPI support is compiled (which most hopefully it will be disabled
on desktop Linux platforms). While it's more or less required to use
hw decoding on the weak RPI, it causes more problems than it solves
on real platforms (Linux has the Intel GPU problem, OSX still has
some cases with broken decoding.) So I can live with this compromise
of having different defaults depending on the platform.
Raspberry Pi 2 is required. This wasn't tested on the original RPI,
though at least decoding itself seems to work (but full playback was
not tested).
This is somewhat imperfect, because detection of hw decoding APIs is
mostly done on demand, and often avoided if not necessary. (For example,
we know very well that there are no hw decoders for certain codecs.)
This also requires every hwdec backend to identify itself (see hwdec.h
changes).
So talking to a certain Intel dev, it sounded like modern VA-API drivers
are reasonable thread-safe. But apparently that is not the case. Not at
all. So add approximate locking around all vaapi API calls.
The problem appeared once we moved decoding and display to different
threads. That means the "vaapi-copy" mode was unaffected, but decoding
with vo_vaapi or vo_opengl lead to random crashes.
Untested on real Intel hardware. With the vdpau emulation, it seems to
work fine - but actually it worked fine even before this commit, because
vdpau was written and designed not by morons, but competent people
(vdpau is guaranteed to be fully thread-safe).
There is some probability that this commit doesn't fix things entirely.
One problem is that locking might not be complete. For one, libavcodec
_also_ accesses vaapi, so we have to rely on our own guesses how and
when lavc uses vaapi (since we disable multithreading when doing hw
decoding, our guess should be relatively good, but it's still a lavc
implementation detail). One other reason that this commit might not
help is Intel's amazing potential to fuckup anything that is good and
holy.
mpv supports two hardware decoding APIs on Linux: vdpau and vaapi. Each
of these has emulation wrappers. The wrappers are usually slower and
have fewer features than their native opposites. In particular the libva
vdpau driver is practically unmaintained.
Check the vendor string and print a warning if emulation is detected.
Checking vendor strings is a very stupid thing to do, but I find the
thought of people using an emulated API for no reason worse.
Also, make --hwdec=auto never use an API that is detected as emulated.
This doesn't work quite right yet, because once one API is loaded,
vo_opengl doesn't unload it, so no hardware decoding will be used if the
first probed API (usually vdpau) is rejected. But good enough.
This "sometimes" crashed when seeking. The fault apparently lies in
libavcodec: the decoder returns an unreferenced frame! This is
completely insane, but somehow I'm apparently still expected to
work this around. As a reaction, I will drop Libav 9 support in the
next commit. (While this commit will go into release/0.3.)
Apparently the "right" place to initialize the hardware decoder is in
the libavcodec get_format callback.
This doesn't change vda.c and vdpau_old.c, because I don't have OSX, and
vdpau_old.c is probably going to be removed soon (if Libav ever manages
to release Libav 10). So for now the init_decoder callback added with
this commit is optional.
This also means vdpau.c and vaapi.c don't have to manage and check the
image parameters anymore.
This change is probably needed for when libavcodec VDA supports gets a
new iteration of its API.
In my opinion, config.h inclusions should be kept to a minimum. MPlayer
code really liked including config.h everywhere, though, even in often
used header files. Try to reduce this.
This should help fixing some issues (like not draining video frames
correctly on reinit), as well as decoupling the decoder, filter chain,
and VO code.
I also wanted to make the hardware video decoding fallback work properly
if software-only video filters are inserted. This currently has the
issue that the fallback is too violent, and throws away a bunch of
demuxer packets needed to restart software decoding properly. But
keeping "backup" packets turned out as too hacky, so I'm not doing this,
at least not yet.
PIX_FMT_* -> AV_PIX_FMT_* (except some pixdesc constants)
enum PixelFormat -> enum AVPixelFormat
Losen some version checks in certain newer pixel formats.
av_pix_fmt_descriptors -> av_pix_fmt_desc_get
This removes support for FFmpeg 1.0.x, which is even older than
Libav 9.x. Support for it probably was already broken, and its
libswresample was rejected by our build system anyway because it's
broken.
Mostly untested; it does compile with Libav 9.9.